A proof of Matsumoto-type theorem
of (non-crystallographic) Coxeter groups

Hiroyuki Yamane

1 Semigroup, Monoid, Group

Let K be a set. Assume K # (). Let A : K x K — K be a map. For z,
y € K, denote A(z,y) by zy. We call (K, f) a semigroup if Vz, Yy, Vz € K,
(xy)z = x(yz) (this means AM(A(x,y), z) = A(z, A(y, z)). We also denote (K, f) by
K for simplicity. If K and K’ are semigroups.

2 Basic representation p of the Coxeter group
44

For a, b € R, let J,p :=€ {z € Z|a < 2 < b}. For a € Z, let J, » := {2z € Z]a <
z}.

Fix N € N. Let I := Jyn. Let M = [myj];jer be an N x N matrix with
mi; € NU{+o0}. We call M a Cozeter matriz if m; = 1 and m;; = mj; > 2
(i # 7). Let W=W(M) := (s; (1 € I)|(s55;)™ = e (i # j, mj < +00)) be the
Cozxeter group of type M.

Define the map ¢: W — Z>, by

0 if w=e,
(21) l(w):= { min{n € N|Ji, € [ (x € Ji,), w=s5; ---s;, } otherwise.

Define the group homomorphism sgn : W — {£1} by sgn(s;) := 1. Then
sgn(w) = (1)1,

Lemma 2.1. Vw € W, Vi € I, |{(s;w) — {(w)| = 1.

Proof. Clearly ¢(s;w) < £(w) + 1, and ¢(w)
l(w)| < 1. Since sgn(s;w) # sgn(w), we have |{(s

< {(s;w) + 1. Hence |l(s;w) —
aw) — L(w)| # 0. ]

Let V be an N-dimensional R-linear space with a basis {v;|i € I}. Let
(,):V xV — R be a bi-linear map defined by

| —2cos(m/my;)  if my; < +o0,
(22) (U“U]) T { —2 if mi; = +00.

For a subspace V' of V, let (V') := {x € V|vy € V', (x,y) = 0}. Since
(v, ;) =2 # 0, we have V = Ru; @ (Ruy)*.



Lemma 2.2. We have a group homomorphism p : W — GL(V') defined by
(2.3) p(si)(x) =z — (x,v;)v;.

Proof. We may assume i # j and m;; < 4+00. Then 0 < cos(m/m;;) < 1,
0 < sin(m/m;;) < 1 and

2 —2cos(m/m;;)

det | cos(r /i) 5 ] = 4sin®(m/my;) # 0.

Hence V = Ru; @Ruy @ (Roy @Ry ). Let v := (cos(m/m;)) ™" (sin(m/mi; )vi+v;).
Let ¢; := cos(m/my;) and ¢z := /1 — 3, so sin(7/m;;) = ca. We have

[0ip;(vi), pip; (V)] = lpip;i (i), pip;(v5)] { é 011//522 ]

= [pi(vs), pi(v;)] _ 211 _01 } {(1) Cll//ccj]

i 1 —C 1 Cl/c2
= [pz(UZ)7pZ(UJ)] 0 o } [ 2cy (20% —1)/e ]
[ 1-2¢2 2cic0

2cicy  2¢3 —1

/

= [pi(vy), pi(Uj)]

(2.4)

:@Hﬂ'l —a [ -1 2671 afes [[1=28 2ei6
U0 o 0 1 [|0 1/e %ies 262 — 1
= [v3, 0] -1 0 1-— 20? 2cq1c9
e 0 1 2cic5  2¢3 —1
[ 2c2 -1 —2¢ic
— T 1 162
n [U“ U]] | 26102 20% —1
| cos(2m/my;)  —sin(2m/my;)
=l vl | y 3
| sin(27/my;)  cos(2m/my;)

For i, j € I with i # j, let W, ; be the subgroup of W generated by s; and s;,
and define ¢;; : Wi; — Z> by
(2.5)

lis(wys) == 0 if wy; = e,
AT min{n € N[ 3i, € {i,j} (x € Ji,), w=s8;, -+ s;, } otherwise.
Lemma 2.3. Fori, j € I with ¢ # j, we have
m;; = min{m € NU {4o00}|p(s;s;)™ =idy },

and |Wij| = 2my;. (Note that at this moment, Lyw,, may differ from {;;.)

3 Ordinary transformations

Let V' be a finite dimensional R-linear space.



Let N € N, and I := J; . Let f; € V*\ {0} for i € I. Let H; := ker f;.
Let A; :={y € V|fi(y) > 0}. Let A := NicrA;. Let p; € GL(V) be such that
p? = idy, and ker(idy — p;) = ker f;.

Lemma 3.1. p;(A;) = {y € V|fi(y) < 0}.

Proof. Let n := dim V. There is a basis {v;|j € Ji,,} of V such that {v;|j’ €
Jin-1} is a basis of ker f; and fi(v,) > 0. Then p;(vj) = vy (j' € Ji-1) and
pi(v,) = ZkeJl,n arvg for some a € R (k € Jy,). We have p;(v,) + v, € ker f;.
Hence a; = —1. Then we can see that this lemma holds. O

For i, j € I with i # j, let A;; := A; N Aj, let

+00 if (pip;)™ # idy for all m € N,
min{m € N|(p;p;)™ =1idy} otherwise.

(3.1) mi; = {

Let M := [my,lijer- Let v : W(M) — GL(V) be the group homomorphism
defined by 7(s;) := p;. Note that [p(W, ;)| = 2m; ;.

Theorem 3.2. Assume that A # 0. Assume that Vi, Vj € I withi # j, H; # Hj,
Vwi; € y(Wij) \ {e}, v(wi)(Ay) N Aij = 0.

(1) Vw € W\ {e}, y(w)(A)NA=10. In particular, v is injective.

(2) Leti € I. Letw € W. Then either y(w)(A) C A; or y(w)(A) C v(s;)(A;)
holds. Moreover, y(w)(A) C A; < {(s;w) = l(w) + 1.

(3) Let i, j € I be such thati # j. Let w € W. Then Vw € W, Jw;; € W;;,
Y(w)(A) C y(wiy)(Ay), Lw) = Lwg;'w) + Lij(wiy).

Proof. We shall show the following (P,) and (Q,) (¢ € Z>o) by induction on

(P)): Yiel, Vwe W with {(w) < g, either of the following (F,)+ and (P,)-
holds. (P,)+: v(w)(A) C A;, (Py)—: v(w)(A) C v(s;)(4;) and {(s;w) = £(w) — 1.

(Qq): Vi, Vj € I with i # j, Vw € W with {(w) < ¢, Jw;; € W;; s.t.
Y(w)(A) C y(wij)(Aij), (w) = L(wi; w) + Lij(wg;).

Note that () and (Qo) hold (let w;; := e), since f(w) =0 = w =e.
Since s;(s;w) = w, we see that
(3.2) (P,) holds, and (w) — 1 = {(s,w) = q¢ = v(s;w)(A) C A.

In this paragraph, we show that this theorem holds under the assumption
that the (Px) holds.



(Py): Vi € I, Yw € W, either of the following (Py); and (P,)_ holds.
(Poo) 4 y(w)(A) € Ay (Poo)—: 7(w)(A) € y(si)(Ai) and £(s;w) = ((w) — 1.

Let w € W be such that y(w)(A) N A # 0. Let i € I. Then A; Ny(w)(A) # 0.
By (P.), v(w)(A) C A;. Hence y(w)(A) C A. Since y(w™)(A) N A # 0. We
also have v(w™')(A) C A. Hence y(w)(A) = A. For all j € I, since y(s;w)(A) =
v(s;)(A) C v(s;)(A;), by (Px), we have {(sjw) = {(w) + 1. Hence w = e, and
we also see that kery = {e}, as desired.

Step 1. If |I| = 2, (Px) holds.

Assume |I| = 2. Then A = A; N Ay, and 7 is injective. Let n = dim V. Then
dimH; =n—1 (i € I). Since Hy N Hy # Hy, we have H; + Hy = V. Since
n=2(n—1)—dim(H, N Hy), dim(H; N Hy) = n — 2. Hence there exists a basis
{vi|k € Jin} such that vy € Hi N Hy (K € J3,), v1 € Hy \ Ha, fi(v1) > 0 and
vy € Ho \ Hl, f]_(UQ) > 0. Note that A; = R>0U1 @ Hy, Ay = R>0’U2 D HQ, and
A =R.gv; ®Rogvy @ (H1 N Hy). Note that Vw € W, Vv € Hy N Ha, y(w)(v) = v.
Note that

(3.3) Vie I, Yw e W, y(w)(A) NRy; = 0.

It follows from the proof of Lemma 3.1, that y(s;)(vx) = v (i € I, k' € J3,,),

(3.4) 3 € R, [sn) (@) ()] = el - | 51 0]
and
(35) B € R, [(sa) (o) 2(s2)(ea)] = forel | o 9 |-

Since y(s1)(v1 — bvy) = —wvy, by (3.3), we have b > 0. Likewise, ¢ > 0. Assume
b = 0. Since y(s152)(cv; + v9) = —wvy, we have ¢ = 0, so we can easily see
that (Ps) holds. Assume that b > 0 and ¢ > 0. Then we may assume b = c.
Let V' := Ru; @ Ruy. Let A := ANV’ = Rogvy & Rogve. Identify V7| vy,

vy with R?, L respectively. Let w € W. Note that y(w)(A’) =

0
0" |1
Roov(w)(v1) ®Rsgy(w)(va). Since v(s1)(ve) = va, y(wsy)(A’) is left (resp. right)
neighborhood of y(w)(A") with the boundary R.ovy(w)(vy) if sgn(w) = 1 (resp.
sgn(w) = —1). Since y(s2)(v1) = v1, Y(wsz)(A’) is right (resp. left) neighborhood
of y(w)(A") with the boundary R.gy(w)(vy) if sgn(w) = 1 (resp. sgn(w) = —1).
Let Ay .= A = A, and A} = ~(s1) (A7), AS™ = ~(sy)(AY™ ) for
m € N. Let A, := A,NV’" (i € I). Note V' = ALURwv; U~(s;)(A%) (disjoit union).
We can see that

(3.6) W|=o00 & [ JA" CA & (A" C A
m=0 m=0
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Figure 1: Basic domains of (W) with |I| = 2

Hence, if |W| = oo, we can see that (P ) holds.

Assume |W| < oo. Then |W| = 2myy. Let X := _bl ?
{(1) _bl} Let E = {(1) ?] Let T := {? (1]] Note that 7% = E, and
TXT =Y. Hence T(A}'") = A?? for all k € Zs.

Assume myy € 2N. Since det(XY) = 1, (XY)™2 = F and (XY)™2/2 £ E,
we have (XY)™2/2 = —E. Hence (XY)™2/2(A") = —A’. Since |W| = 2m1, we
have —A' = A}™2 = A™2, Hence we can see that (Ps) holds.

Assume myy € 2N+1. Let Z := (XY)(m2=D/2X Then Z := V(XY )m2-1)/2,
Since Z(A)N A" # 0, we have TZ # E. Since (TZ)* = (XY)™2 = FE and
det(TZ) =1, we have TZ = —E. Then Z(A') = —A’. Hence, similarly as above,
we can see that (Ps) holds.

], and let Y =

Step 2. (P,) and (Qq) = (Pyt1)-

Let w € W be such that ¢(w) = ¢+ 1. Let ¢ € I. Let j € I be such that
((sjw) < ¢(w). Let w" := sjw. Then ¢(w') = q. By (3.2), y(w’)(A) C A,. Hence
Y(w)(A) C v(sj)(A;). Soif i # j, (P,41) for this w holds.

Assume j # i. Let w;; € W;; be as in (Q,) for w’ in place of w. Then
Y(w)(A) = vy(s;w')(A) C y(sjwi;)(Aij). By Step 1, either v(w)(A) C A; or
Y(w)(A) C v(si)(A;) holds. Assume vy(w)(A) C v(s;)(Ai). Then vy(s;jw;;)(Aij) C
’}/(SZ)(AZ) By Step ]_, fij(sisjwij) = Eij(sjwij) — 1. Then

E(SZUJ) Eij (SiSj’lUij) + E(w;lw’)
lij(sjwij) — 1+ L(w') — Lij(wy)
(w')

q.

(3.7)

A I IA



Hence ¢(s;w) = q, as desired.

Step 3. (Py) and (Qq-1) = (Qy)-

Let ¢, j € I with i # j. Let w € W with ¢(w) = ¢. By (P,), there exist z,
y € Jo such that y(w)(A) C v(s:)"(A:i) Ny(s;)Y(4;). If v(w)(A) C A;NA;, then
(Q,) for this w holds by letting w;; = e.

Assume y(w)(A) C v(s;)(A;). Let w' =
(Qq-1), there exists wj; € Wj; such that (
{((t) ') + ). By Step 1, 9(w)(4) ©
lij(wi;) = €ij(siwj;) — 1. Hence

8@5 By (Fy), {(w') = ¢ —1. By

l(w) = (uw')+1
. = {((wly) ) + Ly (wly) + 1
= ((wiy) " Mw") + Ly (siwiy)
= U((siwj;)"'w) + Ly (siwfy),
as desired. This completes the proof. O
4 Dual of p

Let p : W — GL(V) be as in Lemma 2.2. Define the group homomorphism
pr W = GL(V7) by (p*(w)(f))(v) = f(p(w) (v)).

Lemma 4.1. ker p* = ker p.

Let i« € I. Let H; :== {f € V*|f(v;) = 0}. Then dimH; = N — 1. Let
A; = {f € V*|f(v;) > 0}. Since p(s;)(v;) = —v;, we have

Lemma 4.2. (1) p*(s;)(A ) {f € V*|f(v;) <0}.

(2) Vf € Hi, p*(s:)(f) =
(3) V* =A,UH; Up* (31)( ;) (disjoint).

Let v} € V* be such that v} (v;) = d;;. Then {v}|i € I} is a basis of V*. Let
A= NierA;. Then A # () since )., v € A. For 4, j € I with i # j, H; # H;
since vj € H; \ Hj.

For i, j € I with i # j, let A;; := A; N A;. Then A;; # 0 since A C A;;.

Lemma 4.3. Let i, j € I be such that i # j.
(1) (p*)w,; s injective.
(2) Y € Wiy \ {eb, p*(w)(Ay) N Ay = 0.

Proof. Let Ky := Rvj © Ruj. Let Hy; := H; N Hj. Then {vi|k € I\ {i,j}}
is a basis of H;;. In particular, dim H;; = N — 2, and V* = K;; ® H;;. Note
that Yw € Wy, Vf € Hy, p*(w)(f) = f. Let A}, := Roov; @ Ryovj. Then

Azg - A;] P sz



Assume m;; < 0o. Let ¢; := cos(m/m;;), and ¢y := sin(7/m;;). Since m;; > 2,

we have ¢y > 0. Define the linear isomorphism P : K;; — R? by P(v}) := { (1) } :

and P(v}) ::{zl}.We have
2
(1 ¢ -1 0 1 —ca/c
Ko \P-1 _ 1 1/C2
Por(s:)P 0 02H2c1 1 {0 1/cs }

I QC% —1 26102

(41) - | 20162 1—26%
| a —e 1 0 1 Cy
- _CQ C1 0 —1 —C2 C1 ’
and
*(o -1 _ 1 C1 —1 201 1 —01/02 . 1 0
(142) PP _{0 c2H0 1“0 e, |~ [0 1]

cos(2m/my;)  —sin(27/my;)

* .G . -1 =
Note that Pp*(ss;)P { sin(2m/my;)  cos(2m/mi;)

}. Since P(Aj};) =

R (1) } P® Roo [ 21 }, we can see that this lemma for m;; < oo holds.
i 2
Assume m;; = oco. Define the linear isomorphism @ : K;; — R? by Q(v}) :=

[1:,andQ(v;‘) = [?].Wehave

(4.3) Qp*(si)Q1=“?H_21(1)H_l1(1)}_[_01(1)1’

and

(4.4) Qp*(sj)Q”:“?H(l) _21H—11(1)}:[_01ﬂ

1 2k

Note that Qp*((s;s:)*)Q~! = 01 for k € Z. Hence for k € Z, we have
. , 2% + 1 2% . ,
Q' (o550 () = R | 7 | @ ao | 2F | and @ (st =

R-o le_ 1 @ Ry [ 21k ] Then this lemma for m;; = oo holds. This com-

pletes the proof. O
By the above lemmas, and Theorem 3.2, we have

Theorem 4.4. (1) Yw € W\ {e}, p*(w)(A)NA = 0. In particular, p* and p are
mjective.



(2) Let i € I. Let w € W. Then either p*(w)(A) C AZ- or p*(w)(A) C
p*(si)(A;) holds. Moreover, p*(w)(A) C A; < {(s;w) = l(w) +

(3) Let i, j € I be such that i # j. Let w € W. Then Yw € W Jw;; € Wi,
pr(w)(A) C p(wig)(Ay), (w) = l(wg;'w) + L(wyy).

5 Root system

Let
(5.1) O = {pw)(v;) eV|weW,iel}.
Let
(52) q)+ =®N (@iEIRZOUi)u P =dN (@iGIRZO(_Ui))-
Theorem 5.1. (1) 0 ¢ &, & Nd~ = ), &= = —d* Moreover, Vv € P,
RvN® = {v, —v}.
(2) ®=dtUD .

(3) Leti € I, and let w € W. Then
(5.3) p(w)(v;) € 2T & L(ws;) = L(w) + 1.

Proof. (1) Let v € ®*. Then 3w € W, 3i € I, v = p(w)(v;). Then
—v = p(ws;)(v;) € . Hence —d C ®. Clearly we have —d+ C &~. Similarly
—®~ C ®*. Hence @~ = —®". The rest claims follow from the fact that Vo € ®,

(v,v) =1.

(2) Let A; and A be as in Section 4. Note that A = @;c/R-ov;. Then we see
(5.4) (@ierR5ov;) \ {0} ={v e VI|VfeA, flv)>0}.
Hence by (1), we have
(5.5) Pt ={ved|Vfe A flv) >0}

Similarly we have &~ ={v € ®|Vf € A, f(v) <0}.

Let v € ®. Then Jw € W, Ji € I, v = p(w)(v;). By Theorem 4.4 (2),
p(w)(A) C A; or p ( “H(A) C p*(s:i)(A;). Assume p*(w')(A) C A;. Then
Ve A fv) = p*(w)(f)(v;) > 0. Hence v € ®*. Similarly we see that if
p*(w‘l)( ) C *( (A;), then v € @. Hence ® = &+ U d~, as desired.

(3) Assume p(w)(v;) € ©°. By (5.5), Vf € A, p*(w)(f)(v:) = F(p(w)(v,)) >
0. Hence p*(w™1)(A) C A;. By Theorem 4.4 (2), we have £(ws;) = ((w) + 1.
Similarly, p(w)(v;) € @~ = (ws;) = {(w) — 1. O

i)

w)

)(A

) €
By Theorem 5.1 (1),

(5.6) Viel, {ved®|p(s;)(v) € ® } = {v}.



Lemma 5.2. Let w € W and i € I be such that {(s;w) = L(w) + 1. Let j € I
and k € I\ {i} be such that p(w)(v;) € Roov; ® Rogvg. Then ((syw) = £(w) — 1.

Proof. Let uy := p(w™1)(v;). By (5.3), uy € ®T. Let uy := p(w1)(vy,) € ®.
Let z, y € Ry be such that p(w)(v;) = zv; + yv,. Then zuy + yus = v;. Hence
ug € . By (5.3), {(spw) = {(w) — 1, as desired. O

Let Z:, ] € I with ¢ 7& j Let CLJ';O :=e. For n € N. let Ci,j;n = SiCj,i;n—l- If
n e JO,mz’j’ K(Ci,j;n) = nNn.
Assume m;; < oo. Then C jim,; = Cjim,;- Let Cyj = Cj jim,, 1. Let

] g iftmy €2N,
(5.7) 0;j = { T
Then

(58) st’ij = Oijsoij'

By (53>7 p(Cij>(U0ij> € ®*. By (58)7 p(SjCij)(voij) = _p(Cij)(UOij)’ By (56)7

we have

(59) p(Cij)(UOij) = Vj.

Lemma 5.3. Let w € W \ {e}. Leti € I be such that {(s;w) = {(w) —
Assume that 3k, 3j € I, p(w)(vx) = v;. Then i # j, my —1 < l(w), ((Cr;lw) =
U(w) —m; + 1. (In particular, m; < co.) Moreover, p(Cy;'w)(vi) = vo,,.-

Proof. If {(w) = 1, this lemma is clear since i # j = k and m;; = 2.

Assume £(w) > 2. By (5.3), we have l(wsy) = £(w) + 1, so {(s;wsy) = L(w).
Assume ¢ = j. Then p(s;w)(vy) = —v; € &, which is contradicition by (5.3).
Hence ¢ # j. If m;; = 2, this lemma for m;; holds since C;; = s;. Assume m,;; > 3.
Assume that In € Jy 4, and ((C; 7} w) = ((w) — n. Assume that if m;; < oo,

z]n

n < ml] — 2. Then p(CZan)< ) - p(02]n>(v.7) Since g(Cz]n8J> =n+ 17
by (5.3), p(C; ]ln)( i) € (Rsov; @ Rxguy) N @1, Let © € {i,j}. We easily see
g(sxczj nSJ) = E(SICZ] n>+1 By (5 3) p( Czjjl,n)@}]) S (RZOUlGBRZO’U])m(D—F By
(5.6), p(C; i) (v5) # vg. Hence n < £(w) —1. By Theorem 5.1 (1), p(C; ., )(v;) €
(Roov; @ Rogv;) N @F. By Lemma 5.2, we see that £(C; . Low) ={l(w)—n—1.
By this argument, we see that this theorem holds. O

Using Theorem 4.4, for w € W, we also see
(5.10) p(w)(v;) =v; = ws; = s;w

since p(ws;w™t) = p(s;).
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6 Matsumoto’s theorem

Let W be the monoid defined by the generators §; (i € I) and the relations

—_— Y
mi; mij

Let € denote the unit of w.
Define the map ¢ : W — Z>( by

~ 0 if w =eé,
(6.2)  ¢(w) := { min{n € N|Ji, € [ (x € J1,,), 0 =3;, -+, } otherwise.
Then Vi € I, 0(5;) = 1. Moreover, Vi, Vi, € W, {(ibyidy) = £(i,) + (). For
n € Zsg, let W .= {d e W|l{(d)=n}.
Define the monoid homomorphism 7 : W — W by i(8;) :==s; (1 €1).
Let 1, j € I with ¢ 7é ] ~Let Ci,}j;(] :=¢é. Forn € N. let C@j;'ﬂ = :SviCj,im_l.
Assume m;; < 00. Let Cij = Oi,j;mij—l' Then

(6.3) §;Ci; = Cij5o,.
Theorem 6.1. Let w € W. Then
(6.4) I {wh) N W) =1,

Proof. Let g := ¢(W). If ¢ = 0, (6.4) is clear. If ¢ = 1, (6.4) is clear from
(5.6).

Assume that ¢ > 2. Let @, 2 € W@ be such that i(@) = i(3) = w. Let us
show

(6.5) W= Z.
Let j € I and & € W@ be such that Z = #'5;. Note £(i(Z')) = ¢ — 1. Since
l(ws;) = q— 1, by (5.3), we have p(w)(v;) € ®~. Since v; € ®*, it follows that

Ty, Iy € W, Tk € I, © = w8502, p(i(w2))(v;) € ©F, p(i(35w2))(v;) € ©7,
where note £(c(0,)) = (w,) (x € J12). By (5.6), we have

(6.6) p(i(@2))(v;) = vy
By (5.10),
(6.7) H(W5)) = U(3ka), L(i(3ks)) = £(2) + 1.

Assume Z(ub) € Joq—2. By (6.7) and induction, we have w,5; = §;w,. Note
that 2(2') = i(25;) = 0(ws;) = U(W18W25;) = U(wr§2y) = (wiwz). Since
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0(i(2')) = q — 1, by induction, we have Z’ = wyws. Then we have (6.5) since
W = Wy Sy = Wi, = 35, = 2,

Assume ((iy) = ¢ — 1. Then @y = é. Let i € I and @), € W be such that
Wy = §;why. By (6.6), Lemma 5.3 and induction, it follows that m;;, < ¢, and
Juwf e W, iy = Ciraty. Moreover, p(t(w))(v;) = v,,. Since my > 2, by (6.6)
and induction, we have @}5; = §,, w5. By (6.3), we have C’zkéok = 5,C:x. Hence
We8; = SyWy = W. By induction, w, = Z’. Hence we have (6.5), as desired. This
completes the proof. O

Theorem 6.2. Let € W. Assume ((i(®)) < ((i0). Then
(6.8) k€ I, Iy, Iy € W, @ = 520D,

Proof. Let q := {(w). Since {(w) — £(i(w)) € 2N, ¢ > 2.

Assume ¢ = 2. Let 4, j € I be such that ¢ # j. Then ¢(s;s;) = 2 since
p(sisj)(vj) = —vj + (v, vj)v; # vj. Hence the claim holds.

Assume ¢ > 3. Let i € I and @/ € W be such that @ = @'5;. If £(u(d'))
q — 3, by inducition we see that the claim holds. Assume ¢(.(@')) = ¢ — 1 Then
(((w)) =q—2. Let Z € W2 be such that t(w) = «(2). Then ¢(25;) = o(a').

By Theorem 6.1, 25; = w'. Hence w = z57. This completes the proof. 0.
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