A proof of Matsumoto-type theorem of (non-crystallographic) Coxeter groups

Hiroyuki Yamane

1 Semigroup, Monoid, Group

Let K be a set. Assume $K \neq \emptyset$. Let $\lambda : K \times K \to K$ be a map. For x, $y \in K$, denote $\lambda(x, y)$ by xy. We call (K, f) a semigroup if $\forall x, \forall y, \forall z \in K$, (xy)z = x(yz) (this means $\lambda(\lambda(x, y), z) = \lambda(x, \lambda(y, z))$). We also denote (K, f) by K for simplicity. If K and K' are semigroups.

2 Basic representation ρ of the Coxeter group W

For $a, b \in \mathbb{R}$, let $J_{a,b} := \in \{z \in \mathbb{Z} | a \leq z \leq b\}$. For $a \in \mathbb{Z}$, let $J_{a,\infty} := \{z \in \mathbb{Z} | a \leq z\}$.

Fix $N \in \mathbb{N}$. Let $I := J_{1,N}$. Let $M = [m_{ij}]_{i,j\in I}$ be an $N \times N$ matrix with $m_{ij} \in \mathbb{N} \cup \{+\infty\}$. We call M a Coxeter matrix if $m_{ii} = 1$ and $m_{ij} = m_{ji} \geq 2$ $(i \neq j)$. Let $W = W(M) := \langle s_i (i \in I) | (s_i s_j)^{m_{ij}} = e (i \neq j, m_{ij} < +\infty) \rangle$ be the Coxeter group of type M.

Define the map $\ell: W \to \mathbb{Z}_{\geq 0}$ by

(2.1)
$$\ell(w) := \begin{cases} 0 & \text{if } w = e, \\ \min\{n \in \mathbb{N} \mid \exists i_x \in I \ (x \in J_{1,n}), \ w = s_{i_1} \cdots s_{i_n} \} & \text{otherwise.} \end{cases}$$

Define the group homomorphism sgn : $W \to \{\pm 1\}$ by $\operatorname{sgn}(s_i) := 1$. Then $\operatorname{sgn}(w) = (-1)^{\ell(w)}$.

Lemma 2.1. $\forall w \in W, \forall i \in I, |\ell(s_i w) - \ell(w)| = 1.$

Proof. Clearly $\ell(s_i w) \leq \ell(w) + 1$, and $\ell(w) \leq \ell(s_i w) + 1$. Hence $|\ell(s_i w) - \ell(w)| \leq 1$. Since $\operatorname{sgn}(s_i w) \neq \operatorname{sgn}(w)$, we have $|\ell(s_i w) - \ell(w)| \neq 0$. \Box

Let V be an N-dimensional \mathbb{R} -linear space with a basis $\{v_i | i \in I\}$. Let $(,): V \times V \to \mathbb{R}$ be a bi-linear map defined by

(2.2)
$$(v_i, v_j) := \begin{cases} -2\cos(\pi/m_{ij}) & \text{if } m_{ij} < +\infty, \\ -2 & \text{if } m_{ij} = +\infty. \end{cases}$$

For a subspace V' of V, let $(V')^{\perp} := \{x \in V | \forall y \in V', (x, y) = 0\}$. Since $(v_i, v_i) = 2 \neq 0$, we have $V = \mathbb{R}v_i \oplus (\mathbb{R}v_i)^{\perp}$.

Lemma 2.2. We have a group homomorphism $\rho: W \to GL(V)$ defined by

(2.3)
$$\rho(s_i)(x) := x - (x, v_i)v_i.$$

Proof. We may assume $i \neq j$ and $m_{ij} < +\infty$. Then $0 < \cos(\pi/m_{ij}) < 1$, $0 < \sin(\pi/m_{ij}) < 1$ and

det
$$\begin{bmatrix} 2 & -2\cos(\pi/m_{ij}) \\ -2\cos(\pi/m_{ij}) & 2 \end{bmatrix} = 4\sin^2(\pi/m_{ij}) \neq 0.$$

Hence $V = \mathbb{R}v_1 \oplus \mathbb{R}v_2 \oplus (\mathbb{R}v_1 \oplus \mathbb{R}v_2)^{\perp}$. Let $v'_j := (\cos(\pi/m_{ij}))^{-1}(\sin(\pi/m_{ij})v_i + v_j)$. Let $c_1 := \cos(\pi/m_{ij})$ and $c_2 := \sqrt{1 - c_1^2}$, so $\sin(\pi/m_{ij}) = c_2$. We have

$$\begin{bmatrix} \rho_i \rho_j(v_i), \rho_i \rho_j(v'_j) \end{bmatrix} = \begin{bmatrix} \rho_i \rho_j(v_i), \rho_i \rho_j(v_j) \end{bmatrix} \begin{bmatrix} 1 & c_1/c_2 \\ 0 & 1/c_2 \end{bmatrix} \\ = \begin{bmatrix} \rho_i(v_i), \rho_i(v_j) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2c_1 & -1 \\ 0 & 2c_1 \end{bmatrix} \begin{bmatrix} 1 & c_1/c_2 \\ 0 & 1/c_2 \end{bmatrix} \\ = \begin{bmatrix} \rho_i(v_i), \rho_i(v'_j) \end{bmatrix} \begin{bmatrix} 1 & -c_1 \\ 0 & c_2 \end{bmatrix} \begin{bmatrix} 1 & c_1/c_2 \\ 2c_1 & (2c_1^2 - 1)/c_2 \end{bmatrix} \\ = \begin{bmatrix} \rho_i(v_i), \rho_i(v'_j) \end{bmatrix} \begin{bmatrix} 1 & -2c_1^2 & 2c_1c_2 \\ 2c_1c_2 & 2c_1^2 - 1 \end{bmatrix} \\ = \begin{bmatrix} v_i, v'_j \end{bmatrix} \begin{bmatrix} 1 & -c_1 \\ 0 & c_2 \end{bmatrix} \begin{bmatrix} -1 & 2c_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & c_1/c_2 \\ 0 & 1/c_2 \end{bmatrix} \begin{bmatrix} 1 - 2c_1^2 & 2c_1c_2 \\ 2c_1c_2 & 2c_1^2 - 1 \end{bmatrix} \\ = \begin{bmatrix} v_i, v'_j \end{bmatrix} \begin{bmatrix} 1 & -c_1 \\ 0 & c_2 \end{bmatrix} \begin{bmatrix} 1 - 2c_1^2 & 2c_1c_2 \\ 2c_1c_2 & 2c_1^2 - 1 \end{bmatrix} \\ = \begin{bmatrix} v_i, v'_j \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 - 2c_1^2 & 2c_1c_2 \\ 2c_1c_2 & 2c_1^2 - 1 \end{bmatrix} \\ = \begin{bmatrix} v_i, v'_j \end{bmatrix} \begin{bmatrix} 2c_1^2 - 1 & -2c_1c_2 \\ 2c_1c_2 & 2c_1^2 - 1 \end{bmatrix} \\ = \begin{bmatrix} v_i, v'_j \end{bmatrix} \begin{bmatrix} \cos(2\pi/m_{ij}) & -\sin(2\pi/m_{ij}) \\ \sin(2\pi/m_{ij}) & \cos(2\pi/m_{ij}) \end{bmatrix} .$$

For $i, j \in I$ with $i \neq j$, let $W_{i,j}$ be the subgroup of W generated by s_i and s_j , and define $\ell_{ij} : W_{ij} \to \mathbb{Z}_{\geq 0}$ by (2.5)

$$\ell_{ij}(w_{ij}) := \begin{cases} 0 & \text{if } w_{ij} = e, \\ \min\{n \in \mathbb{N} \,|\, \exists i_x \in \{i, j\} \,(x \in J_{1,n}), \, w = s_{i_1} \cdots s_{i_n} \,\} & \text{otherwise.} \end{cases}$$

Lemma 2.3. For $i, j \in I$ with $i \neq j$, we have

$$m_{ij} = \min\{m \in \mathbb{N} \cup \{+\infty\} | \rho(s_i s_j)^m = \mathrm{id}_V\},\$$

and $|W_{ij}| = 2m_{ij}$. (Note that at this moment, $\ell_{|W_{ij}|}$ may differ from ℓ_{ij} .)

3 Ordinary transformations

Let V be a finite dimensional \mathbb{R} -linear space.

Let $N \in \mathbb{N}$, and $I := J_{1,N}$. Let $f_i \in V^* \setminus \{0\}$ for $i \in I$. Let $H_i := \ker f_i$. Let $A_i := \{y \in V | f_i(y) > 0\}$. Let $A := \bigcap_{i \in I} A_i$. Let $\rho_i \in \operatorname{GL}(V)$ be such that $\rho_i^2 = \operatorname{id}_V$, and $\operatorname{ker}(\operatorname{id}_V - \rho_i) = \ker f_i$.

Lemma 3.1. $\rho_i(A_i) = \{y \in V | f_i(y) < 0\}.$

Proof. Let $n := \dim V$. There is a basis $\{v_j | j \in J_{1,n}\}$ of V such that $\{v_{j'} | j' \in J_{1,n-1}\}$ is a basis of ker f_i and $f_i(v_n) > 0$. Then $\rho_i(v_{j'}) = v_{j'}$ $(j' \in J_{1,n-1})$ and $\rho_i(v_n) = \sum_{k \in J_{1,n}} a_k v_k$ for some $a_k \in \mathbb{R}$ $(k \in J_{1,n})$. We have $\rho_i(v_n) + v_n \in \ker f_i$. Hence $a_i = -1$. Then we can see that this lemma holds.

For $i, j \in I$ with $i \neq j$, let $A_{i,j} := A_i \cap A_j$, let

(3.1)
$$m_{i,j} := \begin{cases} +\infty & \text{if } (\rho_i \rho_j)^m \neq \text{id}_V \text{ for all } m \in \mathbb{N}, \\ \min\{m \in \mathbb{N} \mid (\rho_i \rho_j)^m = \text{id}_V\} & \text{otherwise.} \end{cases}$$

Let $M := [m_{i,j}]_{i,j \in I}$. Let $\gamma : W(M) \to \operatorname{GL}(V)$ be the group homomorphism defined by $\gamma(s_i) := \rho_i$. Note that $|\rho(W_{i,j})| = 2m_{i,j}$.

Theorem 3.2. Assume that $A \neq \emptyset$. Assume that $\forall i, \forall j \in I$ with $i \neq j, H_i \neq H_j$, $\forall w_{ij} \in \gamma(W_{i,j}) \setminus \{e\}, \gamma(w_{ij})(A_{ij}) \cap A_{ij} = \emptyset$.

(1) $\forall w \in W \setminus \{e\}, \gamma(w)(A) \cap A = \emptyset$. In particular, γ is injective.

(2) Let $i \in I$. Let $w \in W$. Then either $\gamma(w)(A) \subset A_i$ or $\gamma(w)(A) \subset \gamma(s_i)(A_i)$ holds. Moreover, $\gamma(w)(A) \subset A_i \Leftrightarrow \ell(s_i w) = \ell(w) + 1$.

(3) Let $i, j \in I$ be such that $i \neq j$. Let $w \in W$. Then $\forall w \in W, \exists w_{ij} \in W_{ij}$, $\gamma(w)(A) \subset \gamma(w_{ij})(A_{ij}), \ \ell(w) = \ell(w_{ij}^{-1}w) + \ell_{ij}(w_{ij}).$

Proof. We shall show the following (P_q) and (Q_q) $(q \in \mathbb{Z}_{\geq 0})$ by induction on q.

 (P_q) : $\forall i \in I, \forall w \in W \text{ with } \ell(w) \leq q$, either of the following $(P_q)_+$ and $(P_q)_$ holds. $(P_q)_+$: $\gamma(w)(A) \subset A_i, (P_q)_-$: $\gamma(w)(A) \subset \gamma(s_i)(A_i)$ and $\ell(s_iw) = \ell(w) - 1$.

 $(Q_q): \forall i, \forall j \in I \text{ with } i \neq j, \forall w \in W \text{ with } \ell(w) \leq q, \exists w_{ij} \in W_{ij} \text{ s.t.} \\ \gamma(w)(A) \subset \gamma(w_{ij})(A_{ij}), \ell(w) = \ell(w_{ij}^{-1}w) + \ell_{ij}(w_{ij}).$

Note that (P_0) and (Q_0) hold (let $w_{ij} := e$), since $\ell(w) = 0 \Rightarrow w = e$.

Since $s_i(s_i w) = w$, we see that

(3.2)
$$(P_q)$$
 holds, and $\ell(w) - 1 = \ell(s_i w) = q \Rightarrow \gamma(s_i w)(A) \subset A_i$.

In this paragraph, we show that this theorem holds under the assumption that the (P_{∞}) holds.

 (P_{∞}) : $\forall i \in I, \forall w \in W$, either of the following $(P_{\infty})_+$ and $(P_{\infty})_-$ holds. $(P_{\infty})_+$: $\gamma(w)(A) \subset A_i, (P_{\infty})_-$: $\gamma(w)(A) \subset \gamma(s_i)(A_i)$ and $\ell(s_iw) = \ell(w) - 1$.

Let $w \in W$ be such that $\gamma(w)(A) \cap A \neq \emptyset$. Let $i \in I$. Then $A_i \cap \gamma(w)(A) \neq \emptyset$. By (P_{∞}) , $\gamma(w)(A) \subset A_i$. Hence $\gamma(w)(A) \subset A$. Since $\gamma(w^{-1})(A) \cap A \neq \emptyset$. We also have $\gamma(w^{-1})(A) \subset A$. Hence $\gamma(w)(A) = A$. For all $j \in I$, since $\gamma(s_jw)(A) = \gamma(s_j)(A) \subset \gamma(s_j)(A_j)$, by (P_{∞}) , we have $\ell(s_jw) = \ell(w) + 1$. Hence w = e, and we also see that ker $\gamma = \{e\}$, as desired.

Step 1. If |I| = 2, (P_{∞}) holds.

Assume |I| = 2. Then $A = A_1 \cap A_2$, and γ is injective. Let $n = \dim V$. Then dim $H_i = n - 1$ $(i \in I)$. Since $H_1 \cap H_2 \neq H_1$, we have $H_1 + H_2 = V$. Since $n = 2(n-1) - \dim(H_1 \cap H_2)$, dim $(H_1 \cap H_2) = n - 2$. Hence there exists a basis $\{v_k | k \in J_{1,n}\}$ such that $v_{k'} \in H_1 \cap H_2$ $(k' \in J_{3,n})$, $v_1 \in H_1 \setminus H_2$, $f_1(v_1) > 0$ and $v_2 \in H_2 \setminus H_1$, $f_1(v_2) > 0$. Note that $A_1 = \mathbb{R}_{>0}v_1 \oplus H_1$, $A_2 = \mathbb{R}_{>0}v_2 \oplus H_2$, and $A = \mathbb{R}_{>0}v_1 \oplus \mathbb{R}_{>0}v_2 \oplus (H_1 \cap H_2)$. Note that $\forall w \in W$, $\forall v \in H_1 \cap H_2$, $\gamma(w)(v) = v$. Note that

(3.3)
$$\forall i \in I, \, \forall w \in W, \, \gamma(w)(A) \cap \mathbb{R}v_i = \emptyset.$$

It follows from the proof of Lemma 3.1, that $\gamma(s_i)(v_{k'}) = v_{k'}$ $(i \in I, k' \in J_{3,n})$,

(3.4)
$$\exists b \in \mathbb{R}, \ [\gamma(s_1)(v_1), \gamma(s_1)(v_2)] = [v_1, v_2] \cdot \begin{bmatrix} -1 & 0 \\ b & 1 \end{bmatrix},$$

and

(3.5)
$$\exists c \in \mathbb{R}, \ [\gamma(s_2)(v_1), \gamma(s_2)(v_2)] = [v_1, v_2] \cdot \begin{bmatrix} 1 & c \\ 0 & -1 \end{bmatrix}.$$

Since $\gamma(s_1)(v_1 - bv_2) = -v_1$, by (3.3), we have $b \ge 0$. Likewise, $c \ge 0$. Assume b = 0. Since $\gamma(s_1s_2)(cv_1 + v_2) = -v_2$, we have c = 0, so we can easily see that (P_{∞}) holds. Assume that b > 0 and c > 0. Then we may assume b = c. Let $V' := \mathbb{R}v_1 \oplus \mathbb{R}v_2$. Let $A' := A \cap V' = \mathbb{R}_{>0}v_1 \oplus \mathbb{R}_{>0}v_2$. Identify V', v_1 , v_2 with \mathbb{R}^2 , $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ respectively. Let $w \in W$. Note that $\gamma(w)(A') = \mathbb{R}_{>0}\gamma(w)(v_1) \oplus \mathbb{R}_{>0}\gamma(w)(v_2)$. Since $\gamma(s_1)(v_2) = v_2$, $\gamma(ws_1)(A')$ is left (resp. right) neighborhood of $\gamma(w)(A')$ with the boundary $\mathbb{R}_{>0}\gamma(w)(v_2)$ if $\operatorname{sgn}(w) = 1$ (resp. $\operatorname{sgn}(w) = -1$). Since $\gamma(s_2)(v_1) = v_1$, $\gamma(ws_2)(A')$ is right (resp. left) neighborhood of $\gamma(w)(A')$ with the boundary $\mathbb{R}_{>0}\gamma(w)(v_1)$ if $\operatorname{sgn}(w) = -1$). Let $A'_{1^0} := A'_{2^0} := A'$, and $A'_{1^m} := \gamma(s_1)(A'_{2^m})$, $A'_{2^m} := \gamma(s_2)(A'_{1^m})$ for $m \in \mathbb{N}$. Let $A'_i := A_i \cap V'$ $(i \in I)$. Note $V' = A'_i \cup \mathbb{R}v_i \cup \gamma(s_i)(A'_i)$ (disjoit union). We can see that

(3.6)
$$|W| = \infty \iff \bigcup_{m=0}^{\infty} A_1'^m \subset A_1 \iff \bigcup_{m=0}^{\infty} A_2'^m \subset A_2.$$

Figure 1: Basic domains of $\gamma(W)$ with |I| = 2

Hence, if $|W| = \infty$, we can see that (P_{∞}) holds.

Assume $|W| < \infty$. Then $|W| = 2m_{12}$. Let $X := \begin{bmatrix} -1 & 0 \\ b & 1 \end{bmatrix}$, and let $Y := \begin{bmatrix} 1 & b \\ 0 & -1 \end{bmatrix}$. Let $E := \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Let $T := \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Note that $T^2 = E$, and TXT = Y. Hence $T(A'_k) = A'_k$ for all $k \in \mathbb{Z}_{\geq 0}$.

Assume $m_{12} \in 2\mathbb{N}$. Since $\det(XY) = 1$, $(XY)^{m_{12}} = E$ and $(XY)^{m_{12}/2} \neq E$, we have $(XY)^{m_{12}/2} = -E$. Hence $(XY)^{m_{12}/2}(A') = -A'$. Since $|W| = 2m_{12}$, we have $-A' = A'^{(m_{12})}_1 = A'^{(m_{12})}_2$. Hence we can see that (P_{∞}) holds.

Assume $m_{12} \in 2\mathbb{N}+1$. Let $Z := (XY)^{(m_{12}-1)/2}X$. Then $Z := Y(XY)^{(m_{12}-1)/2}$. Since $Z(A') \cap A' \neq \emptyset$, we have $TZ \neq E$. Since $(TZ)^2 = (XY)^{m_{12}} = E$ and $\det(TZ) = 1$, we have TZ = -E. Then Z(A') = -A'. Hence, similarly as above, we can see that (P_{∞}) holds.

Step 2. (P_q) and $(Q_q) \Rightarrow (P_{q+1})$.

Let $w \in W$ be such that $\ell(w) = q + 1$. Let $i \in I$. Let $j \in I$ be such that $\ell(s_j w) < \ell(w)$. Let $w' := s_j w$. Then $\ell(w') = q$. By (3.2), $\gamma(w')(A) \subset A_j$. Hence $\gamma(w)(A) \subset \gamma(s_j)(A_j)$. So if $i \neq j$, (P_{q+1}) for this w holds.

Assume $j \neq i$. Let $w_{ij} \in W_{ij}$ be as in (Q_q) for w' in place of w. Then $\gamma(w)(A) = \gamma(s_j w')(A) \subset \gamma(s_j w_{ij})(A_{ij})$. By Step 1, either $\gamma(w)(A) \subset A_i$ or $\gamma(w)(A) \subset \gamma(s_i)(A_i)$ holds. Assume $\gamma(w)(A) \subset \gamma(s_i)(A_i)$. Then $\gamma(s_j w_{ij})(A_{ij}) \subset \gamma(s_i)(A_i)$. By Step 1, $\ell_{ij}(s_i s_j w_{ij}) = \ell_{ij}(s_j w_{ij}) - 1$. Then

(3.7)
$$\ell(s_iw) \leq \ell_{ij}(s_is_jw_{ij}) + \ell(w_{ij}^{-1}w') \\ = \ell_{ij}(s_jw_{ij}) - 1 + \ell(w') - \ell_{ij}(w_{ij}) \\ \leq \ell(w') \\ = q.$$

Hence $\ell(s_i w) = q$, as desired.

Step 3. (P_q) and $(Q_{q-1}) \Rightarrow (Q_q)$.

Let $i, j \in I$ with $i \neq j$. Let $w \in W$ with $\ell(w) = q$. By (P_q) , there exist $x, y \in J_{0,1}$ such that $\gamma(w)(A) \subset \gamma(s_i)^x(A_i) \cap \gamma(s_j)^y(A_j)$. If $\gamma(w)(A) \subset A_i \cap A_j$, then (Q_q) for this w holds by letting $w_{ij} := e$.

Assume $\gamma(w)(A) \subset \gamma(s_i)(A_i)$. Let $w' := s_i w$. By (P_q) , $\ell(w') = q - 1$. By (Q_{q-1}) , there exists $w'_{ij} \in W_{ij}$ such that $\gamma(w')(A) \subset \gamma(w'_{ij})(A_{ij})$ and $\ell(w') = \ell((w'_{ij})^{-1}w') + \ell_{ij}(w'_{ij})$. By Step 1, $\gamma(w)(A) \subset \gamma(s_i w'_{ij})(A_{ij}) \subset \gamma(s_i)(A_i)$, and $\ell_{ij}(w'_{ij}) = \ell_{ij}(s_i w'_{ij}) - 1$. Hence

(3.8)
$$\ell(w) = \ell(w') + 1$$
$$= \ell((w'_{ij})^{-1}w') + \ell_{ij}(w'_{ij}) + 1$$
$$= \ell((w'_{ij})^{-1}w') + \ell_{ij}(s_iw'_{ij})$$
$$= \ell((s_iw'_{ij})^{-1}w) + \ell_{ij}(s_iw'_{ij}),$$

as desired. This completes the proof.

4 Dual of ρ

Let $\rho : W \to \operatorname{GL}(V)$ be as in Lemma 2.2. Define the group homomorphism $\rho^* : W \to \operatorname{GL}(V^*)$ by $(\rho^*(w)(f))(v) := f(\rho(w)^{-1}(v)).$

Lemma 4.1. ker $\rho^* = \ker \rho$.

Let $i \in I$. Let $H_i := \{f \in V^* | f(v_i) = 0\}$. Then dim $H_i = N - 1$. Let $A_i := \{f \in V^* | f(v_i) > 0\}$. Since $\rho(s_i)(v_i) = -v_i$, we have

Lemma 4.2. (1) $\rho^*(s_i)(A_i) = \{f \in V^* | f(v_i) < 0\}.$ (2) $\forall f \in H_i, \ \rho^*(s_i)(f) = f.$ (3) $V^* = A_i \cup H_i \cup \rho^*(s_i)(A_i)$ (disjoint).

Let $v_i^* \in V^*$ be such that $v_i^*(v_j) = \delta_{ij}$. Then $\{v_i^* | i \in I\}$ is a basis of V^* . Let $A := \bigcap_{i \in I} A_i$. Then $A \neq \emptyset$ since $\sum_{i \in I} v_i^* \in A$. For $i, j \in I$ with $i \neq j, H_i \neq H_j$ since $v_j^* \in H_i \setminus H_j$.

For $i, j \in I$ with $i \neq j$, let $A_{ij} := A_i \cap A_j$. Then $A_{ij} \neq \emptyset$ since $A \subset A_{ij}$.

Lemma 4.3. Let $i, j \in I$ be such that $i \neq j$.

(1) $(\rho^*)_{|W_{ij}|}$ is injective.

(2) $\forall w \in W_{ij} \setminus \{e\}, \ \rho^*(w)(A_{ij}) \cap A_{ij} = \emptyset.$

Proof. Let $K_{ij} := \mathbb{R}v_i^* \oplus \mathbb{R}v_j^*$. Let $H_{ij} := H_i \cap H_j$. Then $\{v_k^* | k \in I \setminus \{i, j\}\}$ is a basis of H_{ij} . In particular, dim $H_{ij} = N - 2$, and $V^* = K_{ij} \oplus H_{ij}$. Note that $\forall w \in W_{ij}, \forall f \in H_{ij}, \rho^*(w)(f) = f$. Let $A'_{ij} := \mathbb{R}_{>0}v_i^* \oplus \mathbb{R}_{>0}v_j^*$. Then $A_{ij} = A'_{ij} \oplus H_{ij}$.

Assume $m_{ij} < \infty$. Let $c_1 := \cos(\pi/m_{ij})$, and $c_2 := \sin(\pi/m_{ij})$. Since $m_{ij} \ge 2$, we have $c_2 > 0$. Define the linear isomorphism $P : K_{ij} \to \mathbb{R}^2$ by $P(v_i^*) := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and $P(v_j^*) := \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$. We have

(4.1)
$$P\rho^{*}(s_{i})P^{-1} = \begin{bmatrix} 1 & c_{1} \\ 0 & c_{2} \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 2c_{1} & 1 \end{bmatrix} \begin{bmatrix} 1 & -c_{1}/c_{2} \\ 0 & 1/c_{2} \end{bmatrix}$$
$$= \begin{bmatrix} 2c_{1}^{2} - 1 & 2c_{1}c_{2} \\ 2c_{1}c_{2} & 1 - 2c_{1}^{2} \end{bmatrix}$$
$$= \begin{bmatrix} c_{1} & -c_{2} \\ c_{2} & c_{1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c_{1} & c_{2} \\ -c_{2} & c_{1} \end{bmatrix}$$

and

(4.2)
$$P\rho^*(s_j)P^{-1} = \begin{bmatrix} 1 & c_1 \\ 0 & c_2 \end{bmatrix} \begin{bmatrix} -1 & 2c_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -c_1/c_2 \\ 0 & 1/c_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Note that
$$P\rho^*(s_i s_j)P^{-1} = \begin{bmatrix} \cos(2\pi/m_{ij}) & -\sin(2\pi/m_{ij}) \\ \sin(2\pi/m_{ij}) & \cos(2\pi/m_{ij}) \end{bmatrix}$$
. Since $P(A'_{ij}) = \mathbb{R}_{>0}\begin{bmatrix} 1 \\ 0 \end{bmatrix} \oplus \mathbb{R}_{>0}\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, we can see that this lemma for $m_{ij} < \infty$ holds.
Assume $m_{ij} = \infty$. Define the linear isomorphism $Q: K_{ij} \to \mathbb{R}^2$ by $Q(v_i^*) := \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $Q(v_j^*) := \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. We have
(4.3) $Q\rho^*(s_i)Q^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$,

and

(4.4)
$$Q\rho^*(s_j)Q^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}.$$

Note that $Q\rho^*((s_js_i)^k)Q^{-1} = \begin{bmatrix} 1 & 2k \\ 0 & 1 \end{bmatrix}$ for $k \in \mathbb{Z}$. Hence for $k \in \mathbb{Z}$, we have $Q(\rho^*((s_js_i)^k)(A'_{ij})) = \mathbb{R}_{>0}\begin{bmatrix} 2k+1 \\ 1 \end{bmatrix} \oplus \mathbb{R}_{>0}\begin{bmatrix} 2k \\ 1 \end{bmatrix}$, and $Q(\rho^*((s_js_i)^ks_i)(A'_{ij})) = \mathbb{R}_{>0}\begin{bmatrix} 2k-1 \\ 1 \end{bmatrix} \oplus \mathbb{R}_{>0}\begin{bmatrix} 2k \\ 1 \end{bmatrix}$. Then this lemma for $m_{ij} = \infty$ holds. This completes the proof. \Box

By the above lemmas, and Theorem 3.2, we have

Theorem 4.4. (1) $\forall w \in W \setminus \{e\}$, $\rho^*(w)(A) \cap A = \emptyset$. In particular, ρ^* and ρ are injective.

(2) Let $i \in I$. Let $w \in W$. Then either $\rho^*(w)(A) \subset A_i$ or $\rho^*(w)(A) \subset \rho^*(s_i)(A_i)$ holds. Moreover, $\rho^*(w)(A) \subset A_i \Leftrightarrow \ell(s_iw) = \ell(w) + 1$.

(3) Let $i, j \in I$ be such that $i \neq j$. Let $w \in W$. Then $\forall w \in W, \exists w_{ij} \in W_{ij}$, $\rho^*(w)(A) \subset \rho^*(w_{ij})(A_{ij}), \ \ell(w) = \ell(w_{ij}^{-1}w) + \ell(w_{ij}).$

5 Root system

Let

(5.1)
$$\Phi := \{ \rho(w)(v_i) \in V \mid w \in W, i \in I \}.$$

Let

(5.2)
$$\Phi^+ := \Phi \cap (\oplus_{i \in I} \mathbb{R}_{\geq 0} v_i), \ \Phi^- := \Phi \cap (\oplus_{i \in I} \mathbb{R}_{\geq 0} (-v_i)).$$

Theorem 5.1. (1) $0 \notin \Phi, \Phi^+ \cap \Phi^- = \emptyset, \Phi^- = -\Phi^+, Moreover, \forall v \in \Phi, \mathbb{R}v \cap \Phi = \{v, -v\}.$

(2) $\Phi = \Phi^+ \cup \Phi^-$. (3) Let $i \in I$, and let $w \in W$. Then

(5.3)
$$\rho(w)(v_i) \in \Phi^+ \iff \ell(ws_i) = \ell(w) + 1.$$

Proof. (1) Let $v \in \Phi^+$. Then $\exists w \in W$, $\exists i \in I$, $v = \rho(w)(v_i)$. Then $-v = \rho(ws_i)(v_i) \in \Phi$. Hence $-\Phi^+ \subset \Phi$. Clearly we have $-\Phi^+ \subset \Phi^-$. Similarly $-\Phi^- \subset \Phi^+$. Hence $\Phi^- = -\Phi^+$. The rest claims follow from the fact that $\forall v \in \Phi$, (v, v) = 1.

(2) Let A_i and A be as in Section 4. Note that $A = \bigoplus_{i \in I} \mathbb{R}_{>0} v_i^*$. Then we see

(5.4)
$$(\oplus_{i \in I} \mathbb{R}_{\geq 0} v_i) \setminus \{0\} = \{ v \in V \mid \forall f \in A, f(v) > 0 \}.$$

Hence by (1), we have

(5.5)
$$\Phi^+ = \{ v \in \Phi \, | \, \forall f \in A, \, f(v) > 0 \}.$$

Similarly we have $\Phi^- = \{ v \in \Phi \mid \forall f \in A, f(v) < 0 \}.$

Let $v \in \Phi$. Then $\exists w \in W$, $\exists i \in I$, $v = \rho(w)(v_i)$. By Theorem 4.4 (2), $\rho^*(w^{-1})(A) \subset A_i$ or $\rho^*(w^{-1})(A) \subset \rho^*(s_i)(A_i)$. Assume $\rho^*(w^{-1})(A) \subset A_i$. Then $\forall f \in A, f(v) = \rho^*(w^{-1})(f)(v_i) > 0$. Hence $v \in \Phi^+$. Similarly we see that if $\rho^*(w^{-1})(A) \subset \rho^*(s_i)(A_i)$, then $v \in \Phi^-$. Hence $\Phi = \Phi^+ \cup \Phi^-$, as desired.

(3) Assume $\rho(w)(v_i) \in \Phi^+$. By (5.5), $\forall f \in A, \ \rho^*(w^{-1})(f)(v_i) = f(\rho(w)(v_i)) > 0$. Hence $\rho^*(w^{-1})(A) \subset A_i$. By Theorem 4.4 (2), we have $\ell(ws_i) = \ell(w) + 1$. Similarly, $\rho(w)(v_i) \in \Phi^- \Rightarrow \ell(ws_i) = \ell(w) - 1$.

By Theorem 5.1 (1),

(5.6)
$$\forall i \in I, \{ v \in \Phi^+ | \rho(s_i)(v) \in \Phi^- \} = \{ v_i \}.$$

Lemma 5.2. Let $w \in W$ and $i \in I$ be such that $\ell(s_i w) = \ell(w) + 1$. Let $j \in I$ and $k \in I \setminus \{i\}$ be such that $\rho(w)(v_j) \in \mathbb{R}_{>0}v_i \oplus \mathbb{R}_{>0}v_k$. Then $\ell(s_k w) = \ell(w) - 1$.

Proof. Let $u_1 := \rho(w^{-1})(v_i)$. By (5.3), $u_1 \in \Phi^+$. Let $u_2 := \rho(w^{-1})(v_k) \in \Phi$. Let $x, y \in \mathbb{R}_{>0}$ be such that $\rho(w)(v_j) = xv_i + yv_k$. Then $xu_1 + yu_2 = v_j$. Hence $u_2 \in \Phi^-$. By (5.3), $\ell(s_k w) = \ell(w) - 1$, as desired. \Box

Let $i, j \in I$ with $i \neq j$. Let $C_{i,j;0} := e$. For $n \in \mathbb{N}$. let $C_{i,j;n} := s_i C_{j,i;n-1}$. If $n \in J_{0,m_{ij}}, \ell(C_{i,j;n}) = n$.

Assume $m_{ij} < \infty$. Then $C_{i,j;m_{ij}} = C_{j,i;m_{ij}}$. Let $C_{ij} := C_{i,j;m_{ij}-1}$. Let

(5.7)
$$o_{ij} := \begin{cases} j & \text{if } m_{ij} \in 2\mathbb{N}, \\ i & \text{if } m_{ij} \in 2\mathbb{N} + 1 \end{cases}$$

Then

$$(5.8) s_j C_{ij} = C_{ij} s_{o_{ij}}$$

By (5.3), $\rho(C_{ij})(v_{o_{ij}}) \in \Phi^+$. By (5.8), $\rho(s_j C_{ij})(v_{o_{ij}}) = -\rho(C_{ij})(v_{o_{ij}})$. By (5.6), we have

(5.9)
$$\rho(C_{ij})(v_{o_{ij}}) = v_j.$$

Lemma 5.3. Let $w \in W \setminus \{e\}$. Let $i \in I$ be such that $\ell(s_i w) = \ell(w) - 1$. Assume that $\exists k, \exists j \in I, \rho(w)(v_k) = v_j$. Then $i \neq j, m_{ij} - 1 \leq \ell(w), \ell(C_{ij}^{-1}w) = \ell(w) - m_{ij} + 1$. (In particular, $m_{ij} < \infty$.) Moreover, $\rho(C_{ij}^{-1}w)(v_k) = v_{o_{ij}}$.

Proof. If $\ell(w) = 1$, this lemma is clear since $i \neq j = k$ and $m_{ij} = 2$.

Assume $\ell(w) \geq 2$. By (5.3), we have $\ell(ws_k) = \ell(w) + 1$, so $\ell(s_iws_k) = \ell(w)$. Assume i = j. Then $\rho(s_iw)(v_k) = -v_i \in \Phi^-$, which is contradiction by (5.3). Hence $i \neq j$. If $m_{ij} = 2$, this lemma for m_{ij} holds since $C_{ij} = s_i$. Assume $m_{ij} \geq 3$. Assume that $\exists n \in J_{1,\ell(w)}$ and $\ell(C_{i,j;n}^{-1}w) = \ell(w) - n$. Assume that if $m_{ij} < \infty$, $n \leq m_{ij} - 2$. Then $\rho(C_{i,j;n}^{-1}w)(v_k) = \rho(C_{i,j;n}^{-1})(v_j)$. Since $\ell(C_{i,j;n}^{-1}s_j) = n + 1$, by (5.3), $\rho(C_{i,j;n}^{-1})(v_j) \in (\mathbb{R}_{\geq 0}v_i \oplus \mathbb{R}_{\geq 0}v_j) \cap \Phi^+$. Let $x \in \{i, j\}$. We easily see $\ell(s_x C_{i,j;n}^{-1}s_j) = \ell(s_x C_{i,j;n}^{-1}) + 1$, By (5.3), $\rho(s_x C_{i,j;n}^{-1})(v_j) \in (\mathbb{R}_{\geq 0}v_i \oplus \mathbb{R}_{\geq 0}v_j) \cap \Phi^+$. By (5.6), $\rho(C_{i,j;n}^{-1})(v_j) \neq v_x$. Hence $n \leq \ell(w) - 1$. By Theorem 5.1 (1), $\rho(C_{i,j;n}^{-1})(v_j) \in (\mathbb{R}_{>0}v_i \oplus \mathbb{R}_{>0}v_j) \cap \Phi^+$. By Lemma 5.2, we see that $\ell(C_{i,j;n+1}^{-1}w) = \ell(w) - n - 1$. By this argument, we see that this theorem holds.

Using Theorem 4.4, for $w \in W$, we also see

(5.10)
$$\rho(w)(v_i) = v_j \implies ws_i = s_j w$$

since $\rho(ws_iw^{-1}) = \rho(s_j)$.

6 Matsumoto's theorem

Let \widetilde{W} be the monoid defined by the generators \tilde{s}_i $(i \in I)$ and the relations

(6.1)
$$\underbrace{\tilde{s}_i \tilde{s}_j \tilde{s}_i \cdots}_{m_{ij}} = \underbrace{\tilde{s}_j \tilde{s}_i \tilde{s}_j \cdots}_{m_{ij}} \quad (i \neq j, \ m_{ij} < \infty).$$

Let \tilde{e} denote the unit of \widetilde{W} .

Define the map $\tilde{\ell}: \widetilde{W} \to \mathbb{Z}_{\geq 0}$ by

(6.2)
$$\tilde{\ell}(\tilde{w}) := \begin{cases} 0 & \text{if } \tilde{w} = \tilde{e}, \\ \min\{n \in \mathbb{N} \mid \exists i_x \in I \ (x \in J_{1,n}), \ \tilde{w} = \tilde{s}_{i_1} \cdots \tilde{s}_{i_n} \} & \text{otherwise.} \end{cases}$$

Then $\forall i \in I$, $\tilde{\ell}(\tilde{s}_i) = 1$. Moreover, $\forall \tilde{w}_1, \forall \tilde{w}_1 \in \widetilde{W}$, $\tilde{\ell}(\tilde{w}_1 \tilde{w}_2) = \tilde{\ell}(\tilde{w}_1) + \tilde{\ell}(\tilde{w}_2)$. For $n \in \mathbb{Z}_{\geq 0}$, let $\widetilde{W}^{(n)} := \{ \tilde{w} \in \widetilde{W} \mid \tilde{\ell}(\tilde{w}) = n \}.$

Define the monoid homomorphism $\tilde{\iota}: W \to W$ by $\tilde{\iota}(\tilde{s}_i) := s_i \ (i \in I)$. Let $i, j \in I$ with $i \neq j$. Let $\tilde{C}_{i,j;0} := \tilde{e}$. For $n \in \mathbb{N}$. let $\tilde{C}_{i,j;n} := \tilde{s}_i \tilde{C}_{j,i;n-1}$. Assume $m_{ij} < \infty$. Let $\tilde{C}_{ij} := \tilde{C}_{i,j;m_{ij}-1}$. Then

(6.3)
$$\tilde{s}_j \tilde{C}_{ij} = \tilde{C}_{ij} \tilde{s}_{o_{ij}}.$$

Theorem 6.1. Let $w \in W$. Then

(6.4)
$$|\tilde{\iota}^{-1}(\{w\}) \cap \widetilde{W}^{(\ell(w))}| = 1.$$

Proof. Let $q := \ell(W)$. If q = 0, (6.4) is clear. If q = 1, (6.4) is clear from (5.6).

Assume that $q \geq 2$. Let $\tilde{w}, \tilde{z} \in \widetilde{W}^{(q)}$ be such that $\tilde{\iota}(\tilde{w}) = \tilde{\iota}(\tilde{z}) = w$. Let us show

(6.5)
$$\tilde{w} = \tilde{z}.$$

Let $j \in I$ and $\tilde{z}' \in \widetilde{W}^{(q-1)}$ be such that $\tilde{z} = \tilde{z}'\tilde{s}_j$. Note $\ell(\tilde{\iota}(\tilde{z}')) = q - 1$. Since $\ell(ws_j) = q - 1$, by (5.3), we have $\rho(w)(v_j) \in \Phi^-$. Since $v_j \in \Phi^+$, it follows that $\exists \tilde{w}_1, \exists \tilde{w}_2 \in \widetilde{W}, \exists k \in I, \tilde{w} = \tilde{w}_1 \tilde{s}_k \tilde{w}_2, \ \rho(\tilde{\iota}(\tilde{w}_2))(v_j) \in \Phi^+, \ \rho(\tilde{\iota}(\tilde{s}_k \tilde{w}_2))(v_j) \in \Phi^-$, where note $\ell(\iota(\tilde{w}_x)) = \tilde{\ell}(\tilde{w}_x)$ ($x \in J_{1,2}$). By (5.6), we have

(6.6)
$$\rho(\tilde{\iota}(\tilde{w}_2))(v_j) = v_k.$$

By (5.10),

(6.7)
$$\tilde{\iota}(\tilde{w}_2\tilde{s}_j) = \tilde{\iota}(\tilde{s}_k\tilde{w}_2), \ \ell(\tilde{\iota}(\tilde{s}_k\tilde{w}_2)) = \tilde{\ell}(\tilde{w}_2) + 1.$$

Assume $\tilde{\ell}(\tilde{w}_2) \in J_{0,q-2}$. By (6.7) and induction, we have $\tilde{w}_2 \tilde{s}_j = \tilde{s}_k \tilde{w}_2$. Note that $\tilde{\iota}(\tilde{z}') = \tilde{\iota}(\tilde{z}\tilde{s}_j) = \tilde{\iota}(\tilde{w}\tilde{s}_j) = \tilde{\iota}(\tilde{w}_1\tilde{s}_k\tilde{w}_2\tilde{s}_j) = \tilde{\iota}(\tilde{w}_1\tilde{s}_k^2\tilde{w}_2) = \tilde{\iota}(\tilde{w}_1\tilde{w}_2)$. Since

 $\ell(\tilde{\iota}(\tilde{z}')) = q - 1$, by induction, we have $\tilde{z}' = \tilde{w}_1 \tilde{w}_2$. Then we have (6.5) since $\tilde{w} = \tilde{w}_1 \tilde{s}_k \tilde{w}_2 = \tilde{w}_1 \tilde{w}_2 \tilde{s}_j = \tilde{z}' \tilde{s}_j = \tilde{z}$.

Assume $\tilde{\ell}(\tilde{w}_2) = q - 1$. Then $\tilde{w}_1 = \tilde{e}$. Let $i \in I$ and $\tilde{w}'_2 \in \widetilde{W}$ be such that $\tilde{w}_2 = \tilde{s}_i \tilde{w}'_2$. By (6.6), Lemma 5.3 and induction, it follows that $m_{ik} \leq q$, and $\exists \tilde{w}''_2 \in \widetilde{W}, \tilde{w}_2 = \tilde{C}_{ik} \tilde{w}''_2$. Moreover, $\rho(\iota(\tilde{w}''_2))(v_j) = v_{o_{ik}}$. Since $m_{ik} \geq 2$, by (6.6) and induction, we have $\tilde{w}''_2 \tilde{s}_j = \tilde{s}_{o_{ik}} \tilde{w}''_2$. By (6.3), we have $\tilde{C}_{ik} \tilde{s}_{o_{ik}} = \tilde{s}_k \tilde{C}_{ik}$. Hence $\tilde{w}_2 \tilde{s}_j = \tilde{s}_k \tilde{w}_2 = \tilde{w}$. By induction, $\tilde{w}_2 = \tilde{z}'$. Hence we have (6.5), as desired. This completes the proof.

Theorem 6.2. Let $\tilde{w} \in \widetilde{W}$. Assume $\ell(\tilde{\iota}(\tilde{w})) < \tilde{\ell}(\tilde{w})$. Then

(6.8)
$$\exists k \in I, \, \exists \tilde{w}_1, \, \exists \tilde{w}_2 \in \widetilde{W}, \, \, \tilde{w} = \tilde{w}_1 \tilde{s}_k^2 \tilde{w}_2.$$

Proof. Let $q := \tilde{\ell}(\tilde{w})$. Since $\tilde{\ell}(\tilde{w}) - \ell(\tilde{\iota}(\tilde{w})) \in 2\mathbb{N}, q \geq 2$.

Assume q = 2. Let $i, j \in I$ be such that $i \neq j$. Then $\ell(s_i s_j) = 2$ since $\rho(s_i s_j)(v_j) = -v_j + (v_i, v_j)v_i \neq v_j$. Hence the claim holds.

Assume $q \geq 3$. Let $i \in I$ and $\tilde{w}' \in \widetilde{W}$ be such that $\tilde{w} = \tilde{w}'\tilde{s}_i$. If $\ell(\iota(\tilde{w}')) \leq q-3$, by inducition we see that the claim holds. Assume $\ell(\iota(\tilde{w}')) = q-1$ Then $\ell(\iota(\tilde{w})) = q-2$. Let $\tilde{z} \in \widetilde{W}^{(q-2)}$ be such that $\iota(\tilde{w}) = \iota(\tilde{z})$. Then $\iota(\tilde{z}\tilde{s}_i) = \iota(\tilde{w}')$. By Theorem 6.1, $\tilde{z}\tilde{s}_i = \tilde{w}'$. Hence $\tilde{w} = \tilde{z}\tilde{s}_i^2$. This completes the proof. \Box .

References

- [1] Arjeh M. Cohen, *Coxeter groups*, available from http://www.win.tue.nl/jpanhuis/coxeter/notes.pdf
- [2] I. Heckenberger and H. Yamane, A generalization of Coxeter groups, root systems, and Matsumoto's theorem. Math. Z. 259 (2008), 255-276.