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1 A Grobner basis of a noncomutative ho-
mogeneous algebra

1.1 The semigroup of the sequences of integers

Let K be a field. Let N be the set of the positive integers. Let Z, :=
{0} UN. Throughout Sec. 1, we let n € N be a fixed positive integer.
Let I :={i € N|]1 <i<n}. Let V:=Z", ie., V is the direct product of
n-copies of Z.

Let Z := U, I (disjoint). Here I is the direct product of i-copies of
N for i > 1, and we agree that I° is the set formed by an only element
b, e, ' = {¢}. For a = (ay,... ,q;) € I' and B = (By,...,0;) € I,
we set aff := (aq,. .., a4 01, .., 0;) € I"7; we agree that ad = pa = a.
We write a =< 3 if yad = ( for some v, 6 € Z. We write a < [ if
a <X Band a # . For a € I' and j € I, we denote by w(a); the
number of the integers k such that 1 < k£ < and oy = j; we agree that
w(¢); = 0. Define the map w : Z — V by w(a) = (w(a),... ,w(a),).
Let |w(a)| == w(a); + -+ + w(a),. For u = (p1,...,pn) € V, let
Z, = w(u). For a, B € Z, we write « < 3 if one of the following
holds.



w(a)] < Jw(B)l,

a)l = |w(P)|, and there exists a k € {1,...,n} such that
w(a), = w(H), for u < k and w(a)r < w(B)g,

(3) w(a) = w(f), and there exists a k € {1,...,|w(«a)|} such that
y, = [y for u < k, and oy < [,

For a subset S of Z, denote by min(S) the minimal element of S with
respect to <.

Let o € I' and 3 € 7. If there exists £ € N such that 1 < k <
min{i, j} and a;_ g1y = Py for every 1 < u < k, we let o Vi f =
(1, iy Brgty - ;) € I8 o\ B := (ay,... ,a;_1) € I'"" and

a/if = (Brsts -, 0;) € 5.

1.2 The free algebra generated by n-integers and its
homogeneous ideal

Let F be a free K-algebra with n-generators z,... ,x,. For a € I*, let
To 1= Tay - To;; We agree that x4, = 1. Then {z,|a € Z} is a K-basis
of F. For p €V, let F, := Baez,Kuq. For f =3 5 aara € F,\ {0},
there exists a unique v € 2, such that a, # 0 and ag = 0 for every
B > ~; we denote the v by ¢(f), and let T(f) := at’(})f. We also let
T(0) := 0.

An element of @,y F, \{0} is call homogeneous. Denote by F' the set
of the homogeneous elements f of F with T'(f) = f. Let G be a subset
of F'. If the map from G to Z defined by sending f € G to t(f) € Z is
injective, then we call a subset G of ' admissible and denote by f, for
the element f € G with t(f) = «; let t(G) := {t(f) € Z|f € G}.

Let G = {fa|la € t(G)} be an admissible subset. Let f € F U {0}.
Let Ay = {a € t(G)|t(f) = a} if f # 0; if f =0, let A; be an empty
set. If Ay is empty, let ®5(f) := f. If Ay is not empty, let dg(f) =
T(T(f)—zafsry), where f = min(Ay), and «, v € Z are such that ¢(f) =
afy. Clearly there exists an ¢ € N such that (®5)""'(f) = (95)"(f); we
denote it by ®g(f). Let B := {a € t(G)|a < § for some § € t(G)}. If
B is empty, let Z/(G) = G. If B is not empty, let § = min(B) and



=(G) = ((G\ {fs) U {@6(f)}) \ {0}}. Let 2(G) i= (2)2(9). { G is a
finite set, 2(G) = (Z')"(G) for some i € N.

We say that a K-vector subspace Z of F is a homogeneous ideal if
T=®,ev(INF,) andif gf € Z and fg € T for every g € F and every
ferl

Let 7 be a homogeneous ideal of F. Let p € Z. Let Z, :== 1IN F,.
Let C(Z.p1) = {t(f) € Z,If € T, \ {0} and B(ZL.p) := Z,\ C(T.p).
For each a € C(Z, ), we choose a g, € Z, \ {0} such that t(g,) = «
and 7'(go) = ga. Then {go|la € C(Z, )} is a K-basis of Z,,, and {g,|a €
C(Z,p)} U{zs|08 € B(Z,p)} is a basis of F,.

Let Z be a homogeneous ideal of F. We say that an admissible subset
G ={fala €t(G)} of T\ {0} is a Gréobner basis if:

(i) Z = Za,'yez,ﬂet(g) Ko fazy

(i) 2(9) =g

(iii) For every (o, 3,k) € t(G)? x N such that a Vi 8 can be defined,
we have

(I)Q(faxa/kﬁ - xa\kﬁfﬂ) = 0. (1'1)

Theorem 1.1. Let F be the free K-algebra introduced above. Let T be a
homogeneous ideal of F. Then there exists a Grobner basis G = {fo|a €

t(G)} of T.
We can prove the theorem easily.

Lemma 1.1. Keep the notation in the above theorem. Let i € V be such
that Z,, # {0}.

(1) For every a € C(Z, ), there exists a g, € I, such that g, =
x~ foxs for some 8 € t(G) and some v, § € Z.

(2) For each a € C(Z,p), choose g, € I, satisfying the property of
(1). Then {go|la € C(Z,p)} is a K-basis of Z,,.

(3) C(Z,pn) ={a € Z,la = for somey € t(G)}

Proof. Let f! := fo — x,. Note that if f, # 0, t(f.) < t(fa). We



can prove the lemma by using (1.3) and the fact that

Ja®pry — zatpfy (1.2)
= fampry — Tazsf
= faxs(fy — ) = (fa — fa)zsf;
= fhasfy — farsf)
QED.

1.3 How to construct a Grobner basis

For p, v € V, we write p > v if there exist a, § € Z such that w(a) = p,
w(f) = v and a > (. Let Z be a homogeneous ideal of F. Let u € V.
Let Iﬁﬂ =1InN (@letf-y)-

We say that an admissible subset G = {f,|a € t(G)} of 7\ {0} is a
p-restricted Grobner basis if:

i) Z= Za,fyez,ﬁet(g) Ko fpz

(i) B(GNI5,) =GNIy

(iii) For every (o, 3, k) € t(G)? xN such that aVy 3 with w(aVi3) < p
can be defined, we have

Pg(faTaspp — Tar,sfs) = 0. (1.3)

Let G be an admissible subset of Z\ {0}. Assume that for every v < p,
G is a a v-restricted Grobner basis of Z. Replace G by (G \ (G NZ<,)) U
E(GNZz,). Let S = {a € t(9)|38, a Vi § with w(a Vi 8) = p can
be defined and ®¢(foTay,s — Ta\8f3) #0 ). 1f Sy =0, let ©/,(G) := G.
Assume S; # 0. Let « := min(S;). Let Sy := {0 € t(G)| a Vi B with
w(a Vi f) = p can be defined and ®g(fazass — Tar,sfs) # 0 }. Let
B :=min(Sy). Let v:=a V, B and let f, := ®g(foTa/8 — Ta\,5f5). Let
0L(G) = GU{f,}

Let ©/,(G) be as above. Let ©,(G) := (0,)>(G). then ©,(G) is a
p-restricted Grobner basis of Z.

By using ©,, for all i1, we have a Grobner basis of Z.



By using a Grobner basis, I checked that any of the defining
relations of the finite-type Lie superalgebras in my paper [YO]
cannot be dropped. I have not yet checked the same for those
of the affine Lie superalgebras in [Y1].

2 Defining relations

Notation:
(s a(X))(Y) = [X, V)10 o= XY +a¥ X,
(ad_o(X)(Y) = [X,Y]_. := XY — aY X.

For m > 1, ((ad, (X)) () = (( ad+a(X)))m_l((ad+,a(X)>(Y)) and

m—1

((ad (X)) " () = ((ad_a(X)))" ((ad_u(X))(V)).

In this section, we always treat C(q%)-algebras.

1 —1

) : ~ 1 2
2.1 Defining relations of U,(sl(1]2), &— )

Theorem 2.1. Define the Cartan matric A = (a;j) and the parity
p(i) of sl(1]2) = A(l)(O,l), the affine Lie superalgebra whose Dynkin
0

1 —1

1 2
diagram is — , by the following.

Qoo Qo1 Qo2 0 1 -1
A= a1p a11 ai12 = 1 0 -1
oo 21 29 -1 -1 2



0
1 1 —1
) sat-

Then the defining relations of Uq(é\l(1|2)) = Uq(é\l(1|2),
isfied by the generators

N[

+1 +1 +
2

O-aK027K1§7K 7E07E17E27F0aF17F27

are the following.

'l _1 ajj 1 -1 _ %5
K?EjK; * = q72 Ej, KPFK; ? -4
3 j Ki*K;
EF; — (1) )P(J)F’J.El =0y —

El2 = Eg =0, [Ey, By, El]—,CI]—,q’l =0, [Ey, [Es, EO]—,Q]—#I’l =0,

[Eo, [Er, [Eo, [E1, Eo]— g4 a]-al4.g1 = [E1, [Eo, [B1, [Eo, Ba] gl i) -]t g1
{ F12 = Fo2 =0, [Fy, [F, Fl]—,q}f,qfl =0, [Fy, [Fy, FO]—,q]f,qfl =0,

[Fo, [F1, [Fo, [FY, Fal - glaal = ale gt = 1B, [F0, 1B, [F0, Fal - gleal-alegt

2.2. Defining relations of U,(DW(2,1; -1), F—®—R ),

0 0

1 713 1 1 713

) and Uy(AW(1,1), &F— )

1

Uy(s1(2]2)

’ -1 1



DM(2,1; 1), ;1(2|2), AM(1,1) are Lie superalgebras whose Dynkin
diagram is

or

-1 1 -1 1
Notice that there is a canonical surjective map from DM (2,1; 1) to
s(2|2), and there is a canonical surjective map from sl(2|2) to AM(1,1).
The DM(2,1; —1) is the universal central extension of AM(1,1) and it

is also the universal central extension of sl(2]2) (See [IK]; see also [Y2)]).

DM (2,1; 1) — sl(2]2) — AM(1,1)

Theorem 2.2. Define the Cartan matriv A = (a;j) and the parity
p(i) of AW(1,1), the affine Lie superalgebra whose Dynkin diagram is

, by the following.

-1 1

apo Qo1 Qo2 o3 0 1 0 -1
A— | @0 0 G2 @z | 1 -1 0
(20 Q21 Q22 (23 o -1 0 1
agp asy Az ags -1 1 0
p(0) :==p(1) :=p(2) :=p(3) :=1

Then the defining relations of U,(DW(2,1; 1)) = U, (DW(2,1; —1),
satisfied by the generators

—®®)

+1 +1 1 +1
UvKO 27K1 2’K2 27K3 27E0aE17E27E3aFOaF17F27F37
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are the following.

E2 E2 E2 Eg =0,
[E27 [[E17 E2]+,q7 E3]—,q71]+,1 - Oa [E?)a [[E27 E3] -1 EO] q]—l— 1 = 07
(Eo, [[E3, Eo)4.q, B1] - g-1)41 =0,  [E1, [[Eo, B1]q g1, Ea]—gJ41 =0,

FP=F'=F}=F2=0,
[F27[[F17F2]+,Q7F3]f,q_1]+,1 :Oa [F37HF27F3] g1 FO] ] 1 = 07
[F0, [[F35 Folv gy 1l g1+ = 0, [F1, [[Fo, Fily g1, Fol-g)1 = 0,

We have the following in U,(D®"(2,1; —1),

{ [E27 [Eh E3]+,1]7,1 = OJ [E(], [Eb E3]+,1]*,1 = 07
[Eb [E07 E2]+,1]—,1 - 07 [E?)a [E()? E2]+,1]—,1 - 07

{ [Fo, [F1, F3)41]-1 =0, [Fo, [F1, F3le1]-1 =0,
[Fy, [Fo, Foliqa)-1 =0,  [F3, [Fo, Folya]-1 =0,

Hence [El, E3]+71, [E(), EQ]_;,_J, [Fl, F3]+,1, [F(), F2}+,1 are elements in the

center of U,(DW(2,1; 1), F—®—® ).



For ¢ =1, 2, 3, define the three automorphisms

0 0
1 1 713 1 1 713
T Uy(DW(2,1;-1), & ®® ) — Uy(DW(2,1;-1), )
by
T (o) =
T.,(K;)=K;, T,,(E;) = E],TWZ(F) F; for j # i and j # 0,

K.
T (K;) = o, T, (Kp) = Ki KoK Ky K.

KoK\ KK
TM(El) = _[F27 [F37F0]+7q]* _IM

K,

To(F) = — 20 (B, [By, Eolra)—s

w1 1 KoKlKQKg 29 35 0]+,q
Twl(EO):

_[[Ela EO]+,q—17 [E27 [E37 E0]+,Q] )

—q‘l]f«p

_[[Fla F0]+,q—17 [F27 [F37 FO]Jr,(I]*,q_l}* qs

KoK 1 K> K.
T (B2) = =[[Fs, [Fy ol ) =g

Twl (FO) =

Ky
T (Fy) = ——2 1By, [Es, Eolso] o
2( 2) K0K1K2K3H 1 [ 3 0]+7Q] ,q
T.,(Eo) = [[Ea, [, Eoltg-1]- g, [E3, Eo]— 4]

T, (Fo) = —[[F2, [F1, Folgg-1]— g, [F3, Fo]— )= g1

KoKi1KyK;5
T, (E3) = —[Fy, [F1,F0]+,q—1]—,qT3

() = g g o s Bl
Ty (Eo) = [[E3, [Ea, [Er, Eoly g-1]- gl 4.1, Eol- 1,
Ty (Fo) = [[F5, [Fa, [F, Foly 1] - gl 415 Fol -1



The inverse T, ! satisfies the following.

T, (K;) = Ki(KoK1 K> K3), T, (Ko) = K{ 'Ky 'Ky,

T, (Er) = B, Eoly g1, [[Er, Bl g, B3] g-1]— g,
T F) = [[Fr Foly g [P Folvg, Fal - g1l g,
T, (Ey) = —[[[Ea, Er] 1 g Eol - g1, [Ea, sl g1] g,
T (Fo) = —[[[Fa, Fily g, Fol - g1, [Fo, Fsl 1 g-1]— g,
T (Es) = [Bs, [[[[Bs, Ealy g1, Bl gy Eola] -1,
T (F3) = [Fs, [[[[F5, Foly gty B g O 1)1,
T, (Bo) = =K Ky K [ Pl g, Bl g
Tw_ll(Fo) = [[E1, B4 g, B3] g1 K1 K K3,

T, (Ey) = =K 'Ky 'Ky [Py, Faly g1, F1)- g,
TJ;(FO) = —[[Es, B3]y g1, B1]_ (K1 K3 K3,

T, (Eo) = Ky 'Ky 'K [Py, Foly g, Fil— g,
T;;(Fo) = —[[E3, B3]y g1, B1] - K1 Ko K3,

For i € {1,2,3}, set
1

hi,+ = 1
(KWK Ko K)?

[El'v Twi (Kiil‘Fi)]—i-,lv

=

h,;’_ = (K1K1K2K3)

For m € Z, we have the following.

[}7% Twi (EiKi)]+,17

1
(K1 K Ky K)?

[ho+, T (E1)] -0 = T (EY),

[how, TTH(FY)] = — (K1 K Ko Ky) 2 T (),

! i Tg:Fl(EQ)»
(K1 K1 Ky K3)2

[ha e, T (B2l -1 = —

10



[y e, T (Fy)] = (K K Ky Ks) 2T (Fy),

1
hot, T (Fs)]_1 = — TmFY(Es),
o T (Bl = = oy T (B9
[h2,:|:7T$r3L(F3)]—,1 - <K1K1K2K3>%T:;il(F3).

Thus we can calculate T7'(E;) and T (F;) inductively. Then

U,(DW(2,1; -1), F¥®— )/I of U,(DW(2,1;-1),
where [ is the ideal generated by

-1 1 )’

(B, T, (Es)lvq (m > 1), [T ()] (m > 1),

w3 w3

and

E([B T, (Bs)]+ 1) (m = 1), E([F T, (Fs)]40) (mo2 1),

w3 w3

where Z: U,(DW(2,1; -1), —®@—R ) — U, (D )(2,1; 1),

is a C-algebra automorphism such that Z(¢q) = ¢!, Z(0) = o, :(Klii) =
+ L S Nt +1 L 3 —

K ) ‘:<K2 ) = K3 ) ‘:(KS ) = KO ) ‘:<KO ) = Kl ) ‘:(El) = Ey,

‘—‘(EQ) = E37 E(E3) = E07 E<E0) = E17 E(Fl) = F27 E<F2) = F37

E(F;) = Fy, Z(Fy) = Fi. (See [Y1].) Then we see the following.

11



Theorem 2.3. Keep the notation as in the Theorem 2.2. Then the

defining relations of Uq(sAl(2|2)) = Uq(é\l(2|2),

the generators

) satisfied by

—1

+1 41 41 4l
07K027K127K22>K327E07E1>E27E37F07F17F27F37

are the following.

02=1, oK, 20 =K. ?, 0Bo = (-1)PDE;, 0F,0 = (—1)PVE},
11 _1_ 1 11 11
K?K;? =K, *K}? =1, K}K? = KK}
1 -1 a4 1 _1 a; i
Ki2Esz ' = qTJEﬁ KiQFsz ' = q_Tijﬁ
i Ki—K;!
EF; — (_1)17( )P(J)FJ.EZ. =" —

F2=FE)=FE=E2=0,
[E2> [[El, E2]+,qv B3] g-1]e1 =0, [Bs [[E2, B3]y g1, Eo]— ]+ 1 =0,
[Eo, [[E3, Eol4.qs E1]—g-1]+1 =0,  [E1, [[Eo, B1ly g1, Eo]—g]41 =0,

F2=F?=F) = F2 =0,
[F2a [[Fh F2]+,q, Fy_ gy =0, [F3,[[F, F3ly g1, Fo]-g]41 = 0,
[Fo, [F3, Fol v F1)— g1+ = 0, [F1, [Fo, Fil 15 Fol - gl40 =0,

[E17<ad 1([E, [E1, [Es, Eoly ] - g-1]41) m(E3)]+1 ~0, |
(B, (ada ([P, [F3, [Fz,Fo]+,qL,q—1J+,1>) Elea=0. [
[Ba, (ad—1([By, (B, [Bo, Bl -aln)) (Bo)lea =0,
| 1P (adoa (5, [P [P Bl gi]olen)) (Fo)lex =0,
(see above for the notation ad_ ;) d

12



Theorem 2.4. Keep the notation as in the Theorem 2.53. For 1 <

i <3 andm > 1, define the elements Ry, him € Uq(§1(2|2), —R—®)
by
s ) m—! k(=1)im=h) 1)itm= k:) i
i = (— 1)Zm[Ez7T£n(K E)lva—(a—q~ hiw By, T (K LF)],
—1
) L ()i h) b )
hiyem = (= 1) [F3, T (EiKG)] 4 1 +(g—a” —e[F3 T (B4
k:l
0 0

Then Uy (AWM (1,1), &—®—® ) is the quotient algebra Uq(sAl(Q\Z),
where J is the ideal generated by

—®—=®)/J,

ljll,m + il3,m

and 3 )
hl,—m + h3,—m

form > 1.

O

Remark. In my paper, H. Yamane: Errata to “On defining relations

of affine Lie superalgebras and affine quantized universal enveloping su-

peralgebras”, Publ. RIMS Kyoto Univ., 37 (2001), 615619, there has
still existed misprint. The (QS4)(19) should be modified into

(QS4)(19) [EBy, T"(E5)] = 0, Zi([Er, T (Es)]) = 0 (m = 1) if
(€,11,p) is an unusual datum of (A(1,1)M)* type.

13



2.3. Defining relations of U,(DW(2,1; ), ) (x#0,-1)

Theorem 2.5. Assume x # 0,—1. Define the Cartan matriz A =
(a;;) and the parity p(i) of ]3(1)(2, 1;x), the affine Lie superalgebra whose

—z—1

Dynkin diagram is , by the following.

Qoo Qo1 Qo2 Qo3 0 1 —r—1 T

A — a1p a11 Q12 Qi3 _ 1 0 T —r—1
G0 Q21 Q22 A3 ' —r—1 0 1
azp as1 Ay as3 x —r—1 1

Then the defining relations of U,(DW (2, 1;z)) = U,(DW(2, 1; x),
satisfied by the generators

+4 _ +1 41 4+l
2 2 2 2
UvKO 7K1 ; 4x9 7K3 7E0aE17E27E3aFOaF17F27F37

are the following.

Il
=

1 _1 aj 1 ' gy
K?EjK; * = q72 Ej, KPFK;? -4
% Ki—K;
EF; — (—1)»¢ )p(J)F}Ei =0y —



( E2=F?=FE}=FE?=0,

z+1 z 1

7(] q,qq T [[El, E2]+ q- T, E3]_ qz + q — [[El, E3]+ qz+1 EQ] z = 0
x+1__  —x—1
¢ q —q e HEO7 E1]+ g1 EQ] + [[E(), E2}+,qx+1, El]_gfzfl = O,

T —x

L1 [[Eo, B1 |y g1, B3] g — [[Et)» B3]y g, B1]- = =0,
[

q—q—
[Eo, Bs) goi1, Bs) . %1+Li__qw@@] o, Fy) g =0,

q_q

—1

(( F§=F=F}=F}=0,

%HFbFz].Fq—z F3)_ o + ‘1 —q I[[Fl,thqu B =0,
:%Tiqmbﬂhflg], WhghmﬂjﬂwﬂA_Q
q:qu - ([Fo, Fi) 4 -1, F3]— g — [[F0, F3) 4 g-=, Fi]—g= = 0,

| T o, Bl g, ) ﬂ1+£i_iqwb&] B =0,

g

2

0 1 3
2.4. Defining relations of Uq(G(l)(?)), O=R—0O<=0)

Theorem 2.6.  Define the Cartan matrizv A = (a;;) and the par-
ity p(i) of GM(3), the affine Lie superalgebra whose Dynkin diagram is

0 1 2 3
CO=R—0O<=0, by the following.

app Qo1 Qp2 Qp3 -8 4 0 0
A— 10 Q11 Q12 Qi3 — 4 0 —1 0

QA9p Q921 Q929 Q923 0 -1 2 -3

asp Q31 Q32 a3z 0 0 -3 6

p(0) :=p(2) :==p(3) == 0,p(1) :== 1.

0 1 3
Then the defining relations of U,(G™M(3)) = U, (GWM(3), O=R—0O<=0)
satisfied by the generators

K 2 K 2 K 2 K EO,El,E%E?nFOaFl?F??F?)?

15



are the following.

ﬁj .
=
I
=
=
|
7

E'l2 - 07 [E(]a EQ]—,I = 07 [E07 ES]—,I - 07 [Ela E3]—,1 - 07
(Eo, [Eo, Br]- o]yt = 0, [Ea, [En E1] g g1 = 0,
[E27 [EQa [EQa [E27 E3]—7q3]—,q]—7q*1]—,q*3 = Oa [E37 [E?n EZ]—,q3]—,q*3 = 07

2 2
qqqu—l H[HEO? E1]+7q*47 EQ]—#P E3]—,q37 E1]+,q*37 E2]—,q3
3_ 3
\ _Qq_q({l H[[[ECH E1]+7q74, EQ]_7q7 ES]—,Q?’) E2]+7q2’ El]—,q*Q — O’

F12 =0, [Foy F2]7,1 =0, [Fo, F3]7,1 =0, [Fh F3]7,1 =0,
[Fo, [F()v Fl]*,q74]*,q4 - 07 [F27 [F27 Fl]—,q]f,qfl - 07
[F27 [F27 [FQ; [F27 F3]—,q3}—,q]—,q*1]—,q*3 = Oa [F37 [F37 FQ]—,q3]—,q73 = 07

2 -2

qq:qq_l HH[FO; F1]+,q—4, FQ]_H, Fg],qu, F1]+,q_37 F2]7,q3
3_,—3
\ _qq_qq71 [[[[[F[)y F1]+’q74, FQ]_7q7 f;}<]]_,(137 F2]+7q2’ Fl]—,q*Q — 0

0 1 2
2.5 The defining relations of U,(BW(1,1), O=—=®=-0)

Theorem 2.7. Define the Cartan matriz A = (a;j) and the parity
p(i) of BW(1,1), the affine Lie superalgebra whose Dynkin diagram is
0

1 2
O—=®=0, by the following.

Qapo  Qp1 Qo2 —4 2 0
A= a1p a11 ai12 = 2 0 -1
aop Q21 29 0 —1 1



0 1 2
Then the defining relations of U,(BW(1,1)) = U,(BY (1, 1), O=®=0)
satisfied by the generators

1 +1 +1
UaKO 27K1 27K2 27E07E17E27F07F17F27

are the following.

1 1

o? =1, aKiiga = KiiQ, oBio = (-1)POE; ocFo = (—1)P9F,
11 11 11 11

KK ? = K, *K? =1, K}K? = K2 K}
1

E12 - 07 [E07 EQ]—,I - O; [EO, [E(], El]i’q2]77q72 = 07
[E27 [E27 [EQ, El]—,q]—&]—,q*l = O,

([[B2: B1)- s (1B, Bl s [[Bos Bl Bl )1 1)-
+(q = 1+ g H)[E, [[Es, B g, [Bo, (B, [Er, EO]—,q]—,q*]—,q?]—,q*l]—,q3) =

F112 = 07 [F07F2]7,1 = 0, [Fo, [FO,F1]77q2]77q_2 = 0’
[F27 [F27 [F27 Fl]—,q]—,l]f,qfl = O,

<[[F2a By) g [[F2, F1 = g, [[Fo, FA] - gy FOl - gm2) 4 g-1] 1
+(q -1+ q_1>[F17 [[F27 Fl]—,cp [F27 [F27 [Flv FO]—,Q]*7(1*2]*742]*,(]*1]*,(13) =0,

g

1 2

0 3
2.6 The defining relations of U,(A®?(1,3), O=0—®<=0)

Theorem 2.8. Define the Cartan matric A = (a;j) and the parity
p(i) of A®(1,3), the affine Lie superalgebra whose Dynkin diagram is
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1

0 2 3
O=0O—xR<=0, by the following.

ago g1 Qg2 Qo3 4 -2 0 0
A — a1p a1 a2 a3 o -2 2 =10
(o0 Q1 A2 Q23 0 -1 0 2
@30 31 32 a33 0 0 2 4

0 1 2 3
Then the defining relations of U,(A®(1,3)) = U,(A®(1,3), O=0—x+=0 )
satisfied by the generators

+1 4l 4l 4l
UJK027K127K227K327E07E17E27E37F07F17F27F37

are the following.

0t =1, oK} io = K1, oBio = (~1)ME,, oFo = (~1)"0F,
KK ? =K, ?K? =1, K} K} = KK}
K%E Kz : - Q%Ejv K;FJK;% = (]_% Js
— (-1 ;= 5y Mt
((E3 =0,[Ey, Eo]_1 =0, [Eo, E3]-1 =0, [Ey, B3]y =0,
[Eo, [Eo, Er]- g2]- g2 = 0, [En, [EY, [Elan] 2] 1]-g2 =0,

[Ev, [Ens Bl g]- g1 =0, [E:a, [E5, Ea]-— 4 ]*q2 =0,
(1520 1o, o, Bl gl gt i i, i [, Bl i)
~(q+ g7 ([[Bos Er)- s [ By (B, i) )
[Ba, 1B, 1By [B, Eol )l -2l t)-al 1) ) = 0,
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( F22 - 0, [F(), Fg]_J - 0, [F(), Fg]_’l - 0, [Fl, Fg]_’l - 0,
[Fo, [Fo, Fi]— 2] g2 = 0, [Fy, [Fy, [Fy, Fol - g2] -] g2 = 0,
[F17 [Flv FQ]—,q]—,q*1 - O, [F?n [F37 F2]—,q*2]—,q2 = 07

<[[[F2, [F5, [Fa, FA]- gl q=2]+ g1, [F2, [F3, [Fo, [F1, Fo]— g2]— gl - g—2]+ g-1] 4] g2
~(a+ ) ([[1F2: Fi)- g [Fo, [P, Fi)- gl 2,
(o, [, [ By (B Bl -2l )l ) ) = 0

g

Remark. There exist misprints in (QS4)(9). In (QS4)(9), [ should be
replaced by [, and | should be replaced by ].

2.7 The defining relations of Uq(é\l(m +1jn+1)) withm+n+2>5or
withm =2, n=0

Unlessm =n =1, é\l(m—I— 1|n+1) is the universal central extension of
AWM (m,n). Notice that sl(m+1|n+1) # AW (m,n) if and only if m = n.

Notation: Let f : Z — Z/(m + n + 2)Z be the natural surjective
additive group homomorphism, where Z/(m +mn+ 2)Z is the cyclic group
of order m + n + 2. In particular, f(i + m +n+2) = f(i). Let V be an
m +n + 3-dimensional C-vector space with basis {ef¢;)|i € Z} U{0}. Let
(, ) be a symmetric bilinear form on V' such that (4, e5i)) € {1, =1},
and (€f4),€5¢;)) = 0 for f(i) # f(j), and (6,9) = (d,€54)) = 0. As-
sume that the number of the elements ef(;) such that (e5uy,e54)) = 1
is exactly m + 1. Define m + n + 2 elements {oy|i € Z} of V' by
Qr) = €£6) — E€f(+1) T 053), 1000 (Here 05 p(0) is the Kronecker delta, i.e.,
05050 = 1 and dro), s = 0 (f(0) # f(2))). Let ayj := (as), ap() and
p(i) == 7@“”’;“”) € {0,1}.

Theorem 2.9. Keep the notation as above. Assume that m—+n-+2 >
5 or assume that m+n+2 =4 and m # n. Then the defining relations
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of Uq(:;\l(m+ In+1), f) = Uq(é\l(m%— 1ln+1)) satisfied by the generators

+1 .
o, Kf(f), Ef(i), Ff(i) (Z - Z)
are the following.

;

1
02:1 JKiQ — KT

167 fQ
K<>K<>—1 K<>K2<> K<>K2<> o
Kf(z)Ef(J)K o) = 4 2B, K ()Ff( ) K (1'2) =q 7 Fy),

EtiyFri) — (—1)POPD Fy By = 6y

By = (- PO Epy, oFmo = (=170 Fp,

1

( By Erg — (1)PPOEqEpy =0 if ai; = 0 and f(i) # f(5),
Bty [Eriys Eparn]-al-a= = 0, [Era), [Ery Er-v]-gl-g 4 i 70,
Er) (Ef(ifl)Ef(i)Ef(iH) = (=1 g s By By Ergi)

_<_1)p(i+1)(1+p(i_1))q_ai+l,iEf(l,+1)Ef(i71)Ef(i)
+(_1)p(z—1)+p(z+1)+p(z—1)p(%+1)Ef(iH)Ef(i)Ef(i_l)

(=1 <Ef<' 0B Episny = (=DM Vg% By By By
—(— 1)p(z+1 14+p(i— 1))q_ai+1,iEf(i+1)Ef(i_1)Ef(i)

)

H(—1)PE=DApG++p(i— 1)p(z+1)Ef( +1)Ef(i)Ef(i—1)>Ef(i)> =0 if a; =0
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( Ff(i)Ff(j) — (=1)POPD o Fry =0 if ag; = 0 and f(i) # f()),
[Ff(z [Ffu)a Frivn)-, ]—,q—l =0, [Fray, [Frays Fra-nl-gl-q—  if au #0,
Fy) (Ff(i—l)Ff(i)Ff(iH) = (=1 g 8 B Fy oy Fgi)

—(—1)p(i+1)(1+p(i71))617“”“Ff(i+1)Ff(iq)Ff(i)
+(_1)p(z—1)+p(z+1)+p(z—1)p(z+1)Ff(i+1)Ff(i)Ff(i_1)

+(—1)PED RO <Ff(' 00 Fyaieny — (1) Dq™ 410 Fyy Fyon Frie

_( 1)p(z+1 (14+p(i— 1))q_ai+l’iFf(i—l—l)Ff(i—l)Ff(i)

)

+(—1

p(i=1)+p(i+1)+p(i— 1)p(z+1)Ff( 1) Fry Fre 1))Ff( > =0 if a;; =0

0

2.8 A PBW theorem (or a topological freeness) of Uq(s/,\l(m +1n+1))
withm+n+2>5orwithm=2,n=0

Lemma 2.10 ( Vector representation). Assume m +n > 1. Denote
U, = Uq(SAl(m—{— 1n+1), f). Let F :=C(q2). Let V' be the subspace of V
spanned by €y ’s. Let M := Endg (V' @c K) @k K[t,¢71]. Then there ex-
ists a homomorphism p : Uy — M such that p(0)esu) = (€5a), €16))Ef() s

P50 )e ) = qi%(a””’gﬂj”ﬁf«) P(Es)er) = Opian) st OO (€10 €5))E 1)
and p(Fyi))e i) = Oy p)t 7O O p11y.
Let
(R i={epuy —epp+kédeV]keZ,1<j—i<m+n+1},
(Roga) ™ =A{B € ()" [(8,8) =0}, (Rsen)™ = () \ (R5gq) " and
(R™* = {(k6,i) eV x{1,... m+n+1}|ke N}
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Theorem 2.11 (A PBW theorem). Keep the notation of Lemma
2.10. Let US (respectively U, , respectively Ug) be the subalgebra of U,

1
generated by Ey;)’s (respectively Fy)’s, respectively o and K jf(f) ’s). Then
we have the following.

(1) U, = U @U@ U; as K-vector spaces, and

xg Tm4n41

{Kio) Kipninino©lzi € Z, c € {0,1} } form a K-basis of Uy. More-
over the K-algebra U; (respectively Uq_) 15 also presented by the genera-
tors By (respectively Fyy) and the same defining relations in Theorems
2.1, 2.3 and 2.9.

(2) For each 3 = €y —¢ey(;)+kd € (R)*, choose an Eg € U so that
p(Eg) = Ejiypi) @ t*. For each (kd,i) € (R™)*, choose an Ewsy € U
so that p(Ewsiy) = ((€56): €10) B r) = (Ep611)s €140 Epirn pa41)) O
Then the elements

Iz

#E(Rre)+u(§im)+
where x5 € Zy if B € (RSen)™ s wp € {0,1} if B € (Rgqa) ™ 2wy € Zs
if (ko,i) € (R™)*, form a K-basis of U}. Here the product is in a pre-
determined total order.

Proof. (1) This can be proved in a standard way.

(2) Notice that the E, exists for every p € (R™)* U (R™)*. We
can show in the same manner as in [Y1] that a standard coproduct
AU, — U, ® U, exists. Then, by using induction and by using the
homomorphisms p™ o A1 - U, — M®" for all n, the elements in the
statement are linearly independent.

Let U;” be the C-algebra defined with the generators F 7y and the
defining relations obtained from those of U, in Theorems 2.1, 2.3 and 2.9
by putting ¢ = 1. We have known the fact that U, is isomorphic to the
universal enveloping algebras of a positive part of é\l(m + 1jn + 1), which
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implies that
dimK(U;)M < dime(U7), (2.1)

for every p € @74 Zovy), where (U[), and (U}'), denote the weight
spaces of the weight u. However, by the fact shown in the last paragraph,
we see that the inequality in (2.1) is indeed the equality. This completes
the proof. .
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