
A Online technical appendix: Outline of nonpara-

metric estimation and hypothesis testing.

A.1 Estimation of a single nonparametric term.

Consider a reduced specification of (2) that includes only the nonparametric term
s(zi). Once this basic case is introduced, its extension to the full semiparametric
model (2) will be trivial. In the reduced specification, the dependent variable yi is
explained by a single explanatory variable zi (age or cohort) with a nonlinear effect
on yi:

yi = s(zi) + ǫi (8)

where s(·) is an arbitrary smooth function and ǫi is the error term with zero mean
and variance σ2.

Let κ1 < · · · < κM be a sequence of breakpoints (‘knots’) that are distinct num-
bers that span the range of zi. In the MGCV algorithm, the smooth function s(zi) is
approximated by a sequence of cubic splines. In general, splines are piecewise poly-
nomials that are joined at the ‘knots’. Due to special restrictions, the cubic splines
are continuous at the knots, and also have continuous first and second derivatives.
Let M denote the number of knots. Then a cubic spline can be represented by
truncated cubic basis functions:

s(zi) = δ0 + δ1zi + δ2z
2
i + δ3z

3
i +

M
∑

m=1

δm+3(zi − κm)
3
+ (9)

where

(zi − κm)+ =

{

0 zi ≤ κm

zi − κm zi > κm

The cubic spline has a simple interpretation of a global cubic polynomial δ0+ δ1zi+
δ2z

2
i +δ3z

3
i andM local polynomial deviations

∑M

m=1 δm+3(zi−κm)
3
+. In matrix form,

the truncated cubic basis becomes y = Zδ+ǫ, where Z is design matrix with ith row
vector Zi =

[

1 zi z2i z3i (zi − κ1)
3
+ · · · (zi − κM)3+

]

, δ is the corresponding
vector of regression parameters, and ǫ is the error term. The smooth function
f(Z, δ) is linear in M + 4 regression parameters, and can be fitted by minimizing
the sum of squared residuals: (y − Zδ)′(y − Zδ) = ‖y −Zδ‖2 , where ‖ · · · ‖
stands for the Euclidean norm.

By increasing the number of knots M , the model becomes more flexible in ap-
proximating y. But if the number of knots is too large, the estimates ŝ(z) may
follow y too closely. In the limit, when M = n, the cubic spline simply interpo-
lates y. To prevent too much wiggliness in the estimated curve, a special term that
penalizes rapid changes in ŝ(z) is added to the fitting criteria. A common penalty
is λ

∫

[szz(z)]
2 dx , which has a smoothing parameter λ and an integrated squared

second derivative szz(z) of s(z). This results in the penalized least-squares criterion
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as follows:

Q(s, λ) = ‖y −Zδ‖2 + λ

∫

[szz(z)]
2 dx.

If ŝ(z) is too rough, this will increase the penalty term
∫

[szz(z)]
2 dx. The smooth-

ing parameter λ controls the trade-off between the model fit ‖y −Zδ‖ and the
roughness penalty R =

∫

[szz(z)]
2 dx. When λ = 0, the roughness penalty R has no

effect on the minimization criterion Q(f, λ), producing unpenalized estimates ŝ(x)
that just interpolate data. In contrast, when λ = +∞, this results in the perfectly
smooth line, i.e., in a linear regression line with a constant slope.

The minimization of the penalized criterion Q(s, λ) is simplified by noting that
derivatives and integrals of s(z) are linear transformations of parameters dm(z) in the
cubic spline basis, with szz(z) =

∑M

m=1 δmd
m
zz(z) and

∫

s(z)dz =
∑M

m=1 δm
∫

dm(z)dz,
where dm(z) denotes a particular form of basis function (such as the truncated
cubic basis function in (9)). Thus, szz(z) = dzz(z)

′δ , from which it follows that
[szz(z)]

2 = δ′dzz(z)
′dzz(z)δ = δ′∆(z)δ. Finally,

R =

∫

[szz(z)]
2dz = δ′

(
∫

S(z)dz

)

δ = δ′∆δ.

Thus, the roughness penalty R can be represented as a quadratic form in the pa-
rameter vector δ and matrix ∆ of known coefficients that are derived from the basis
function dm(z).

Substituting the roughness penalty R with δ′∆δ , the penalized least-squares
criterion becomes

Q(s, λ) = ‖y −Zδ‖2 + λδ′∆δ. (10)

Differentiating Q(f, λ) with respect to δ and setting the derivative to zero produces
an estimate of δ:

δ̂ = (Z ′Z + λ∆)
−1

Z ′y. (11)

The estimate of δ depends on the value of unknown smoothing parameter λ. The
MGCV algorithm selects an appropriate value of λ by using the concept of hat matrix
from the ordinary least-squares model. In the model, the hat matrix H projects
the vector of dependent variable y into the vector of predicted values ŷ = Hy ,
with H = Z (Z ′Z)−1

Z ′. Using the estimate of δ̂ from (11), the hat matrix of the
penalized spline model can be similarly defined as HS = Z (Z ′Z + λ∆)−1

Z ′. Since
the matrix HS transforms the vector of y into the vector of its smoothed values, the
matrix HS is often called a smoother matrix. In the MGCV algorithm, the optimal
value of λ is found by minimizing the GCV criteria Vg (λ) that depends on the sum

of squared residuals ‖y −Zδ̂‖2 and the trace of smoother matrix HS:

Vg(λ) =
n‖y −Zδ̂‖2
[n− tr (HS)]

2 (12)

where n is the number of observations, and tr (HS) is the trace of HS.
Though the MGCV algorithm selects an appropriate degree of smoothness with

respect to parameter λ, this parameter is not informative in evaluating the estimated
degree of smoothness. It is much easier to interpret the trace of the smoother matrix
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tr (HS), since it is equal to the number of degrees of freedom, needed to approximate
the smoothed function f(z) (Ruppert et al., 2003). Let ν = tr (HS) . Since the
smoothing parameter λ is a part of HS, λ and ν are correlated. In particular, a
small degree of smoothing is indicated by λ → 0 and ν → ∞. Conversely, a high
degree of smoothing corresponds to λ → ∞ and ν → 0. An important special case
is when ν ≤ 1. This range of ν indicates a parametric effect, when a single variable
is sufficient to approximate the smoothed function s(z).

The GCV criterion Vg(λ) has one problem in selecting an optimal smoothness.
Monte Carlo studies by Kim and Gu (2004) and Bacchini et al. (2007) demonstrated
that Vg(λ) may choose too small values of λ, which results in undersmoothing. The
problem can be solved by multiplying tr (HS) in (12) by a parameter η > 1 that
increases the cost per trace of HS:

V̄g(λ) =
n‖y −Zδ̂‖2

[n− η · tr (HS)]
2 . (13)

In estimating the smoothing cohort model, we followed the recommendation in Wood
(2006) that a good value for η is 1.4. In practice, the modification had little effect
on our estimates of age or cohort effects.

After specifying how the smooth function s(x) is estimated by spline basis func-
tions, the basic model (8) can be easily extended to the full semiparametric model
(2) that adds the parametric part with cohort and year effects. For the smoothing
age model, the parametric part W includes matrices of dummy variables DY

t , D
C
ℓ .

After the extension, the truncated cubic basis (9) still has the form y = Z̃δ̃+ ǫ, but
the basis Z̃ now includes an expanded design matrix Z̃ = [Z,W ] . The estimate of
δ̃ is obtained from (11), where the smoothing parameter λ is found by minimizing
either Vg(λ) or V̄g(λ).

A.2 Estimation of a joint effect of two smooth functions.

In this subsection, we describe how we estimated the joint effects of age and cohort of
housing in Model 4 (specification (5)). While the effect of single nonparametric term
zi on yi in 8 produces a smooth line that account a possible nonlinear relationship,
the joint effect of two variables ai (age) and ci (cohort) on yi is given by yi =
s(ai, ci) + ǫi. The joint effect of ai and ci on yi produces a smooth surface, in which
the effect of ai on yi may be not only nonlinear, but also different at various levels
of ci.

In estimating the smooth effect of two covariates ai and ci on yi, we used a tensor
product smoother that was introduced in Wood (2006). The smoother is closely
related to the univariate smoother that we described in subsection A.1. Essentially,
the joint smoother of ai and ci is constructed from marginal bases and penalties
of each of the covariates. Consider the construction of the joint basis function of
s(a, c). Let marginal smoothing terms for sa(a) and sc(c) be denoted by sa(a) =
∑Mq

q=1 θ
a
qd

q(a) and sc(c) =
∑Mr

r=1 θ
c
rd

r(c) , where θaq and θcr are regression parameters
(similar to the parameter δ in the univariate specification equation (9)), and dq(a)
and dr(c) are basis functions for a and c. To proceed from sa(a) and sc(c) to s(a, c),
we first assume that θaq in the basis function of sa(a) is a smooth function of c, with
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θaq (c) =
∑Mr

r=1 δqrd
r(c) . Then the joint basis for a and c becomes

s(a, c) =

Mq
∑

q=1

θaq (c)d
q(a) =

Mq
∑

q=1

Mr
∑

r=1

δqrd
r(c)dq(a) (14)

In matrix form, the joint basis regression model is written by y = Z(a, c)δ + ǫ.
Essentially, the joint basis function Z(a, c) is constructed as the Kronecker product
of individual marginal smoothing bases of a and c, denoted Za and Zc. For example,
for the univariate smooth term a, the individual smoothing base was defined by Z,
which we already discussed in subsection A.1.

The roughness penalty for the joint smoother is constructed similarly to the joint
smoothing basis function Z, by using marginal roughness penalties for a and c. For
the univariate smooth of a, such a penalty was already defined by (10). To construct
the composite penalty term, let sa|c(a) be a joint smooth of a and c with some fixed
c. Then the roughness of sa|c is given by Ra(sa|c). By integrating Ra(sa|c) across
different c, we obtain Ra(sa) =

∫

Ra(sa|c)dc , which measures the total roughness of
s(a, c) in the direction of a.

The total roughness penalty in the direction of c is obtained similarly, by fixing
a at some specific points, and integrating the total roughness penalty Rc(sc) =
∫

Rc(sc|a)da across different fixed values of a. A combined penalty for the joint
effect of a and c is specified by

λa

∫

Ra(sa|c)dc+ λc

∫

Rc(sc|a)da.

Assuming that sa|c(a) =
∑

θaq (c)d
q(a), we could write Ra(sa|c) = θa(c)′∆aθ

a(c). A
simple reparameterization can be used to provide an approximation to the terms in
penalty: θa′ = Γθa.Hence the penalty coefficient matrix becomes∆′

a = Γ−1′∆aΓ
−1.

Then Ra(sa) and Rc(sc) are used to create composite roughness penalties ∆̄a =
∆′

a ⊗ IMr
and ∆̄c = IMq

⊗∆′
c , where IMr

and IMq
denote identity matrices, with

Mq and Mr equal to the number of ‘knots’ in the direction of c and a, respectively.
Using the composite roughness penalties ∆̄a and ∆̄c , the penalized least-squared

criterion is constructed similarly to (10), by combining the least-squares term with
roughness penalties in the direction of a and c, which are multiplied by the corre-
sponding smoothing parameters λa and λc:

Q(s(a, c), λa, λc) = ‖y −Zδ‖2 + λaδ
′∆̄aδ + λcδ

′∆̄cδ (15)

Specific details about the construction of the joint basis function Z(a, c) and the
roughness penalty are provided in Wood (2006). Similarly to the univariate case,
individual smoothing parameters λa and λc are selected by minimizing the GCV
criterion, as defined in (13).

A.3 Hypothesis testing with bootstrap.

Since the GAM estimator does not belong to conventional linear regression mod-
els, hypothesis testing is complicated because the finite sample distribution of test
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statistics is not known. The problem can be solved by using a bootstrap testing
procedure that resamples residuals from a GAM fit. Consider two models, called
Model A and B. Let Model A satisfy the null hypothesis, and Model B satisfy the
alternative hypothesis. Denote fitted values and residuals from estimating Model
A as ŷA and ûA. Let the actual value of test statistic be φ̂. To estimate a p-value
for the test statistic φ̂, we used the following bootstrap approach from MacKinnon
(2007):

1. Specify the number of bootstrap replications O, and the significance level of
the test.

2. For each o = 1, · · · , O, resample regression residuals from ûA, and denote the
bootstrap sample as ûA

o . Then calculate bootstrap values of y as yAo = ŷA+ ûA
o .

3. Using yAo and matrix of independent variables x, estimate alternative model
B, and calculate a bootstrap test statistic φ∗

o .

4. Repeat until the last bootstrap resampling of ûA that produces test statistic
φ∗
O.

5. Estimate a bootstrap p-value for φ̂ by p̂∗(φ̂) = 1
O

∑O

o=1 I
(

φ∗
o > φ̂

)

. Suppose

that φ∗
o was larger than φ̂ at 35 times, and O = 1000. Then p̂∗(φ̂) = 35/1000 =

0.035.

6. If p̂∗(φ̂) < significance level, reject the null hypothesis, and otherwise, accept
it.
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