Books in Differential Geometry

Differential Geometry


Topics in Almost Hermitian Geometry and Related Fields, Proceedings in Honor of Professor K. Sekigawa's 60th Birthday. Y. Matsushita, E. Garcia-Rio, H. Hashimoto, T. Koda and T. Oguro eds, World Scientific, Singapore, 2005. ISBN 981-256-417-9

Proceedings of the International Workshops on Complex Structures and Vector Fields, held at Bulgaria

(1992, 1994, 1996, 1998, 2000, 2002)

  1. K. Sekigawa and S. Dimiev, Almost Complex Structures, World Scientific, 1994.
  2. S. Dimiev and K. Sekigawa, Complex Structures and Vector Fields, World Scientific, 1995.
  3. S. Dimiev and K. Sekigawa eds., Topics in Complex Analysis, Differential Geometry and Mathematical Physics, World Scientific, Singapore, 1997.
  4. S. Dimiev and K. Sekigawa eds., Aspects of Complex Analysis, Differential Geometry, Mathematical Physics and Applications, World Scientific, Singapore, 1999.
  5. S. Dimiev and K. Sekigawa eds., Perspectives of Complex Analysis, Differenatial Geometry and Mathematical Physics, World Scientific, Singapore, 2001.
  6. S. Dimiev and K. Sekigawa eds., Trends in Complex Analysis, Differential Geometry and Mathematical Physics, World Scientific, Singapore, 2003.

Manifolds, Riemannian Geometry

  1. E. Cartan, Riemannian Geometry in an Orthogonal Frame, World Scientific, 2001.
  2. I. Chavel, Riemannian Geometry: A Modern Introduction, Cambridge Univ. Press, 1993.
  3. S.S. Chern, W.H. Chen and K.S. Lam, Lectures on Differential Geometry, World Scientific, Singapore, 1999.
  4. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry I, II, Interscience Publishers
  5. K. Nomizu, Lie Groups and Differential Geometry, The Math. Sci. of Japan
  6. T. Sakai, Riemannian Geometry. Translated from the 1992 Japanese original by the author. Translations of Mathematical Monographs, 149. American Mathematical Society, Providence, RI, 1996.
  7. R.W. Sharp, Differential Geometry, GTM 166, Springer, 1997.
  8. T.J. Willmore, Riemannian Geometry, Oxford Univ. Press, Oxford, 1993.

Homogeneous spaces

  1. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, Orlando, (1978).
    (Pure and Applied Math. 80)
  2. S. Helgason, Groups and Geometric Analysis, Academic Press, New York, (1984).
    (Pure and Applied Math. 113)
  3. O. Loos, Symmetric Spaces: Volume II, W.A. Benjamin, New York, (1969).

Einstein manifolds

  1. A.L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, (1987).
  2. A. Futaki, K\"{a}hler-Einstein Metrics and Integral Invariants, Springer-Verlag, Berlin Heidelberg, (1988).
    (Lecture Notes in Mathematics 1314)

Clifford algebras, Spinors

  1. E. Cartan, The Theory of Spinors, Hermann, Paris, 1966.
  2. C. Chevalley, The Constructions and Study of Certain Important Algebras, The Math. Soc. Japan, 1955.
  3. C. Chevalley, The Algebraic Theory of Spinors and Clifford Algebras, Collected Works Vol.2, Springer-Verlag, Berlin Heidelberg, 1997.
    (This book contains the book [2] of C. Chevalley)
  4. P.A.M. Dirac, Spinors in Hilbert Space, Plenum Press, New York and London, 1974.
  5. F.R. Harvey, Spinors and Calibrations, Academic Press, 1990.