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Abstract

Water-soluble derivatives of porphyrin (Por) and N-confused porphyrin (NCP) possessing a nona-arginine (R9) 

peptide tail were synthesized by Cu(I)-catalyzed azide-alkyne cycloaddition (click reaction). Acid-base properties of 

the two molecules were investigated in aqueous solutions. pH titration experiments revealed that the porphyrin-R9 

conjugate molecule (Por-R9) undergoes a concerted diprotonation to generate dication from freebase whereas the 

NCP-R9 conjugate (NCP-R9) generates mono- and dication in a stepwise manner. 
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1. Introduction
 Applications of porphyrin and related macrocycles (Chart 1) to biochemical/biomedical fields have attracted 

considerable attention because they are capable of interacting with biomacromolecules by the simple modification of 

the periphery to change hydrophobic macrocycles to hydrophilic. We have been interested in oligo-arginine peptides as 

an accessory moiety because they have been widely employed to afford water-solubility and cell-penetrating ability to a 

variety of hydrophobic molecules [1,2]. We recently succeeded in synthesizing a conjugated molecule of nona-arginine 

(R9) peptide and N-fused porphyrin (NFP, Chart 1), a porphyrin analogue having a unique [5.5.5] tripentacyclic 

structure embedded in a tetrapyrrolic macrocycle [3,4]. 
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 Conjugation of the R9 peptide with N-fused porphyrin was achieved by using Cu(I) catalyzed azide-alkyne Huisgen 

cycloaddition (click reaction) between an NFP derivative bearing an ethynyl moiety and a side-chain protected R9 

peptide possessing an azide group at its N-terminus. The opposite terminus (C-terminus) of the protected, azide-

modified R9 peptide was covalently attached to a solid support [4]. 

 An advantage of our synthetic strategy is easy handling and purification of the coupling product because it retains on 

the solid support after the reaction. Removal of the side-chain protecting groups and cleavage from the supported resin 

gave the target molecule (NFP-R9, Chart 2). 

 Since this synthetic strategy is practically useful, we decided to apply this strategy for conjugation of R9 peptide 

with other porphyrin-related macrocycles. We here report syntheses and basic properties of conjugated molecules of R9 

peptide with regular porphyrin (Por) and N-confused porphyrin (NCP) [5], a porphyrin isomer possessing a confused 

pyrrole unit connected to the surrounding meso-carbons at the !- and "'-positions (Chart 1).

2. Results and Discussion
2.1. Syntheses of Por-R9 and NCP-R9 conjugates

 To conjugate the azide-modified R9-peptide with porphyrin and N-confused porphyrin by click reaction, introduction 

of an ethynyl group to tetrapyrrolic macrocycles was required. We employed a phenylethynyl group as a building block 

for introduction of ethynyl moiety to tetrapyrrolic macrocycles because selective introduction of aryl groups to C2 

position of porphyrin and C3 position of N-confused porphyrin has been achieved with cross-coupling reactions.

Chart 1. Basic structures of porphyrin, N-fused porphyrin, and two tautomers of N-confused porphyrin.

Chart 2. Conjugated molecules of nona-arginine (R9) peptide with N-fused porphyrn (NFP-R9), regular por-
phyrin (Por-R9), and N-confused porphyrin (NCP-R9).
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 Synthesis of a Zn(II) porphyrin possessing an ethynyl group (2, Chart 3) from tetraphenylporphyrin (TPP, 1) has 

been reported [6]. We thus developed a synthetic route for an N-confused porphyrin derivative with an ethynyl group 

from a C3, C21-dibrominated NCP derivative (Scheme 1). Dibromo-NCP 4 was prepared by treating N-confused 

tetraphenylporphyrin (NCTPP, 3) with 2.0 equiv N-bromosuccinimide (NBS). Protection of the inner cavity of NCP 

skeleton and removal of bromine at C21 position were achieved simultaneously by treating 4 with CF3COOAg to 

give a Ag(III) complex (5) [7]. 4-[(Triisopropylsilyl)ethynyl]phenyl moiety was then introduced at the C3 position 

of 5 by Pd(II)-catalyzed Suzuki cross-coupling in 51% to give 6. Removal of the silyl protecting group of 6 by 

tetrabutylammonium fluoride (TBAF) proceeded quantitatively (99%) to give the desired NCP derivative (7) as a 

substrate for click reaction.

 The side-chain protected nona-arginine (R9) peptide bearing an azidoglycine at the N-terminus (Scheme 2) was 

prepared by solid-phase peptide synthesis on Rink Amide resin as described previously [4]. The resulting N3-Gly-

[Arg(Pbf)]9 peptide attached on the resin was coupled with porphyrin 2 or NCP 7 by Cu(I)-catalyzed cycloaddition 

between the azide moiety of the protected R9 peptide on the resin and the terminal alkyne in 2 or 7 (Scheme 2) [4]. The 

coupling reactions were carried out using CuI as Cu(I)-catalyst in CH2Cl2 under the reaction conditions developed for 

the synthesis of NFP-R9. After the coupling reaction, the resin was washed extensively with CH2Cl2 to eliminate excess 

2 or 7. The resulting resin was treated with a cleavage cocktail containing trifluoroacetic acid (TFA, v/v 90%), m-cresol 

(v/v 5%), and thioanisol (v/v 5%) to release the product from the resin and also to remove Pbf groups from arginine 

side-chains.

Scheme 1. Synthesis of an alkynated NCP derivative 7.

Scheme 2. Conjugation of R9 peptide with porphyrin 2 or NCP 7 by a Cu(I)-catalyzed alkyne-azide cy-
cloaddition on the solid support, followed by acid cleavage from the resin. Pbf = 2,2,4,6,7-pentamethyldi-
hydrobenzofuran-5-sulfonyl group.
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 Target molecules (Por-R9 and NCP-R9) were purified with a reverse phase HPLC and stored as TFA salts. The 

target molecules were characterized by MALDI-TOF mass and UV-vis spectroscopy. As control molecules lacking the 

hydrophilic R9 peptide tail, compounds 8 and 9 (Chart 3) were synthesized by click reactions of 2 and 7 with ethyl 

azidoacetate, respectively.

 Hydrophilic properties of Por-R9 and NCP-R9 were confirmed by partition experiments between H2O and CH2Cl2. 

Nona-arginine conjugates (Por-R9 and NCP-R9) selectively dissolved in H2O while ethyl ester conjugates (8 and 9) 

were soluble only in CH2Cl2 (Fig. 1A). 

2.2. Photophysical and acid-base properties of Por-R9

 The UV-vis absorption spectra of hydrophilic conjugates (Por-R9 and NCP-R9) and hydrophobic controls (8 and 9) 

were measured in DMF (Figs. 1B and 1C). Absorption spectra of Por-R9 and NCP-R9 were closely similar to those 

of 8 and 9, respectively, indicating that the nona-arginine (R9) moiety did not perturb absorption properties of the 

tetrapyrrolic skeletons (Figs. 1b and 1C). UV-vis absorption spectrum of 9 was also measured in CH2Cl2 (Fig. 1C) to 

evaluate the solvent-dependent NH tautomerism of the NCP skeleton in NCP-R9 and NCP 9 (Chart 1) [8]. Soret-like 

band of 9 in CH2Cl2 was observed at 456 nm, which was 6 nm shorter than that in DMF (462 nm). Spectral shape of 

Q-like bands in CH2Cl2 (555, 597, and 755 nm) was also different from that in DMF (598 and 717 nm). Such solvent-

dependent spectral changes of 9 resembled those of NCTPP (3), suggesting that NCP 9 and NCP-R9 form the inner-2H 

tautomer in DMF whereas 9 dominantly exists as the inner-3H tautomer in CH2Cl2 [8].

Chart 3.

Figure 1. Partition experiments and UV-vis absorption spectra of hydrophilic and hydrophobic derivatives of porphyrin 
and N-confused porphyrin. (A) Partition experiments of 8 and Por-R9 in H2O+CH2Cl2 (top), and 9 and NCP-R9 in 
H2O+CH2Cl2 (bottom). (B) UV-vis absorption spectra of Por-R9 and 8 in DMF. (C) UV-vis absorption spectra of NCP-
R9 in DMF and 9 in DMF and CH2Cl2.
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 UV-vis absorption spectra of Por-R9 were then measured in aqueous media to evaluate its aggregation and acid-base 

properties. In ultrapure H2O, addition of sodium dodecyl sulfate (SDS) caused no significant spectral change (data not 

shown), suggesting that Por-R9 did not form strong aggregates in neutral H2O solution. pH titration experiments were 

carried out using HCl and NaOH to adjust pH in acidic and basic regions, respectively (Fig. 2). With an increase of pH 

in the basic region, intensity of the Soret-band decreased. This result suggests that the aggregation of porphyrin skeleton 

took place under the basic conditions probably due to the charge neutralization of arginine side-chains in the R9 tail (Fig. 

2A). Under acidic conditions, concerted protonation of two imine nitrogens was observed to generate the dication of 

Por-R9 (Fig. 2B) and the pK value between the freebase and the dication was estimated to be 3.5.

2.3. Photophysical and acid-base properties of NCP-R9

 Two imine nitrogens in the NCP skeleton usually accept two protons in a stepwise manner owing to the structural 

asymmetry of the macrocycle. To confirm the absorption spectra of mono- and dication of NCP 9 in organic solvents 

we first measured the protonation behavior of NCP 9 in polar and nonpolar organic solvents (DMF and CH2Cl2). In 

DMF (which stabilizes the inner 2H-tautomer of 9), addition of TFA caused two-step spectral changes corresponding to 

generation of mono- and diprotonated forms of 9 (Fig. 3A). Addition of 10 equiv TFA gave the monocation of 9 ( +), 

whose absorption spectrum exhibited the Soret-like band at 471 nm and the broad Q-like bands reaching to 1000 nm. 

Addition of excess amount of TFA gave a new spectrum corresponding to the dication of 9 ( +). + had a Soret-

like band with absorption maxima (#max) at 481 nm and three Q-like bands (620, 680, and 867 nm). Spectral profiles 

of + and + were similar to the mono- and dication of a water-soluble NCP derivative having four pyridinium 

moieties in aqueous solution [9]. Two-step absorption spectral changes of 9 were also observed in CH2Cl2, in which 9 

preferably formed the inner 3H-tautomer (Fig. 3B). Absorption spectrum of dication + in CH2Cl2 was similar to 

that in DMF. Soret-like bands of monocation + in CH2Cl2 also had the #max (469 nm) that was similar to #max of + 

in DMF (471 nm). On the other hand, a shape of Q-like bands of + in DMF (Fig. 3B) was significantly different 

from that in CH2Cl2 (Fig. 3A), indicating that NCP 9 shows solvatochromic property not only in the freebase form but 

also in the monocationic form ( +).

Figure 2. pH dependent spectral changes of Por-R9 in ultrapure water, (A) between pH 13.0 and pH 7.0, and (B) 
between pH 7.0 and pH 1.0. Titrations were performed with aqueous NaOH and HCl. [Por-R9] = 10 µM.
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 Acid-base property of NCP-R9 was then investigated by adjusting pH of aqueous solution with HCl (acidic region) or 

NaOH (basic region). In the pH region between 9.3 and 13.0, intensity of the Soret-like band at 456 nm decreased with 

increasing pH (Fig. 4A), suggesting that NCP-R9 formed the aggregates under the basic conditions. With a decrease 

of pH from 9.3 to 6.5, transition from the freebase to the monocation ( +) took place (Fig. 4B) because the 

absorption spectra of NCP-R9 in pH 6.5-5.5, which showed a Soret-like band at 466 nm, were closely similar to that of 
+ in DMF. With a further decrease of pH from 5.5 to 2.0 (Fig. 4C), second transition was observed to generate the 

dication ( +), spectral of which closely resembled +. From the titration curve, the pKa values of each 

protonation process, [ +]//[ +] and [ +]//[NCP-R9], were estimated to be 3.5 and 

8.0, respectively. These pKa values were comparable to those for NCTPP (3) measured in a 2.5% aqueous micellar SDS 

solution (3.27 for [ +]//[ +], and 8.35 for [ +]//[NCTPP]) [3, 10].

3. Perspective
 We synthesized water-soluble conjugates of porphyrin and N-confused porphyrin with nona-arginine peptide 

(Por-R9 and NCP-R9) by click reaction, and elucidated their basic absorption and acid-base properties. Syntheses and 

Figure 3. Protonation of 9 by TFA in DMF (A) and in CH2Cl2 (B).

Figure 4. pH dependent spectral changes of NCP-R9 in ultrapure water; (A) between pH 13.0 and pH 9.3, (B) be-
tween pH 9.3 and pH 6.5, and (C) between pH 5.5 and pH 2.0. Titrations were performed with aqueous NaOH and 
HCl. [NCP-R9] = 10 µM.
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elucidation of basic photophysical properties of these conjugates in this study allow us to apply them to biochemical/

biomedical fields. An attractive direction for the application of Por-R9 and NCP-R9 is their use as therapeutic and/

or diagnostic purposes. Generation of singlet oxygen inside living cells is an important property of porphyrin and 

related molecules. Owing to this property, water-soluble derivatives of porphyrin and related molecules are promising 

as photosensitisers for photodynamic therapy (PDT) [11]. Introduction of Por-R9 and NCP-R9 into cultured cells 

is possible without further modification because nona-arginine (R9) is a member of bioactive peptides with cell-

penetrating ability. Investigation of their photophysical properties in cultured cells is currently ongoing in our group.

4. Materials and Methods
Materials and Methods

General: Commercially available reagents and solvents were used without further purification unless otherwise 

mentioned. THF was distilled over benzophenone and sodium under Ar atmosphere. Silica gel column chromatography 

was performed on KANTO Silica Gel 60 N (spherical, neutral, particle size 40̶50 $m). 1H NMR spectra were 

recorded on a JEOL JNM-AL300 spectrometer (operating 300.40 MHz for 1H). Chemical shifts were expressed in parts 

per million (ppm) from a residual portion of deuterated solvent, CHCl3 (% = 7.26). MALDI-TOF-mass spectra were 

recorded on a Bruker Daltonics Autoflex with linear positive ion mode. UV-vis spectra were recorded on a Shimadzu 

UV-3150PC spectrometer. For UV-vis absorption measurements, spectroscopic grade solvents (DMF and CH2Cl2 

purchased from Nacalai Tesque, Kyoto, Japan) and ultrapure water (prepared by Organo Puric-Z, Tokyo, Japan) were 

employed.

NCP 6: NCP 5 (400 mg, 0.50 mmol) [7], 4-[(triisopropylsilyl)ethynyl]phenylboronic acid (800 mg, 2.9 mmol), 

Pd(PPh3)4 (8 mg, 0.007 mmol), and Cs2CO3 (600 mg, 1.85 mmol) were dissolved in toluene (20 mL). The reaction 

mixture was stirred for 5 h under Ar at 90 ℃ . After removal of the solvent by evaporation, the residue was dissolved by 

a mixture of water–CH2Cl2, and the product was extracted with CH2Cl2. The organic phase was combined and dried over 

Na2SO4. After evaporation, the residue was separated by silica gel column chromatography with CH2Cl2 containing 1% 

MeOH. The second brown fraction afforded 250 mg of 6 (51%) as a brown solid. 1H NMR (CDCl3, 300 MHz, ppm): % 

1.21 (s, 21H), 7.19-7.25 (m, 2H), 7.28-7.41 (m 3H), 7.52 (d, 2H, J = 4.0 Hz), 7.64-7.86 (m, 11H), 8.07-8.18 (m, 4H), 

8.26 (d, 2H, J = 4.0 Hz), 8.56-8.68 (m, 4H), 8.78 (d, 1H, J = 4.0 Hz),  8.88 (d, 1H, J = 4.0 Hz); MALDI-TOF-MASS: 

m/z = 976.883 [M+].

NCP 7: NCP 6 (150 mg, 0.153 mmol) was dissolved in THF (15 mL). After adding tetrabutylammonium fluoride 

(1 M in THF) (62 mL, 0.23 mmol), the reaction mixture was stirred for 3 h under Ar at ambient temperature. After 

evaporation, the residue was recrystallized from CH2Cl2–MeOH. The brown crystal of 7 was obtained in a yield of 125 

mg (99%). 1H NMR (CDCl3, 300 MHz, ppm): % 3.09-3.13 (s, 1H), 6.78-6.92 (m, 2H), 7.37-7.43 (m, 3H), 7.51-7.59 (d, 

2H), 7.62-7.87 (m, 14H), 8.07-8.19 (s, 5H), 8.23-8.31 (d, 2H), 8.58-8.71 (m, 5H), 8.73-8.79 (d, 1H), 8.83-8.89 (d, 1H); 

MALDI-TOF-MASS: m/z = 819.370 [M+].

Por-R9: Porphyrin 2 (78 mg, 0.1 mmol) [6] and CuI (19 mg, 0.1 mmol) were dissolved in CH2Cl2 (15 mL). After 

adding the peptide resin (approximately 0.05 mmol) and N,N-diisopropylethylamine (435 mL, 2.5 mmol), the mixture 
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was gently stirred for 12 h under Ar at ambient temperature. The resin was recovered by filtration and washed with 

CH2Cl2 five times. To cleave the peptide from the resin and remove Pbf groups, the resin was treated with a mixture 

of TFA (2.7 mL), m-cresol (150 mL), and thioanisole (150 mL) for 1 h at ambient temperature. After the resin was 

removed by filtration, diethyl ether (35 mL) was added to the solution to precipitate a crude compound as a green 

powder, which was collected by centrifugation. Three-twentyfifth of the crude compound was then purified by HPLC 

with YMC R-ODS-5 column (4.6×250 mm) using H2O-CH3CN mixed solvent containing 0.1% TFA. Stepwise gradient 

was employed; first 30% CH3CN for 15 min, second 40% CH3CN for 20 min, third 100% CH3CN for 10 min; flow rate: 

1 mL/min; detection: 220 nm (peptide), 420 nm (Porphyrin). The main peak eluted in 40 % CH3CN was collected and 

lyophilized to afford 1.4 mg of a green powder (0.431 $mol as Por-R9 9CF3COO–, 7.17% yield from 2.5 $mol Fmoc-

Rink Amide resin). MALDI-TOF-MASS: m/z = 2221.07 [M+].

NCP-R9: NCP 6 (82 mg, 0.1 mmol) and CuI (19 mg, 0.1 mmol) were dissolved in CH2Cl2 (15 mL). After adding the 

peptide resin (approximately 0.05 mmol) and DIPEA (435 mL, 2.5 mmol), the mixture was gently stirred for 12 h under 

Ar at ambient temperature. The resin was recovered by filtration and washed with CH2Cl2 five times. To cleave the 

peptide from the resin and remove Pbf groups, the resin was treated with a mixture of TFA (2.7 mL), m-cresol (150 mL), 

and thioanisole (150 mL) for 1 h at ambient temperature. After the resin was removed by filtration, diethyl ether (35 mL) 

was added to the solution to precipitate a crude compound as a brown powder, which was collected by centrifugation. 

One-twentieth of the crude compound was then purified by HPLC with YMC R-ODS-5 column (4.6×250 mm) using 

H2O-CH3CN mixed solvent containing 0.1% TFA. Stepwise gradient was employed; first 30% CH3CN for 10 min, 

second 40% CH3CN for 20 min, third 100% CH3CN for 10 min; flow rate: 1 mL/min; detection: 220 nm (peptide), 450 

nm (NCP). The main peak (NCP-R9) eluted in 40% CH3CN was collected and lyophilized to afford 0.5 mg of a brown 

powder (0.154 $mol as NCP-R9 9CF3COO–, 6.1% yield from 2.5 $mol Fmoc-Rink Amide resin). MALDI-TOF-MASS: 

m/z = 2222.31 [M+].

NCP 9-Ag(III) complex: NCP 7 (100 mg, 0.123 mmol) and CuI (46 mg, 0.246 mmol) were dissolved in CH2Cl2 (10 

mL). After adding ethyl azidoacetate (317 mL, 2.46 mmol) and DIPEA (1074 mL, 6.15 mmol), the mixture was stirred 

for 12 h under Ar at ambient temperature. After removal of the solvent by evaporation, the residue was dissolved in a 

mixture of water–CH2Cl2, and the product was extracted with CH2Cl2. The organic phase was combined and dried over 

Na2SO4. After evaporation, the residue was separated by silica gel column chromatography with CH2Cl2 containing 1% 

MeOH. The first brown fraction afforded 75 mg of NCP 9-Ag(III) complex (64%) as a brown solid. 1H NMR (CDCl3, 

300 MHz, ppm): % 1.37 (t, 3H), 4.35 (q, 2H), 5.26 (s, 2H), 7.4-7.55 (m, 1H), 7.58-7.69 (m, 5H), 7.69-7.81 (m, 10H), 7.86 

(d, 1H, J = 4.8 Hz), 7.93 (s, 1H), 8.09-8.19 (m, 5H), 8.28 (d, 2H, J = 4.0 Hz), 8.57-8.69 (m, 4H), 8.78 (d, 2H, J = 4.0 

Hz), 8.89 (d, 2H, J = 4.0 Hz); MALDI-TOF-MASS: m/z = 949.256 [M+].

NCP 9: NCP 9-Ag(III) complex (50 mg, 0.053 mmol) was dissolved in CH2Cl2 (5 mL). After adding 1.0 mL TFA, 

the mixture was stirred for 2 h at ambient temperature. After removal of the solvent by evaporation, the residue was 

dissolved by a mixture of water–CH2Cl2 and neutralized with NaHCO3. The product was extracted with CH2Cl2 and the 

organic phase was combined and dried over Na2SO4. After evaporation, the residue was separated by silica gel column 

chromatography with CH2Cl2 containing 1% MeOH. The third brown fraction afforded 21 mg of NCP 9 (47%) as a 
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brown solid. 1H NMR (CDCl3, 300 MHz, ppm): % -4.51 (s, 1H), 1.34 (t, 3H), 4.31 (q, 2H), 5.2 (s, 2H), 7.32 (d, 1H, J = 

4.0 Hz), 7.4–7.48 (m, 2H), 7.53 (s, 5H), 7.72–7.82 (m, 8H), 7.82-7.94 (m, 3H), 8.14 (s, 4H), 8.26 (d, 2H, J = 8.0 Hz), 

8.32-8.4 (m, 3H), 8.43 (d, 1H, J = 4.0 Hz), 8.49 (d, 1H, J = 8.0 Hz), 8.80 (d, 1H, J = 4.0 Hz), 8.87 (d, 1H, J = 4.0 Hz); 

MALDI-TOF-MASS: m/z = 841.064 [M+].
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