Shigeyoshi Matsumura Publications
2025
(44)
Abe, S., Aburaya, S., Koyama, T., Usui, T., Yoshino, J., Matsumura, S., & Ikawa, Y.
Biochemical characterization of a non-G4-type RNA aptamer that lights up a GFP-like fluorogenic ligand.
Molecules, 30, 1777 (2025)
[Link]
(43)
Miyazaki, Y., Nakane, R., Tanishi, S., Matsumura, S., & Ikawa, Y.
Catalytic cleavage of an RNA substrate that bypasses the reorganization of its secondary structure during substrate recognition by a trans-acting VS ribozyme.
Nucleosides Nucleotides Nucleic Acids, (2025) published online
[PubMed]
2023
(42)
Siddika, Mst. A., Oi, H., Hidaka, K., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Structural expansion of catalytic RNA nanostructures through oligomerization of a cyclic trimer of engineered ribozymes.
Molecules, 28, 6465 (2023)
[PubMed]
(41)
Ueda, T., Nishimura, K., Nishiyama, Y., Tominaga, Y., Miyazaki, Y., Furuta, H., Matsumura, S., & Ikawa, Y.
Pairwise engineering of tandemly aligned self-splicing group I introns for analysis and control of their alternative splicing.
Biomolecules, 13, 654 (2023)
[PubMed]
2022
(40)
Siddika, Mst. A., Yamada, T., Aoyama, R., Hidaka, K., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Catalytic RNA oligomers formed by co-oligomerization of a pair of bimolecular RNase P ribozymes.
Molecules, 27, 8298 (2022)
[PubMed]
(39)
Islam, Md. D., Hidaka, K., Suzuki, Y., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Box-shaped ribozyme octamer formed by face-to-face dimerization of a pair of square-shaped ribozyme tetramers.
J. Biosci. Bioeng., 134, 195-202 (2022)
[PubMed]
(38)
Yu, K., Hidaka, K., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
A hexameric ribozyme nanostructure formed by double-decker assembly of a pair of triangular ribozyme trimers.
ChemBioChem, 23, e202100573 (2022)
[PubMed]
2021
(37)
Islam, Md. D., Rahman, Md. M, Matsumura, S., & Ikawa, Y.
Effects of chain length of polyethylene glycol molecular crowders on a mutant Tetrahymena group I ribozyme lacking large peripheral module.
Nucleosides Nucleotides Nucleic Acids, 40,867-883 (2021)
[PubMed]
(36)
Mori, Y., Oi, H., Suzuki, Y., Hidaka, K., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Flexible assembly of engineered Tetrahymena ribozymes forming polygonal RNA nanostructures with catalytic ability.
ChemBioChem, 22, 2168-2176 (2021)
[PubMed]
(35)
Akagi, J., Yamada, T., Hidaka, K., Fujita, Y., Saito, H., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
An RNA triangle with six ribozyme units can promote a trans-splicing reaction through trimerization of unit ribozyme dimers.
Applied Sciences, 11, 2583 (2021)
[Link]
2020
(34)
Matsumura, S.
ƒ}ƒCƒNƒ—¬‘̃fƒoƒCƒX‚Å”—‚郌ƒvƒŠƒP[ƒ^[‚Ìi‰»‚Æ×–E‚ÌŠÖŒW
‹ÉŒÀŠÂ‹«¶•¨Šw‰ïŽ,18, 19-24 (2020)
[Link]
(33)
Kiyooka, R., Akagi, J., Hidaka, K., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Catalytic RNA nano-objects formed by self-assembly of group I ribozyme dimers serving as unit structures.
J. Biosci. Bioeng., 130, 253-259 (2020)
[PubMed]
(32)
Rahman, Md. S., Gulshan, Mst. A, Matsumura, S., & Ikawa, Y.
Polyethylene glycol molecular crowders enhance the catalytic ability of bimolecular bacterial RNase P ribozymes.
Nucleosides Nucleotides Nucleic Acids, 39, 715-729 (2020)
[PubMed]
(31)
Rahman, Md. S., Matsumura, S., & Ikawa, Y.
Effects of external molecular factors on adaptation of bacterial RNase P ribozymes to thermophilic conditions.
Biochem. Biophys. Res. Commun., 523, 342-347 (2020)
[PubMed]
2019
(30)
Nozawa, Y., Hagihara, M.,Rahman, Md. S., Matsumura, S., & Ikawa, Y.
Rational design of an orthogonal pair of bimolecular RNase P ribozymes through heterologous assembly of their modular domains.
Biology, 8, pii: E65 (2019)
[PubMed]
(29)
Tsuruga, R., Uehara, N., Suzuki, Y., Furuta, H., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Oligomerization of a modular ribozyme assembly of which is controlled by a programmable RNA-RNA interface between two structural modules.
J. Biosci. Bioeng., 128, 410-415 (2019)
[PubMed]
2018
(28)
Nozawa, Y., Hagihara, M., Matsumura, S., & Ikawa, Y.
Modular architecture of bacterial RNase P ribozymes as a structural platform for RNA nanostructure design.
CHIMIA, 72, 882-887 (2018)
[PubMed]
(27)
Rahman, Md. M., Matsumura, S., & Ikawa, Y.
Effects of molecular crowding on a bimolecular group I ribozyme and its derivative that self-assembles to form ribozyme oligomers.
Biochem. Biophys. Res. Commun.,507, 136-141 (2018)
[PubMed]
(26)
Gulshan, Mst. A., Tsuji, K., Matsumura, S., Higuchi, T., Umezawa, N., & Ikawa, Y.
Distinct modulation of group I ribozyme activity among stereoisomers of a synthetic pentamine with structural constraints.
Biochem. Biophys. Res. Commun., 504, 698-703 (2018)
[PubMed]
(25)
Rahman, Md. M., & Matsumura, S., & Ikawa, Y.
Oligomerization of a bimolecular ribozyme modestly rescues its structural defects that disturb interdomain assembly to form the catalytic site.
J. Mol. Evol., 86, 431-442 (2018)
[PubMed]
(24)
Gulshan, Mst. A., Matsumura, S., Higuchi, T., Umezawa, N., & Ikawa, Y.
Comparative study of polyethylene polyamines as activator molecules for a structurally unstable group I ribozyme.
Biosci. Biotech. Biochem., 82, 1404-1407 (2018)
[PubMed]
(23)
Inuzuka, S., Kakizawa, H., Nishimura, K., Naito, T., Miyazaki, K., Furuta, H., Matsumura, S., & Ikawa, Y.
Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.
Genes to Cells, 23, 435-447 (2018)
[PubMed]
(22)
Ikawa, Y., & Matsumura, S.,
Engineered group I ribozymes as RNA-based modular tools to control gene expression.
Applied RNA Bioscience (Springer), Chapter 13, p203-p220 (2018)
[Link]
(21)
Gulshan, Mst. A., Rahman Md. M., Matsumura, S., Higuchi, T., Umezawa, N., Ikawa, Y.
Biogenic triamine and tetraamine activate core catalytic ability of Tetrahymena group I ribozyme in the absence of its large activator module.
Biochem. Biophys. Res. Commun., 496, 594-600 (2018)
[PubMed]
2017
(20)
Rahman, Md. M., Matsumura, S., & Ikawa, Y.
Artificial RNA motifs expand the programmable assembly between RNA modules of a bimolecular ribozyme leading to application to RNA nanostructure design.
Biology, 6, pii: E37 (2017)
[PubMed]
(19)
Tanaka, T., Hirata, Y., Tominaga, Y., Furuta, H., Matsumura, S., & Ikawa, Y.
Heterodimerization of group I ribozymes enabling exon recombination through a pair of cooperative trans-splicing reactions.
ChemBioChem, 18, 1659-1667 (2017)
[PubMed]
(18)
Tanaka, T., Ikawa, Y., & Matsumura, S.
Rational engineering of a modular group I ribozyme to control its actvity by self-dimerization.
Methods in Molecular Biology (RNA Nanostructures), 1632, 325-340 (2017)
[PubMed]
(17)
Matsumura, S., & Ikawa, Y.
ƒŠƒ{ƒUƒCƒ€‚ÌŒ¤‹†“®Œü‚ƈÀ‘S«•]‰¿
æ’[ˆã—ËZp‚ÌŽÀ—p‰»‚ÆŠJ”í—ªi‹Zp‰ÈŠw‹¦‰ïj1Í8ß, p.61-p.65 (2017)
[Link]
(16)
Oi, H., Fujita, D., Suzuki, Y., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes.
J. Biochem., 161, 451-462 (2017)
[PubMed]
2016
(15)
Matsumura, S., Kun, A., Ryckelynck, M., Coldren, F., Szilagyi, A., Jossinet, F., Rick, C., Nghe, P., Szathmary, E., & Griffiths, A.
Transient compartmentalization of RNA replicators prevents extinction due to parasites.
Science, 354, 1293-1296 (2016)
[Link],
[“ú–{Œê‰ðà]
(14)
Furukawa, A., Tanaka, T., Furuta, H., Matsumura, S. & Ikawa, Y.
Use of a fluorescent aptamer RNA as an exonic sequence to analyze self-splicing ability of a group I intron from structured RNAs.
Biology, 5, pii: E43 (2016)
[PubMed]
(13)
Inuzuka, S., Nishimura, K., Kakizawa, H., Fujita, Y., Furuta, H., Matsumura, S., & Ikawa, Y.
Mutational analysis of structural elements in a class-I cyclic di-GMP riboswitch to elucidate its regulatory mechanism.
J. Biochem., 160, 153-162 (2016)
[PubMed]
(12)
Tanaka, T., Matsumura, S., Furuta, H., & Ikawa, Y.
Tecto-GIRz: engineered group I ribozymes the catalytic ability of which can be controlled by self-dimerization.
ChemBioChem, 17, 1448-1455 (2016)
[PubMed]
(11)
Inuzuka, S., Matsumura, S., & Ikawa, Y.
Optimization of RNA-based c-di-GMP fluorescent sensors through tuning their structural modules.
J. Biosci. Bioeng., 122, 183-187 (2016)
[PubMed]
(10)
Furukawa, A., Maejima, T., Matsumura, S., & Ikawa, Y.
Characterization of an RNA receptor motif that recognizes a GCGA tetraloop.
Biosci. Biotech. Biochem., 80, 1386-1389 (2016)
[PubMed]
2015
(9)
Matsumura, S., & Ikawa, Y.
Artificial ligase ribozymes isolated by a gdesign and selectionh strategy.
Methods in Molecular Biology (RNA scaffolds), 1316, 113-125 (2015)
[PubMed]
(8)
Matsumura, S., Ito, T., Tanaka, T., Furuta, H., & Ikawa, Y.
Modulation of group I ribozyme activity by cationic porphyrins.
Biology, 4, 251-263 (2015)
[PubMed]
2012
(7)
Matsumura, S., Coldren, F.M., Marin, A., Fallah-Araghi, A., Griffiths, A.D., & Ryckelynck, M.
Why is the minimum unit of life a cell? : Building an gRNA worldh model protocell using droplet-based microfluidics.
Proceedings of MicroTAS, 16, 166-168 (2012)
2009
(6)
Ishikawa, J. Matsumura, S., Jaeger, L., Inoue, T., Furuta, H., & Ikawa. Y.
Rational optimization of the DSL ligase ribozyme with GNRA/receptor interacting modules.
Arch. Biochem. Biophys., 490, 163-170 (2009)
[PubMed]
(5)
Matsumura, S., Ohmori, R., Saito, H.,Ikawa. Y., & Inoue, T.
trans-acting ligase ribozyme by a loop-receptor interaction.
FEBS Lett., 583, 2819-2826 (2009)
[PubMed]
2004
(4)
Ikawa, Y., Tsuda, K., Matsumura, S.,& Inoue, T.
De novo synthesis and development of an RNA enzyme.
Proc. Natl. Acad. Sci. USA., 88, 13750-13755 (2004)
[PubMed]
2003
(3)
Matsumura, S.,Ikawa, Y., & Inoue, T.
Biochemical characterization of the kink-turn RNA motif.
Nucleic Acids Res., 31, 5544-5571 (2003)
[PubMed]
(2)
Ikawa, Y., Tsuda, K., Matsumura, S., Atsumi, S. & Inoue,T.
Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP.
Nucleic Acids Res., 31, 1488-1496 (2003)
[PubMed]
2002
(1)
Ikawa, Y., Tsuda, K., Matsumura, S., Atsumi, S. & Inoue, T.
Modelling of a possible evolutional process from a ribozyme to a catalytic RNP.
Nucleic Acids Res.,Supplment, 2, 119-120 (2002)
[PubMed]