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6.1 Motivation and Overview

Towards the full-fledged quantum computing, what do we need? Obviously, the first
thing we need is a (many-body) quantum system, which is reasonably isolated from
its environment in order to reduce the unwanted effect of noise, and the second
might be a good technique to fully control it. Although we would also need a well-
designed quantum code for information processing for fault-tolerant computation,
from a physical point of view, the primary requisites are a system and a full control
for it. Designing and fabricating a controllable quantum system is a hard work in the
first place, however, we shall focus on the subsequent steps that cannot be skipped
and are highly nontrivial.

Typically, when attempting to control a many-body quantum system, every sub-
system of it has to be a subject of accurate and individual access to apply operations
and to perform measurements. Such a (near-) full accessibility leads to a problem of
not only technical difficulties, but also noise (decoherence), as the system can rea-
dily interact with its surrounding environment. In a sense, we are wishing for two
inconsistent demands, namely, being able to manipulate a quantum system fully by
controlling the field parameters while suppressing its interaction with the field.
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Quantum Computing, Springer New York, pp 167–192 (2016).
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A good news is that the technological progress over the last decades has been so
great that we are now able to access and control quantum systems quite well, provi-
ded they are not too large. The coherent manipulations of small quantum systems, in
addition to the observations of quantum behaviours, have been reported for various
systems, e.g., NMR/ESR [1, 2, 3, 4], semiconductor quantum dots [5, 6, 7], super-
conducting quantum bits (qubits) [8, 9, 10], and NV-centres in diamonds [11, 12].

Here, we discuss a possible scheme to bridge the gap between what we wish to
achieve and what we can realise today. Namely, we aim at controlling a given many-
body quantum system and identifying it by accessing only a small subsystem, i.e.,
gateway. Restricting the size of accessible gateway and minimising the number of
control parameters should be of help in suppressing the effects of noise.

This chapter consists of two parts, each of which is devoted to these two topics,
full quantum control through a gateway and Hamiltonian identification, respecti-
vely. Such situations, in which only a subsystem is accessible, arise for example in
networks of ‘dark spins’ in diamond and solid state quantum devices[12, 13, 14] as
well as spin networks in NMR and ESR setups [1, 4, 15].

In the first part, we present how a system can be controlled through access to a
small gateway. Starting with a general argument on the controllability of a quan-
tum system, we show a possible scheme to control spin networks under limited
access. The two major issues of our interest in terms of the controllability concern
the algebraic criterion for the form of Hamiltonians and the topological (or graph
theoretical) condition for the choice of gateway. While the consideration about these
aspects will lead to clear insights into the control of spin-1/2 systems, the theory is
general enough to be applied to other systems we encounter in the lab. We shall also
discuss a few issues related to efficiency, such as, can we compute a pulse sequence
for a certain unitary on the chain by a classical computer within polynomial time?
Or how much time would a unitary require to be performed?

All these discussions on the controllability assume the complete knowledge of
the system Hamiltonian. The second part of this chapter is devoted to the discus-
sions on how the Hamiltonian can be identified despite the limited access. Without
the knowlege of Hamiltonian, we can never control a quantum system at will: it will
be like going for treasure hunting without a map and a compass. Having learned the
details of the system Hamiltonian, we then attempt to fully control it, enjoying the
quantumness of the dynamics. Nonetheless, both the full information acquisition
and the full control are still very hard. In addition, the operational complexity of
information acquisition (state and process tomographies) grows rapidly (exponen-
tially) with respect to the system size.

Presumably the most straightforward way to estimate the quantum dynamics is
to apply quantum process tomography (QPT), which is a method to determine a
completely positive map E on quantum states. The map E on a state ρ can be written
as E(ρ) =

∑
iEiρE

†
i , where the operators Ei satisfy

∑
iE
†
iEi = I (if E occurs

with unit probability) [?]. The complexity of QPT grows exponentially with respect
to the system size; for a N qubit system, we need to specify 24N parameters for E
and it is an overwhelming task even for small qubit systems [16, 17, 18]. Moreover,
QPT necessitates estimating all the matrix elements of ρ, the state of the whole
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system, which is impossible under a restricted access with zero or little knowledge
on the Hamiltonian.

The hardness of the task stems from our complete ignorance about the nature
of the dynamics. However, here we will consider the cases in which some a priori
knowledge or good plausible assumptions are available to us. In reality, it is natural
to have substantial knowledge on a fabricated physical system, which is the subject
of our control, due to the underlying physics we intend to exploit. Thus, here we will
see how such a priori information on the system can help reduce the complexity of
Hamiltonian identification. We will primarily focus on the systems consisting of
spin-1/2 particles. This is largely because they have been attracting much attention
recently as a promising candidate for the implementation of quantum computers.

Yet, it would not make much sense if the size of the gateway is comparable to
that of the entire system. From the viewpoint of noise suppression, the smaller the
gateway size, the better. Then how can we find a minimal gateway that suffices to
obtain full knowledge on the system? As we will see below, the same graph property
we introduce in the first part, i.e., the study of spin network control, comes in to the
discussion as a criterion for estimability of the spin network Hamiltonian.

This Chapter is based on the results from [19, 20, 21, 22, 23] as well as some
new results.





Part I
Indirect control of spin networks
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6.2 Reachability in Quantum Control

A central question in control theory is provided a system, typically described by
states, interactions, and our influence on them, to characterize the operations that
can be achieved by suitable controls. In (unitary) quantum dynamics, the usual setup
is a time dependent Hamiltonian of the form

H(t) = H0 +
∑
k

fk(t)Hk, (6.1)

where the time dependence fk(t) can be chosen by the experimentator. While in
usual quantum mechanics we solve the Schrödinger equation for a given fk(t) to
obtain a time evolution unitary U, the question of control is exactly the inverse:
provided a unitary U, is there a control fk(t) which achieves it? The unitaries for
which this is true are called reachable.

Given a system (6.1), how do we characterize the reachable unitaries? It turns
out that it is easier to include those unitaries which are reachable arbitrarily well
into our consideration, and to describe things in terms of simulable Hamiltonians:
we call a Hamiltonian iH simulable if exp(−iHt) is reachable arbitrarily well for
any t ≥ 0. Clearly, iH0 is effectively reachable by setting fk ≡ 0 and letting the
system evolve for a suitable time t. We could also set f1 ≡ 1 and all others zero,
and simulate iH0 + iH1, and so on. Let us call the simulable set L and see which
rules it obeys:

1. A,B ∈ L ⇒ A + B ∈ L : this is a simple consequence of Trotter’s formula,
which says that by switching quickly between A andB the system evolves under
the average of A and B.

2. A ∈ L, α > 0⇒ αA ∈ L : this follows simply from letting a weaker interaction
evolve longer to simulate a stronger one, and vice versa.

3. A,−A,B,−B ∈ L ⇒ [A,B] ∈ L : this follows from a not so well-known
variant of Trotter’s formula given by

lim
n→∞

(
eBt/neAt/ne−Bt/ne−At/n

)n2

= e−[A,B]t2 (6.2)

4. A ∈ L ⇒ −A ∈ L : This is a property which heavily relies on finite dimensions,
where the quantum recurrence theorem holds,

∀ε, t > 0∃T > t : ||e−AT − 1|| ≤ ε (6.3)

which implies e−A(T−t) ≈ e+At.

If we combine all the above properties we find that the simulable set obeys exactly
the properties of a Lie algebra over the reals. This is very useful; in particular, if
through rules 1-4 arbitrary Hamiltonians can be simulated, then likewise arbitrary
unitaries are reachable: the system is fully controllable [24, 25, 26] (in fact, this
condition is necessary and sufficient). It was shown by Lloyd that it is a generic pro-
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perty: in fact two randomly chosen Hamiltonians are universal for quantum compu-
ting almost surely. We will not prove this here as we are going to show something
stronger: a randomly chosen pair of two-body qubit Hamiltonians is universal for
quantum computing almost surely. That is, Lloyd’s result holds even when restric-
ting ourselves to physical Hamiltonians.

6.3 Indirect Control

The above equations do not yet take into account the structure of the controls. As dis-
cussed in the introduction, it is interesting to consider the case of composite system
V = C

⋃
C where only a part C of the system is controlled, while the remainder C

is completely untouched. In the light of Eq. (6.1) this means that Hk = h
(k)
C ⊗ 1C .

Control is mediated to C only through the drift H0 = HV , which acts on C and
C. If through HV the whole system is controllable, it means that we have a case of
weak controllability: the controls Hk do not themselves generate all Hamiltonians,
the drift evolution is necessary. This implies that HV sets a time limit for how qui-
ckly the system can be controlled. It also reveals many-body properties of HV and
is therefore interesting from a fundamental perspective.

The question is, given HV and a split of the system into CC, how can we decide
if the system is controllable? Is the general result by Lloyd still correct when res-
tricting ourselves to such a split, and to a physically realistic HV ? In the following,
we will aim to answer both questions.

Using the results from the last section, V is controllable if and only if

〈iHV ,L(C)〉 = L(V ), (6.4)

where, for the sake of simplicity, we have assumed the ih(k)
C ’s to be generators of

the local Lie algebra L(C) of C and where we use the symbol 〈A,B〉 to represent
the algebraic closure of the operator sets A and B. L(V ) denotes the full Lie alge-
bra of the composite system V. The condition (6.4) can be tested numerically only
for relatively small systems. It becomes impractical instead when applied to large
many-body systems where V is a collection of quantum sites (e.g. spins) whose Ha-
miltonian is described as a summation of two-sites terms. For such configurations,
a graph theoretical approach is more fruitful.

6.4 Graph infection

The proposed method exploits the topological properties of the graph defined by the
coupling terms entering the many-body HamiltonianHV . This allows us to translate
the controllability problem into a simple graph property, infection [27, 28, 29]. In
many-body quantum mechanics this property has many interesting consequences on
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the controllability and on relaxation properties of the system [27, 19]. Also, the same
property, also called zero-forcing, has been studied in fields of mathematics, e.g.,
graph theory, in a different context [30]. Let us start reviewing this infection property
for the most general setup, which will show more clearly where the topological
properties come from.

The infection process can be described as follows. Suppose that a subset C of
nodes of the graph is “infected” with some property. This property then spreads,
infecting other nodes, by the following rule: an infected node infects a “healthy”
(uninfected) neighbour if and only if it is its unique healthy neighbour. If eventually
all nodes are infected, the initial setC is called infecting. Figure 6.1 would be helpful
to grasp the picture.

(a) (b) (c) (d)

Fig. 6.1 An example of graph infection. (a) Initially, three coloured nodes in the region C are
‘infected’. As the node l is the only one uninfected node among the neighbours of k, it becomes
infected as in (b). (c) Similarly, l′ becomes infected by k′. (d) Eventually all nodes will be infected
one by one.

Note that the choice of C that infects V is not unique. Though we are interes-
ted in small C, finding the smallest one is a nontrivial, and indeed hard, problem.
Nevertheless, from a pragmatic point of view, the number of nodes we consdier for
the purpose of quantum computing would not be too large to deal with as a graph
problem.

6.5 Controllability of spin networks

The link to quantum mechanics is that each node n of the graph has a quantum
degree of freedom associated with the Hilbert space Hn, which describes the n-
th site of the many-body system V we wish to control. The coupling Hamiltonian
determines the edges through

HV =
∑

(n,m)∈E

Hnm , (6.5)

where Hnm = Hmn are some arbitrary Hermitian operators acting on Hn ⊗ Hm.
Within this context we call the Hamiltonian (6.5) algebraically propagating iff for
all n ∈ V and (n,m) ∈ E one has,
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〈[iHnm,L(n)] ,L(n)〉 = L(n,m), (6.6)

where for a generic set of nodes P ⊆ V , L(P ) is the Lie algebra associated with the
Hilbert space

⊗
n∈P Hn 2. The graph criterion can then be expressed as follows:

Theorem: Assume that the Hamiltonian (6.5) of the composed system V is alge-
braically propagating and that C ⊆ V infects V . Then V is controllable acting
on its subset C.

Proof: To prove the theorem we have to show that Eq. (6.4) holds, or equivalently
that L(V ) ⊆ 〈iHV ,L(C)〉 (the opposite inclusion being always verified). By
infection there exists an ordered sequence {Pk; k = 1, 2, · · · ,K} of K subsets
of V

C = P1 ⊆ P2 ⊆ · · · ⊆ Pk ⊆ · · · ⊆ PK = V , (6.7)

such that each set is exactly one node larger than the previous one,

Pk+1\Pk = {mk} , (6.8)

and there exists an nk ∈ Pk such that mk is its unique neighbor outside Pk :

NG(nk) ∩ V \Pk = {mk} , (6.9)

with NG(nk) ≡ {n ∈ V |(n, nk) ∈ E} being the set of nodes of V which are
connected to nk through an element of E. The sequence Pk provides a natural
structure on the graph which allows us to treat it almost as a chain. In particular,
it gives us an index k over which we will be able to perform inductive proofs
showing that L(Pk) ⊆ 〈iHV ,L(C)〉.

Basis: by Eq. (6.7) we haveL(P1) = L(C) ⊆ 〈iHV ,L(C)〉 . Inductive step: assume
that for some k < K

L(Pk) ⊆ 〈iHV ,L(C)〉 . (6.10)

We now consider nk from Eq. (6.9). We have L(nk) ⊂ L(Pk) ⊆ 〈iHV ,L(C)〉 and

[iHnk,mk
,L(nk)] = [iHV ,L(nk)]−

∑
m

[iHnk,m,L(nk)] ,

where the sum on the right hand side contains only nodes from Pk by Eq. (6.9). It is
therefore an element of L(Pk). The first term on the right hand side is a commutator
of an element of L(Pk) and iHV and thus an element of 〈iHV ,L(C)〉 by Eq. (6.10).
Therefore [iHnk,mk

,L(nk)] ⊆ 〈iHV ,L(C)〉 and by algebraic propagation Eq. (6.6)
we have

〈[iHnk,mk
,L(nk)] ,L(nk)〉 = L(nk,mk) ⊆ 〈iHV ,L(C)〉 .

2 Note that the condition (6.6) is a stronger property than the condition of controlling n,m by
acting on n. According to Eq. (6.4) the latter in fact reads 〈iHnm,L(n)〉 = L(n,m), which is
implied by Eq. (6.6).
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But 〈L(Pk),L(nk,mk)〉 = L(Pk+1) by Eq. (6.8) so L(Pk+1) ⊆ 〈iHV ,L(C)〉.
Thus by induction

L(PK) = L(V ) ⊆ 〈iHV ,L(C)〉 ⊆ L(V ). � (6.11)

The above theorem has split the question of algebraic control into two sepa-
rate aspects. The first part, the algebraic propagation Eq. (6.6) is a property of the
coupling that lives on a small Hilbert space Hn ⊗ Hm and can therefore be che-
cked easily numerically. The second part is a topological property of the (classical)
graph. An important question arises here if this may be not only a sufficient but
also necessary criterion. As we will see below, there are systems where C does not
infect V but the system is controllable for specific coupling strengths. However the
topological stability with respect to the choice of coupling strengths is no longer
given.

An important example of the above theorem are systems of coupled spin-1/2
systems (qubits). We consider the two-body Hamiltonian given by the following
Heisenberg-like coupling,

Hnm = cnm (XnXm + YnYm +∆ZnZm) , (6.12)

where the cnm are arbitrary coupling constants, ∆ is an anisotropy parameter, and
X , Y , Z are the standard Pauli matrices. The edges of the graph are those (n,m)
for which cnm 6= 0.

To apply our method we have first shown that the Heisenberg interaction is
algebraically propagating. In this case the Lie algebra L(n) is associated to the
group su(2) and it is generated by the operators {iXn, iYn, iZn}. Similarly the
algebra L(n,m) is associated with su(4) and it is generated by the operators
{iXnIm, iXnXm, iXnYm, · · · , iZnZm}. The identity (6.6) can thus be verified by
observing that

[Xn, Hnm] = ZnYm − YnZm
[Zn, ZnYm − YnZm] = XnZm

[Yn, XnZm] = ZnZm

[Xn, ZnZm] = YnZm,

where for the sake of simplicity irrelevant constants have been removed. Similarly
using the cyclicity X → Y → Z → X of the Pauli matrices we get,

XnZm → YnXm → ZnYm

ZnZm → XnXm → YnYm

YnZm → ZnXm → XnYm.

Finally, using
[ZnZm, ZnYm] = Xm ,
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and cyclicity, we obtain all 15 basis elements of L(n,m) concluding the proof.
According to our Theorem we can thus conclude that any network of spins coupled
through Heisenberg-like interaction is controllable when operating on the subset C,
if the associated graph can be infected. In particular, this shows that Heisenberg-like
chains with arbitrary coupling strengths admits controllability when operated at one
end (or, borrowing from [24], that the end of such a chain is a universal quantum
interface for the whole system).

6.6 General two-body qubit Hamiltonians

Using the graph criterion we found that the dynamical Lie algebra for a Heisenberg
spin chain with full local control on the first site

HHsbg + g(t)Y1 + f(t)Z1 (6.13)

is su(2N ), where HHsbg is the Hamiltonian describing the Heisenberg-type interac-
tion, HHsbg =

∑
(n,m)∈E Hnm with Hnm in Eq. (6.12). We can also see that the

algebra generated by
HHsbg + Y1 + f(t)Z1 (6.14)

is su(2N ).
Extending further, we can consider the Lie algebra generated byA = HHsbg+Y1

and B = Z1 + 1. Because X1 = p(A,Z1), where p is a (Lie) polynomial in A and
Z1, replacing Z1 with Z1 + 1 we obtain p(A,Z1 + 1) = X1 + c1. Commuting with
B we find that Y1 and therefore also Z1 and 1 seperately are in the algebra generated
byA andB. This has an interesting implication - namely, that the two Hamiltonians
A = HHsbg +Y1 andB = Z1+1 generate u(2N ). These are physical Hamiltonians,
because they consist of two-body interactions only. The fact that such pair exists can
be used to prove that almost all pairs of two-body qubit Hamiltonians are universal:
to do so, we first observe that we can construct a basis of u(2N ) through repeated
commutators and linear combinations of A and B :

u(2N ) = span {p1(A,B), . . . , p22N (A,B)}

where the pk are (Lie) polynomials in A and B. The fact that this is a basis can be
expressed equivalently through

D ≡ det {|p1), . . . , |p22N )} 6= 0, (6.15)

where |pk) is the vector corresponding to the matrix pk(A,B). Now, parametrizing
A and B through

A =
∑

n,m,α,β

aαβnmσ
α
nσ

β
m (6.16)
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B =
∑

n,m,α,β

bαβnmσ
α
nσ

β
m (6.17)

with σ(0,1,2,3)
n ≡ (1n, Xn, Yn, Zn) we can expand D in Eq. (6.15) as a multinomial

in aαβnm and bαβnm. Our result implies that this multinomial is not identical to
zero, and therefore its roots have measure zero. Therefore the set of parameters
(aαβnm, bαβnm) for which the system is not controllable is of measure zero. But
the parametrization (6.16) holds for arbitrary two-body qubit Hamiltonians, which
concludes the argument. We note that this argument is easily extended to general
many-body Hamiltonians.

6.7 Efficiency considerations

The above results are interesting from the theoretical point of view; however, can
they be practically useful from the quantum computing perspective? The two main
problems we need to contemplate before attempting to build a large quantum com-
puter using quantum control are as follows. First, the precise sequence of actual
controls (or ‘control pulses’) are generally not computable without already simula-
ting the whole dynamics. We need to find an efficient mapping from the quantum
algorithm (usually presented in the gate model) to the control pulse. Secondly, even
if such a mapping can be found, the theory of control tells us nothing about the ove-
rall duration of the control pulses to achieve a given task, and it might take far too
long to be practically relevant.

One approach to circumvent these scaling problems focuses on systems that are
sufficiently small, so that we do not already require a quantum computer to check
their controllability and to design control pulses. In such a case, the theory of time
optimal control [31] can be used to achieve impressive improvements in terms of
total time or type of pulses required in comparison with the standard gate mo-
del. More complicated desired operations on larger systems are then decomposed
(‘compiled’) into sequences of smaller ones. Yet, the feasibility of this approach is
ultimately limited by the power of our classical computers, therefore constrained to
low-dimensional many-body systems only.

The goal of this section is to provide an example where one can efficiently com-
pute control pulses for a large system, using the full Hilbert space, and to show
that the duration of the pulses scales efficiently (i.e., polynomially) with the system
size. We will use a Hamiltonian that can be efficiently diagonalized for large sys-
tems through the Jordan-Wigner transformation. A similar scheme was developed
independently in [32]. The control pulses are applied only to the first two spins of
a chain (see Fig. 6.2). The control consists of two parts: one where we will use the
Jordan-Wigner transformation to efficiently compute and control the information
transfer through the chain (thus using it as a quantum data bus), and a second part
where we will use some local gates acting on the chain end to implement two-qubit
operations. To be efficiently computable, these local gates need to be fast with res-
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Fig. 6.2 (color online) Our approach for universal quantum computation works on a chain of N
spins. By modulating the magnetic fieldB1(t) on qubit 1, we induce information transfer and swap
gates on the chain (red and green lines). The states of the qubits from the uncontrolled register can
be brought to the controlled part. There, the gates from a quantum algorithm are performed by
local operations. Afterward, the (modified) states are swapped back into their original position.

pect to the natural dynamics of the chain. Combining the two actions allows us to
implement any unitary operation described in the gate model.

More specifically, we consider a chain of N spin-1/2 particles coupled by the
Hamiltonian

H = 1
2

N−1∑
n=1

cn[(1 + γ)XX + (1− γ)Y Y ]n,n+1 +

N∑
n=1

BnZn,

where X,Y, Z are the Pauli matrices, the cn are generic coupling constants, and the
Bn represent a magnetic field. Variation of the parameter γ encompasses a wide
range of Hamiltonians, including the transverse Ising model (γ = 1; for this case
we require the fieldsBn 6= 0) and theXX model (γ = 0). We assume that the value
of B1 can be controlled externally. This control will be used to induce information
transfer on the chain and realize swap gates between arbitrary spins and the two
‘control’ spins 1, 2 at one chain end. Hence such swap gates are steered indirectly
by only acting on the first qubit.

In order to focus on the main idea we now present our method for γ = 0
and Bn = 0 for n > 1. The general case follows along the same lines, though
more technically involved. Our first task is to show that by only tuning B1(t),
we can perform swap gates between arbitrary pairs of qubits. First we rewrite
the Hamiltonian using the Jordan-Wigner transformation an = σ+

n

∏
m<n Zm,

into H =
∑N−1
n=1 cn{a†nan+1 + a†n+1an}. The operators an obey the canonical

anticommutation relations {an, a†m} = δnm and {an, am} = 0. The term we
control by modulating B1(t) is h1 = Z1 = 1 − 2a†1a1. From Sec 6.2, we know
that the reachable set of unitary time-evolution operators on the chain can be ob-
tained from computing the dynamical Lie algebra generated by ih1 and iH. It
contains all possible commutators of these operators, of any order, and their real
linear combinations. For example, it contains the anti-Hermitian operators ih12 ≡
[ih1, [ih1, iH]]/(4c1) = i(a†1a2 + a†2a1), ih13 ≡ [iH, ih12] /c2 = a†1a3− a†3a1 and
ih23 ≡ [ih12, ih13] = i(a†2a3 + a†3a2). We observe that taking the commutator with
h12 exchanges the index 1 of h13 with 2. Taking the commutator with iH we find
that ih14 ≡ [ih13, iH]+ic1h23−ic2h12 = i(a†1a4 +a†4a1) and ih24 ≡ a†2a4−a†4a2
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are also elements of the dynamical Lie algebra. Hence the effect of taking the com-
mutator with H is raising the index of the hkl. Generalizing this, we find that the
algebra contains the elements ihkl, with k < l, ihkl ≡ a†kal − a†l ak for (k − l)

even, ihkl ≡ i(a†kal + a†l ak) for (k − l) odd, and hk = Zk = 1 − 2a†kak. We
thus know that the time evolution operators exp(−πihkl/2) (which will turn out
to be very similar to swap gates) can be achieved through tuning B1(t). The main
point is that because both h1 and H are free-Fermion Hamiltonians, the correspon-
ding control functions can be computed efficiently in a 2N -dimensional space (we
will do so explicitly later). Ultimately, we need to transform the operators back
to the canonical spin representation. Using a†kal = σ−k σ

+
l

∏
k<j<l Zj , we find

exp(−πihkl/2) = (|00〉kl〈00|+ |11〉kl〈11|)⊗ 1 + (|01〉kl〈10| − |10〉kl〈01|)⊗Lkl
for (k − l) even. The operator Lkl =

∏
k<j<l Zj arises from the non-local tail of

the Jordan-Wigner transformation and acts only on the state of the spins between k
and l, controlled by the state of the qubits k, j in the odd parity sector.

In order to use the chain as a quantum data bus, our goal is to implement swap
gates Skl = |00〉kl〈00| + |11〉kl〈11| + |10〉kl〈01| + |01〉kl〈10|, so the fact that we
have achieved some modified operators with different phases on k, l instead, and
also the controlled non-local phases Lkl, could potentially be worrisome. We will
use a method suggested in [32] that allows us to tackle these complications. That is,
rather than using the physical qubits, we encode in logical qubits, consisting of two
neighbouring physical qubits each. They are encoded in the odd parity subspace
|01〉, |10〉. Although this encoding sacrifices half of the qubits, the Hilbert space
remains large enough for quantum computation, and the encoding has the further
advantage of avoiding macroscopic superpositions of magnetization, which would
be very unstable. Swapping a logical qubit n to the control end of the chain then
consists of two physical swaps exp(−πih1 2n−1/2) and exp(−πih2 2n/2). Since
both physical swaps give the same phases, the resulting operation is indeed a full
logical swap. Any single-qubit operation on the logical qubits can be implemen-
ted by bringing the target qubit to the control end, performing the gate there, and
bringing it back again. We could equally decide to perform single logical qubit
gates directly, without bringing them to the control end. This is possible because
exp(−ih2n−1 2nt) in the physical picture translates to exp (−iXL,nt) in the logical
picture, and because Z2n−1 is in the algebra generated by Z1, which allows us to
perform the operation exp (−iZ2n−1t) = exp (−iZL,nt).

For quantum computation, we need to be able to perform at least one entangling
two-qubit operation. We choose a controlled-Z operation, which can be performed
by operating only on one physical qubit from each of the two logical qubits involved;
to perform a controlled-Z between logical qubit n and m, we bring the physical qu-
bits (2n−1) and (2m−1) to the control end, perform a controlled-Z between them,
and bring them back. It is easy to check that again all unwanted phases cancel out.
The controlled-Z could not be efficiently computed in the interplay with the many-
body Hamiltonian H , because it cannot be generated by a quadratic Hamiltonian
in the Jordan-Wigner picture. Therefore, this gate must be implemented on a time-
scale tg much faster than the natural evolution of the chain, i.e., tg � minj{1/cj}.
We can soften this requirement by using control theory to generate exp (−iZ1X2t)
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by modulating β1(t)Y1 (this is a linear term in the Jordan-Wigner picture), and then
using a fast Hadamard gate on the second site to obtain exp (−iZ1Z2t), which, to-
gether with exp (−iZ1t) and exp (−iZ2t), gives the controlled-Z gate. This leads
to a remarkable conclusion: besides a fast Hadamard gate on the second qubit, all
other controls required for quantum computation can be computed efficiently within
the framework of optimal control.

The crucial question left open above, is how long does it actually take to imple-
ment the gates? In order to evaluate the efficiency, we have numerically simulated a
range of chain lengths and studied the scaling of the logical swap operation time T
with the (physical) chain length N . We set the coupling strength constant, namely
cn = J ∀ n. To provide evidence of a polynomial scaling, we set the simulation
time TN = N2, (all times are in units of 1/J and ~ = 1) and verify for each N that
we can find a specific B∗1(t) that performs the logical swap.

We quantify our success by calculating the error of the operation ε = 1 − F ,
where F = (|trU†Ug|/N)2 is the gate fidelity between the time evolution U and
the goal unitary Ug . This standard choice of fidelity is used for evaluating generic
unitaries, and for our case it is well suited confirming that the swap gate Skl ⊗
1rest acts as the identiy almost everywhere. However the normalization factor 1/N2

could in principle wash out errors in the part of the gate that acts on qubits k and l
only, resulting in the wrong scaling. Therefore, we checked the reduced gate fidelity
(tracing out the rest of the system) on those qubits alone, finding that its fidelity
remains above 1− 10−4 for all N considered.

The functionB1(t) is obtained using techniques from optimal control theory [31,
33]. Briefly, the procedure is as follows: (1) an initial guess is made for the function
B1(t); (2) we run the optimal control algorithm to generate a new B1(t) which
decreases the error of our operation; (3) steps 1 and 2 are iterated until the final
error reaches a preselected threshold ε. In practice, it suffices to choose a threshold
which is of the same order of magnitude as the error introduced by the Hadamard
gate.

If the algorithm converges for each N and the corresponding TN , giving the
optimal pulse sequence B∗1(t), then we can assert that the scaling of the operation
time is at least as good as TN = N2, up to a given precision. Simulating chain
lengths up to N = 40, we find that TN = N2 can be achieved. We stress here that
the chosen scaling law TN may not necessarily describe the shortest time on which
the physical swap gate can be performed. However, the dynamical Lie algebra of
quasi-free fermions has a dimension of the order N2, indicating that such scaling
might be optimal.

6.8 Conclusion

We have seen that control theory provides a powerful framework for indirect
control, and therefore for potential control schemes of large many-body systems.
We could furthermore show that almost all physical relevant Hamiltonians provide
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full control, and that at least in some cases efficient mappings from the gate model
to quantum control are possible. Under which conditions this is true, and if - and
how - such schemes can furthermore be made fault-tolerant in the presence of noise
remains an active area of research. One thing that is clear, however, is that in order
to apply such schemes, good knowledge about the system Hamiltonian H0 is requi-
red. In the next part, we will consider how such knowledge can be obtained using
similar indirect schemes.





Part II
Indirect Hamiltonian tomography of spin
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6.9 The gateway scheme of Hamiltonian tomography

It has recently been studied how a priori knowledge on the system could reduce the
complexity of quantum process tomography. A noteworthy example is the method
developed on the basis of compressed sensing [34, 35], which is originally a scheme
to make a best estimation for all elements of a sparce matrix despite limited amount
of data. Assuming the sparcity under physically plausible settings has been also a
key in other works on indirect Hamiltonian identification. The results on which we
base the most of the following description exploited the polynomial dimensionality
of a subspace we probe [21, 22]. That is, there is already an exponential reduction for
the number of parameters to be determined. While this assumption puts a condition
on the type of Hamiltonians, it was shown that a larger class of Hamiltonians (for
1D spin chains) could also be estimated through a gateway Di Carlo et al. [36].
We shall see below that this is a special case of the generic estimation of quadratic
Hamiltonians, which might describe the dynamics of either bosons or fermions on
not only 1D chains but also more general networks.

Suppose that we have a network consisting of N spin-1/2 particles, such as the
one in Fig 6.3. Our aim is to estimate all the non-zero coupling strengths between
spins and the intensities of the local magnetic fields. The assumptions we make are
as follows:

1. The topology of the network is known. That is, information on the graph G =
(V,E) corresponding to the network is available, where nodes V of the graph
correspond to spins and edges E connect spins that are interacting with each
other.

2. The type of the interaction between spins, such as the Heisenberg, XX, etc., is a
priori known.

3. The inhomogeneous magnetic field is applied in the z-direction.
4. The values of coupling strengths are all real and their signs are known.

Assumptions 1 and 2 are the key for reducing the complexity of the problem. In
many experimental situaions, these information are available due to the conditions
for fabrication, albeit a number of exceptions. In the following, we describe the
estimation scheme assuming Hamiltonians that have the following form:

H =
∑

(m,n)∈E

cmn (XmXn + YmYn +∆ZmZn) +
∑
n∈V

bnZn, (6.18)

for simplicity. Here, Xm, Ym, and Zm are the standard Pauli operators for spin-1/2,
cmn are the coupling strengths between the m-th and n-th spins, bn are the intensity
of local magnetic field at the site of n-th spin, and ∆ is an anisotropy factor that is
common for all interacting pairs.

The Hamiltonians of the type of Eq. (6.18) have a nice property, [H,
∑
n Zn] =

0, i.e., the total magnetisation is preserved under the dynamics generated by H.
Thus the whole 2N -dimensional Hilbert space is decomposed into the direct sum of
supspaces, each of which corresponds to a specific number of total magnetisation.
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For the purpose of Hamiltonian tomography, analysing the dynamics in the single
excitaion sector H1, which has only a single up spin | ↑〉 among N spins, turns out
be sufficient. We will write a single excitation state as |n〉 ∈ H1 when only the
spin n ∈ V is in | ↑〉 with all others in | ↓〉 , and |0〉 = | ↓ ... ↓〉. In Sec. 6.13,
we will treat more general cases, i.e., Hamiltonians that do not conserve the total
magnetisation, such as the generic XX- or Ising-type Hamiltonians.

The task of Hamiltonian tomography is to estimate cmn and bn under the limited
access to a small gateway C ⊂ V only. Naturally, the challenge here is to obtain
information about the inaccessible spins in C̄ ≡ V \ C, which could be a large
majority of V . The question is, however, how small can C be such that we can (in
principle) still learn all the couplings and fields in V ?

Fig. 6.3 All coupling strengths (solid lines) and local magnetic fields (background) of a 2-
dimensional network G = (V,E) of spins (white circles) can be estimated indirectly by quantum
state tomography on a gateway C (enclosed by the dashed red line). The coupling strengths and
field intensities are represented by the width of lines and the density of the background colour,
respectively.

This can be answered by using the infecting property, which has been introduced
in Sec 6.4 for a given graph G and a subset C ⊂ V of nodes. The main theorem
about hamiltonian identification under a limited access can be presented in terms of
the infection property as follows. That is, if C infects V, then all cmn and bn can be
obtained by acting on C only. Therefore, C can be interpreted as an upper bound
on the smallest number of spins we need to access for the purpose of Hamiltonian
tomography, i.e., given by the cardinality |C| of the smallest set C that infects V.
To prove this statement, let us assume that C infects V and that all eigenvalues Ej
(j = 1, . . . , |V |) in H1 are known. Furthermore, assume that for all orthonormal
eigenstates |Ej〉 in H1 the coefficients 〈n|Ej〉 are known for all n ∈ C. We show
how these information lead to the full Hamiltonian identification, and then in Section
6.10 show how these necessary data, Ej(∀j) inH1 and 〈n|Ej〉 for all j ∈ 1, ..., |V |
and all n ∈ C, can be obtained by simple state tomography experiments.

Observe that the coupling strengths between spins within C are easily obtained
because of the relation cmn = 〈m|H|n〉 =

∑
Ek〈m|Ek〉〈Ek|n〉,where we defined

cmm ≡ 〈m|H|m〉 for the diagonal terms. Since C infects V there is a k ∈ C and a
l ∈ C ≡ V \C such that l is the only neighbour of k outside of C, i.e.
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〈n|H|k〉 = 0 ∀n ∈ C\{l}. (6.19)

For an example see Fig. 6.1. Using the eigenequation, we obtain for all j

Ej |Ej〉 = H|Ej〉 =
∑
m∈C
〈m|Ej〉H|m〉+

∑
n∈V \C

〈n|Ej〉H|n〉.

Multiplying with 〈k| and using Eq. (6.19) we obtain

Ej〈k|Ej〉 −
∑
m∈C

ckm〈m|Ej〉 = ckl〈l|Ej〉. (6.20)

By assumption, the left-hand side (LHS) is known for all j. This means that up to
an unknown constant ckl the expansion of |l〉 in the basis |Ej〉 is known. Through
normalisation of |l〉 we then obtain c2kl, thus ckl (by using the assumed knowledge
on its sign) and hence 〈l|Ej〉. Redefining C ⇒ C∪{k}, it follows by induction that
all cmn are known. Finally, we have

cmm = 〈m|H|m〉 = E0 −∆
∑

n∈N(m)

cmn + 2bm, (6.21)

where N(m) stands for the (directly connected) neighbourhood of m, and

E0 =
1

2
∆

∑
(m,n)∈V

cmn −
∑
n∈V

bn (6.22)

is the energy of the ground state |0〉. Summing Eq. (6.21) over all m ∈ V and
using Eq. (6.22), we can have the value of

∑
n∈V bn, thus that of E0 as well, since

all other parameters are already known. Then we obtain the strength of each local
magnetic field, bm, from Eq. (6.21).

An interesting application of the above scheme is a one-dimensional(1D) spin
chain with non-nearest neighbour interactions [37]. If spins interact with the next-
nearest neighbours in addition to the nearest ones, the whole graph can be infected
by setting the two end spins as C, as shown in Fig.6.4. Similarly, if spins inter-
act with up to r-th nearest neighbours, all coupling strengths can be estimated by
including the r spins at the chain end, from the first to the r-th, in C.

Fig. 6.4 An example of graphs for non-nearest neighbour interactions. The graph for next-nearest
interaction (left) can be infected by C as it is easily seen after deforming (right).
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6.10 Data acquisition

In order to perform the above estimation procedure, we need to know the energy
eigenvalues Ej in H1 and the coefficients 〈n|Ej〉 for all n ∈ C by control-
ling/measuring the spins in C. Suppose the spin 1 is in C. To start, we initialise
the system as |0〉 and apply a fast π/2-pulse on the spin 1 to make 1√

2
(|0〉 + |1〉).

This can be done efficiently by acting on the spin 1 only; the basic idea is that by
measuring the spin 1, and flipping it quickly every time when it was found in | ↑〉,
the state of the network becomes |0〉 within a polynomial time with respect to the
network size N = |V |. The reason for this is two-fold: the excitation-preserving
property of the Hamiltonian guarantees that an up-spin cannot be observed more
than N times and the propagation time of up-spins in the network is polynomial in
N [38]. Then, we perform quantum state tomography on the spin n ∈ C after a
time lapse t. By repeating the preparation and measurements on spin n, we obtain
the following matrix elements of the time evolution operator as a function of t :

eiE0t〈n|U(t)|1〉 =
∑
j

〈n|Ej〉〈Ej |1〉e−i(Ej−E0)t. (6.23)

If we take n = 1 and Fourier-transform Eq. (6.23) we can get information on the
energy spectrum in H1. Up to an unknown constant E0, which turns out to be irre-
levant, we learn the values of all Ej from the peak positions. The height of the j-th
peak gives us the value of |〈1|Ej〉|2 for all eigenstates. Thanks to the arbitrariness
of the global phase, we can set 〈1|Ej〉 > 0. Hence observing the decay/revival of
an excitation at n = 1 we can learn some Ej and all the 〈1|Ej〉.

In order to determine 〈n|Ej〉 for other n ∈ C, we prepare a state at 1 and mea-
sure at n. Namely, setting n(6= 1) in Eq. (6.23) allows us to extract the coefficient
〈n|Ej〉 correctly, including their relative phase with respect to 〈1|Ej〉. Continuing
this analysis over all sites in C, we get all information necessary for the Hamilto-
nian tomography. It could be problematic if there were eigenstates in H1 that have
no overlap with any n ∈ C, i.e., 〈n|Ej〉 = 0. Fortunately, such eigenstates do not
exist, as shown in [27]. Therefore we can conclude that all eigenvalues in the H1

can be obtained. Although tomography cannot determine the extra phase shift E0, it
does not affect the estimation procedure (it is straightforward to check that it cancels
out in the above estimation).

Note that in order for the information about 〈n|Ej〉 (n ∈ C) to be attained there
should be no degeneracies in the spectrum of Eq. (6.23). For example, suppose there
are two orthogonal states |E(1)

k 〉 and |E(2)
k 〉, both of which are the eigenstates of H

corresponding to the same eigenvalueEk. The height of the peak atEk in the Fourier
transform of 〈1|U(t)|1〉 would be |〈1|E(1)

k 〉|2 + |〈1|E(2)
k 〉|2. There is no means to

esitmate the value of each term from this sum, let alone the values of 〈n|E(1)
k 〉 and

〈n|E(2)
k 〉. Also even if there are no degeneracies, thus ifEj are all distinct, the peaks

need to be sharp enought to be resolved. The issues on degeneracies and resolving
peaks are discussed in the following sections 6.11 and 6.11.
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6.11 Degeneracy

What if there were degenerate energy levels in the single excitation subspace H1?
While 1D spin chains have no degeneracies [39], there could be in general spin
networks. Of course “exact degeneracy” is highly unlikely; however approximate
degeneracy could make the scheme less efficient. In this section, we show that there
always exists an operatorBC , which represents extra fields applied onC, such that it
lifts all degeneracies of H inH1. Because C is only a small subset, the existence of
such an operator is not a trivial problem at all. In the following, we demonstrate the
existence of such a BC by explicitly constructing it, assuming the full knowledge
aboutH . Without the full knowledge ofH (as is the case in the estimation scenario),
we could only guess a BC and have it right probabilistically. Nevertheless, as it is
clear from the discussion below, the parameter space forBC that does not lift all the
degeneracies has only a finite volume. Thus even choosing BC randomly can make
the probability of lifiting the degeneracies to converge exponentially fast to one.

Once all degeneracies are lifted, we can estimate the full HamiltonianH+λBC⊗
IC̄ and subtracting the known part λBC⊗IC̄ completes our identification task. Here,
λ is a parameter for the strength of the fields. Although the extra fields on C do not
necessarily have to be a small perturbation, let us consider a small λ to see the effect
of λBC on the energy levels, making use of the pertubation theory.

Let us denote the eigenvalues of H as Ek and the eigenstates as |Edk〉, where
d = 1, . . . , D(k) is a label for the D(k)-fold degenerate states. Let us first look at
one specific eigenspace

{
|Edk〉, d = 1, . . . , D(k)

}
corresponding to an eigenvalue

Ek. Since the eigenstates considered here are in H1, we can always decompose
them as

|Edk〉CC̄ = |φdk〉C ⊗ |0〉C̄ + |0〉C ⊗ |ψdk〉C̄ ,

where the unnormalised states |φdk〉C and |ψdk〉C̄ are in the single excitation sub-
space on C and C, respectively. The state |φdk〉C (∀d) cannot be null, i.e., |φdk〉C 6=
0, because if there was an eigenstate in the form of |0〉C ⊗ |ψdk〉C̄ then applying H
repeatedly on it will necessarily introduce an excitation to the region C, in contra-
diction to being an eigenstate [27]. Furthermore, the set

{
|φdk〉C , d = 1, . . . , D(k)

}
must be linearly independent: for, if there were complex numbers αkd such that∑
d αkd|φdk〉C = 0, then a state in this eigenspace

∑
d αkd|Edk〉CC̄ =

∑
d αkd|0〉C⊗

|ψdk〉C̄ would be an eigenstate with no excitation in C, again contradicting the above
statement. This leads to an interesting observation that the degeneracy of each ei-
genspace can be maximally |C|−fold, because there can be only |C| linearly inde-
pendent vectors at most in H1 on C. Thus, the minimal infecting set of a graph, a
topological property, is related to some bounds on possible degeneracies, a somew-
hat algebraic property of the Hamiltonian.

Now suppose that λkBkC is a perturbation that we will construct so that it lifts
all the degeneracies for an energy eigenvalueEk. AssumingBkC |0〉C = 0 turns out
to be sufficient for our purpose. The energy shifts due to BkC in the first order are
given as the eigenvalues of the perturbation matrix CC̄〈Edk |BkC ⊗ IC̄ |Ed

′

k 〉CC̄ =C

〈φdk|BkC |φd
′

k 〉C . We want the shifts to be different from each other to lift the dege-
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neracy. To this end, recall that
{
|φdk〉C̄

}
are linearly independent, which means that

there is a similarity transform Sk (not necessarily unitary, but invertible) such that
the vectors |χdk〉C ≡ S−1

k |φdk〉C are orthonormal. The perturbation matrix can then
be written as C〈χdk|S

†
kBkCSk|χd

′

k 〉C . If we set S†kBkCSk =
∑
d εkd|χdk〉C〈χdk| the

Hermitian operator

BkC ≡
∑
d

εkd

(
S†k

)−1

|χdk〉C〈χdk|S−1
k (6.24)

gives us energy shifts εkd. Therefore, as long as we choose mutually different εkd ,
the degeneracy in this eigenspace is lifted by BkC . This happens for an arbitrarily
small perturbation λk. So we choose λk such that the lifting is large while no new
degeneracies are created, i.e. ||λkBkC || 6= ∆Eij , where ∆Eij = Ei − Ej are the
energy gaps of H.

There may be some remaining degerate eigenspaces of the perturbed Hamilto-
nianH ′ = H+λkBkC . Fortunately, sinceBkC conserves the number of excitations
(see Eq. (6.24)), we can still consider onlyH1 and repeat the above procedure to find
operators Bk′C to lift degeneracy in each eigenspace spanned by |Ed′k′ 〉. Eventually
we can form a total perturbation BC =

∑
k BkC that lifts all degeneracies in H1.

By perturbation theory a ball of finite volume around BC has the same property. In
practice, we expect that almost all operators will lift the degeneracy, with a good
candidate being a simple homogeneous magnetic field on C. This is confirmed by
numerical simulations [22].

6.12 Efficiency

The efficiency of the coupling estimation can be studied using standard properties
of the Fourier transform (see [40] for an introduction). In experiments, the function
〈n|U(t)|m〉(m,n ∈ C) is sampled for descrete times tk, rather than for continuous
time t, with an interval∆t = tk+1−tk. Therefore an important cost parameter is the
total number of measured points, being proportional to the sampling frequency, f =
1/∆t. The minimal sampling frequency is given by the celebrated Nyquist-Shannon
sampling theorem as 2fmin = Emax, where Emax is the maximal eigenvalue of H
in the first excitation sector.

Due to decoherence and dissipation, the other important parameter is the total
time length T (= max(tk)) over which the functions need to be sampled to obtain a
good resolution. This is given by the classical uncertainty principle that states that
the frequency resolution is proportional to 1/T . Hence the minimal time duration
over which we should sample scales as Tmin = 1/(∆E)min, where (∆E)min is the
minimal gap between the eigenvalues of the Hamiltonian. Also, in order for all peaks
in the Fourier transform to be resolved, the height of the peaks, which are given by
|〈n|Ej〉〈Ej |m〉|, should be high enough. That is, all energy eigenstates need to be
well delocalised, otherwise most of 〈Ej |m〉 would have almost zero modulus.
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Although a coherence time that is as long as Tmin has been assumed so far to
make the scheme work by letting the signal propagate back and forth many times,
the gateway scheme is also applicable to systems with short coherence times by
modifying it. For example, as shown in [41], instead of measuring the spin state in
the accessible area, we may be able to measure in the energy eigenbasis |En〉, and
then the Hamiltonian can be estimated. Such a global measurement is actually easier
in some cases than measuring the state of a single component. With this modification
to the scheme, however, the graph condition for the accessible area C needs to be
slightly changed; it should be expanded, depending on the graph structure.

Another potential concern is the (Anderson) localisation. The localisation of ex-
citation (or spin-up) will take place, if there is too much disorder in the coupling
strengths (see, for example, [42]). Then couplings far away from the controlled re-
gion C can no longer be probed. In turn, this suggests a way of obtaining informa-
tion on localisation lengths indirectly. That we cannot ‘see’ beyond the localisation
length would not be a serious problem as our primary purpose is to identify a quan-
tum system we can control.

When localisation is negligible, the numerical algorithm to obtain the coupling
strengths from the Fourier transform is very stable [39]. The reason is that the cou-
plings are obtained from a linear system of equations, so errors in the quantum-state
tomography or effects of noise degrade the estimation only linearly.

Let us also look at the scaling of the problem with the number of spins. Typically
the dispersion relation in one-dimensional systems of length N is cos kN , which
means that the minimal energy difference scales as (∆E)min ∼ N−2 and thus
the total time interval should be chosen as Tmin ∼ N2. This agrees well with our
numerical results tested up toN = 100. For each sampling point a quantum-state to-
mography of a signal of an average height of N−1 needs to be performed. Since the
error of tomography scales inverse proportionally to the square root of the number
of measurements, roughly N2 measurements are required for each tomography.

6.13 Quadratic Hamiltonians

So far, we have focused on the Hamiltonians that preserve the total magnetisation.
Nevertheless, it is possible to generalise the above argument to a more general class.
They are those that are quadratic in terms of annihilation and creation operators, that
is

H =
∑

m,n∈E
Amna

†
man +

1

2

(
Bmna

†
ma
†
n +B∗mnanam

)
, (6.25)

which does not preserve the number of quasi-particles
∑
a†nan. Here, E is again

the set of interacting nodes as in Eq. (6.18). For H to be Hermitian we must have
A = A† and BT = −εB, where ε = 1 for fermions and ε = −1 for bosons,
depending on the particle statistics described by a and a†. For one-dimensional spin
chains, the operators a and a† are defined with the standard spin (Pauli) operators
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through the Jordan-Wigner transformation [43, 44],

a†nan = σ+
n

∏
m<n

Zm, and a†n =

(∏
m<n

Zm

)
σ−n , (6.26)

where σ±n = (Xn ± iYn)/2. The oparators hereby defined, an and a†n, satisfy
the canonical aniti-commutation relations for fermions, i.e., {am, an} = 0 and{
am, a

†
n

}
= δmn. A 1D XX-type Hamiltonian

H =

N−1∑
m=1

cm[(1 + γ)XmXm+1 + (1− γ)YmYm+1] +

N∑
m=1

bmZm (6.27)

with anisotropy factor γ ∈ [0, 1] can be rewritten in the form of Eq. (6.25) through
the Jordan-Wigner transformation, and the matrices A and B will look like

A =


−2b1 c1
c1 −2b2 c2

c2 −2b3
. . .

 , and B =


0 γc1
−γc1 0 γc2

−γc2 0
. . .

 .

A physically important example of quadratic Hamiltonians is the Ising chain of
spins with transverse magnetic fields, which is expressed by Eq. (6.27) with γ = 1
and is relevant for systems, such as superconducting qubits [9] and NMR. Note
also that once the Hamiltonian of a given system is described in quadratic form, the
operators a and a† can represent not only fermions, but also bosons by requiring
them to obey the bosonic commutation relations, [am, an] = 0 and [am, a

†
n] = δmn.

In the following, we shall consider the problem of Hamiltonian tomography of Eq.
(6.25) for 1D chains for simplicity, although the generalisation to more complex
graphs is possible.

Since the Hamiltonian Eq. (6.25) does not preserve the number of particles, ini-
tialising the chain to be |0...0〉 just by accessing the end node appears to be im-
possible. Nevertheless, this difficulty can be circumvented by making use of the
propety of such Hamiltonians. The quadratic Hamiltonian above can be diagonali-
sed asH =

∑
k Ekb

†
kbk+const. by transforming α = (a1, ..., aN , a

†
1, ..., a

†
N )t into

β = (b1, ..., bN , b
†
1, ..., b

†
N )t as β = Tα, so that operators b and b† still satisfy the

canonical (anti-)commutation relations. So, the quasi-particles described by b and
b† behave as free particles that almost do not interact with each other.

The ‘initialisation’ works then as follows. Suppose we can initialise the chain to
be in a fixed, but not necessarily known, state ρ0. Though ρ0 can be any state, a
realistically plausible one might be a thermal state. We prepare two different states
ψ1 and ψ2 locally at the end site after initialising the chain to be ρ0. For each initial
state we observe the time evolution at the same end site to get a reduced density ma-
trix ρ(t|ψi) (i = 1, 2) as a function of time. Because the evolution of internal state
of the chain is independent of that of the state at the chain end and vice versa (thanks
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to the insensitivity between quasi-particles), we can extract the pure response of the
chain due to the difference between ψ1 and ψ2, by comparing ρ(t|ψ1) and ρ(t|ψ2).

The Hamiltonian of Eq. (6.25) can be rewritten as

H =
1

2
α†Mα,

where M is a 2N × 2N matrix

M ≡
(

A B
−εB∗ −εA∗

)
, (6.28)

with ε = 1 for fermions and ε = −1 for bosons. As in the previous case of the
magnetisation-preserving Hamiltonians, we assume that all coupling strengths are
real and their signs are known. Also the factor γ = Bn,n+1/An,n+1 (anisotropy) is
assumed to be constant and known.

Now that we can take it for granted that this 2N × 2N matrix M is symmetric
and its entries are all real, a key observation is to reinterpret M as a Hamiltonian
that describes the hopping of excitations over a graph of 2N nodes [23]. That is,
the ‘Hamiltonian’ M preserves the number of excitations in the 2N -‘spin’ network,
therefore we can apply the scheme discussed in previous sections. Of course, the
state on which the Hamiltonian M acts is not a physical spin network, instead it is a
fictitious state represented by a 2N ×1 vector, (a1, ..., a

†
1, ...)

T . So the eigenvectors
of M are something different from physical state vectors.

The graph for a 1D spin chain of Eq. (6.27) is shown in Fig. 6.5. Accessing the
spin 1 in the real chain corresponds to accessing the nodes 1 and N + 1, since
what we obtain from the measurement (and Fourier transform) are the values of Ej ,
〈1|Ej〉, and 〈N + 1|Ej〉[23]. Here the state |n〉 stands for the localised state on the
fictitious 2N -node graph.

Fig. 6.5 A graph corresponding to the matrixM withA andB of Eq. (6.28) and ε = 1 (fermionic).
For bosonic systems, there will be additional edges connecting nodesm (1 ≤ m ≤ N) andN+m,
because B is symmetric, rather than antisymmetric. For both fermionic and bosonic cases, there
are edges extruding and returning to the same node, corresponding to the diagonal elements of A,
which are not shown here to illustrate the principal structure of the graph.

Let us take an Ising chain of N spins with transverse magnetic fields, i.e., γ = 1
in Eq. (6.27), as a specific example to demonstrate how the estimation goes. To
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make use of the symmetry the graph in Fig. 6.5 posesses, let us define

|n±〉 :=
1√
2

(|n〉+ |N + n〉).

We already have the information about 〈1±|Ej〉, as well as Ej , from the measure-
ment on the spin 1. The estimation procedure proceeds as in Sec 6.9, namely, by
looking at 〈1+|M |Ej〉 we have

Ej〈1+|Ej〉 = −2b1〈1−|Ej〉,

whose LHS is known, thus b1 can be obtained through the normalisation condition
for 〈1−|Ej〉. Similarly, evaluating 〈1−|M |Ej〉 gives

Ej〈1−|Ej〉 = 2c1〈2+|Ej〉 − 2b1〈1+|Ej〉,

from which c1 and 〈2+|Ej〉 can be known. Also, from Ej〈2+|Ej〉 = 2c1〈1−|Ej〉−
2b2〈2−|Ej〉 we have b2 and 〈2−|Ej〉, therefore we have obtained all parameters up
to the second spin, so effectively expanded the accessible area to two spins. Then,
this procedure can go on one by one till we reach the other end of the chain, i.e., the
N -th spin, identifying all the paramters in the matrix M .

A remark on the initialisation follows. It was shown in [36] that, in the case of
1D XX chains of spins-1/2, the estimation of Hamiltonian parameters is possible
without initialising the chain state. The smart trick there was that the spin 1 was
initialised so that the average value of the z-component of spin, i.e., 〈Z1〉, was made
zero at t = 0. The rationale behind it stems from the Jordan-Wigner transform. Since
an = σ+

n

∏
m<n Zm, if we set 〈Z1〉 = 0, the averages of all an and a†n (n > 1) at

t = 0 become zero. Their time evolution is expressed as (in the form of the vector
α)

αn(t) =
∑
m,k

e−iEktT−1
nk

(
T−1

)†
km

αm(0), (6.29)

from which we can see that, in the Jordan-Wigner picture, the initial state of spins
from the second to the N -th gives no effect on the measurement result of the first
spin. Here, T is a matrix that transforms α into β = Tα as mentioned above to
diagonalise the Hamiltonian. Hence the above initialisation of the first spin is equi-
valent to that of the whole chain in the Jordan-Wigner (fermionic) picture, and thus
corresponds to a special case of our description on initialisation.

6.14 Conclusions

We have seen that despite a severe restriction on our accessibility a large quantum
system can be controlled and its Hamiltonian can be identified. As a matter of fact,
it is unrealistic for any existing control scheme to have a full access to the system,
i.e., a full modulability for the d2−1 parameters for independent Hamiltonians with
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d being the system dimensionality. In the case of methods based on electron/nuclear
spin resonance, for instance, all we modulate is the external magnetic field and we
do not have a full control over all inter-spin couplings. Therefore, a guiding theory of
quantum control is needed to systematically understand and design feasible control
schemes under a limited access. The results we have reviewed in this chapter are
an example towards the more generic theory , already showing how powerful a
restricted access can be. Although the limitation for the control in laboratories would
vary, the same or modified methods as what we have seen here will be of help in
making a shortcut towards the realisation of the full quantum control.
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