

Characterizing a Higgs-like resonance at the LHC

Kentarou Mawatari

(Vrije Universiteit Brussel and International Solvay Institutes)

K.Hagiwara, Q.Li, KM, JHEP07(2009)101 [arXiv:0905.4314] C.Englert, D.Goncalves-Netto, KM, T.Plehn, JHEP01(2013)148 [arXiv:1212.0843] P. de Aquino, F.Maltoni, KM, M.Zaro et al, on-going project

Phenomenology group at the Vrije Universiteit Brussel

• Since October 2010, to make a chain between the theoretical and experimental groups at the VUB.

pheno@vub.ac.be, kentarou@vub.ac.be

Phenomenology group at the Vrije Universiteit Bru

 Since October 2010, to make a chain b theoretical and experimental groups at

Is it the Brout-Englert-Higgs boson?

- Spin-0, I, or 2?
- Parity-even, odd, or mixed?
 - different XVV and Xff tensor structures

• Only after the operator/Lagrangian basis is fixed, we can determine the corresponding coupling strength.

How can we get the spin/parity information?

mass and angular distributions in $X \rightarrow ZZ \rightarrow 4I$.

- Х→үү Х→тт

$X \rightarrow VV$ decay

The off-shell Z mass and the azimuthal correlations between the Z decay planes reflect the XVV tensor structures.

Xjj production -- vector boson fusion

Plehn, Rainwater, Zeppenfeld (2002)

The azimuthal correlations between the forward tagging jets reflect the XVV tensor structures.

$X \rightarrow VV$ decay vs.VBF production

Nontrivial azimuthal correlations can be explained as the quantum interference among different helicity states of the intermediate vector-bosons.

$X \rightarrow VV$ decay at m_X=126GeV

$X \rightarrow VV$ decay at m_X=126GeV

VBF production at m_X=126GeV

VBF production at $m_X = 126 \text{GeV}$

Englert, Goncalves-Netto, KM, Plehn (2013)

Kentarou Mawatari (VUB)

Obs-by-obs based strategy in VBF

The di-jet correlations are the most decisive, in particular to separate the different scalar coupling structures.

X(J^P) characterization with FeynRules

Artoisenet, de Aquino, Frederix, Maltoni, Mandal, Mathews, KM, Ravindran, Seth, Torrielli, Zaro (on-going)

 Effective Lagrangians have been implemented via FeynRules by including all minimal (even higher) dimension operators for J=0,1,2.
e.g. the X-Z-Z interactions:

$$\mathcal{L}_{0} = \left[\cos \alpha \left(\kappa_{\mathrm{SM}} g_{HZZ} Z_{\mu} Z^{\mu} - \frac{1}{4} \frac{\kappa_{V}}{\Lambda} Z_{\mu\nu} Z^{\mu\nu} \right) - \sin \alpha \frac{1}{4} \frac{\kappa_{V}}{\Lambda} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] X_{0}$$

$$\mathcal{L}_{1} = \left[-\kappa_{V_{3}} (\partial^{\nu} Z_{\mu}) Z_{\nu} - \kappa_{V_{5}} \epsilon_{\mu\nu\rho\sigma} Z^{\nu} (\partial^{\rho} Z^{\sigma}) \right] X_{1}^{\mu}$$

$$\mathcal{L}_{2} = \left[-\frac{\kappa_{V}}{\Lambda} T_{\mu\nu}^{Z} - \frac{\kappa_{V_{1}}}{\Lambda^{3}} (\partial_{\nu} (\partial_{\mu} \frac{1}{4} Z_{\rho\sigma} Z^{\rho\sigma})) - \frac{\kappa_{V_{2}}}{\Lambda^{3}} (\partial_{\nu} (\partial_{\mu} \frac{1}{4} Z_{\rho\sigma} \widetilde{Z}^{\rho\sigma})) \right] X_{2}^{\mu\nu}$$

- K_i: dimensionless coupling parameters
- $\cos \alpha$: mixing between 0⁺ and 0⁻ parameters
- Λ : theory cutoff scale

X(J^P) characterization with MadGraph5

Artoisenet, de Aquino, Frederix, Maltoni, Mandal, Mathews, KM, Ravindran, Seth, Torrielli, Zaro (on-going)

X(J^P) characterization with MadGraph5

Artoisenet, de Aquino, Frederix, Maltoni, Mandal, Mathews, KM, Ravindran, Seth, Torrielli, Zaro (on-going)

Kentarou Mawatari (VUB)

15/18

Feb.13, 2013 HPNP2013 @ Toyama

X(J^P) characterization with ME-PS merging and MadWeight

Artoisenet, de Aquino, Frederix, Maltoni, Mandal, Mathews, KM, Ravindran, Seth, Torrielli, Zaro (on-going)

 It allows us to generate any tree-level process of interest, including all spin correlations, possible interference with backgrounds and to build inclusive samples via MatrixElement-PartonShower merging.

 With MadWeight, one can automatically build likelihoods via the Matrix-Element-Method.

X(J^P) characterization with aMC@NLO

Artoisenet, de Aquino, Frederix, Maltoni, Mandal, Mathews, KM, Ravindran, Seth, Torrielli, Zaro (on-going)

 Furthermore, X(J^P) events can be generated at the next-to-leading order (NLO) with aMC@NLO.

Outlook

- After the discovery of a Higgs-like resonance at the LHC, the main focus of the analyses will be the determination of the Higgs Lagrangian.
- This includes
 - the structure of the operators, linked to the spin/parity of the 'Higgs' boson.
 - an independent measurement of the coupling strength.
- We presented a comprehensive study in VBF, as comparing with the $X \rightarrow ZZ$ decay, and showed that the di-jet correlations are the most distinctive observables.
- The various MC tools are ready for the X characterization study.