Higgs as a Probe of New Physics 2015February 13-16, 2013, University of Toyama, Japan

Current Status and Future Prospect of the LHC Experiment

Junichi TANAKA ICEPP, the University of Tokyo

Contents

- LHC
- Standard Model Higgs
- BSM Higgs
- Other BSM
- Summary

This talk contents are completely biased... SM Higgs > others ATLAS > CMS (I'm ATLAS member.)

"July 2012" is the historical days in the particle physics.

ATLAS Higgs WG celebration (4th July, 2012)

- LHC finished the first phase much successfully.
- LHC delivered ~6 fb⁻¹ with 7TeV and ~23 fb⁻¹ with 8TeV and ATLAS and CMS has recorded these data with a good detector operation.

Standard Model Higgs

Higgs production and decay at LHC

SM Higgs analysis channels Category = "tag"

ATLAS	Mass (GeV)	Data (fb ⁻¹)	untag	VBF-tag	VH-tg	ttH-tg	Spin/CP
Η->γγ	110-150	5 + 13	1	1	1		0-, 2+
H->ZZ ^(*)	110-600	5 + 13	1				0-, 2+, 2-
H->WW ^(*)	90-200	- + 13	1			(√7TeV)	
H->ττ	100-150	5 + 13	1	1	1		
H->bb	110-130	5 + 13			1	(√7TeV)	

CMS	Mass (GeV)	Data (fb ⁻¹)	untag	VBF-tag	VH-tg	ttH-tg	Spin/CP
Η->γγ	110-150	5 + 5	1	1			
H->ZZ ^(*)	110-1000	5 + 12	1				0-, 2+
H->WW ^(*)	110-600	5 + 12	1	1	(√5+5)		
H->ττ	110-145	5 + 12	1	\checkmark	(√7TeV)		
H->bb	110-135	5 + 12			1	(√7TeV)	

Some channels are not yet included in the combined results.

13 Feb, 2013

SM Higgs analysis channels

			<u> 81ev</u>						
ATLAS	Mass (GeV)	Da	ta (fb [.])	untag	VBF-tag	VH-tg	ttH-tg	Spin/CP
Η->γγ	110-150	5 -	- 13		1	1	1		0-, 2+
H->ZZ ^(*)	110-600	5 -	· 13		1				0-, 2+, 2-
H->WW ^(*)	90-200		13		1			(√ 7TeV)	
H->ττ	100-150	5 -	· 13		1	\checkmark	\checkmark		
H->bb	110-130	5 -	· 13				1	(√7TeV)	

CMS	Mass (GeV)	Da	ta (fb [.]	·)	untag	VBF-tag	VH-tg	ttH-tg	Spin/CP
Η->γγ	110-150	5 -	- 5		1	1			
H->ZZ ^(*)	110-1000	5 -	· 12		1				0-, 2+
H->WW ^(*)	110-600	5 -	· 12		1	1	(√5+5)		
H->ττ	110-145	5 -	· 12		1	1	(√7TeV)		
H->bb	110-135	5 -	· 12				1	(√ 7TeV)	

Some channels are not yet included in the combined results.

13 Feb, 2013

Η->γγ

- Event selection
 - Two photons with $E_T > 40 GeV$ and 30GeV (ATLAS) $E_T > m_{\gamma\gamma}/3$ and $m_{\gamma\gamma}/4$ (CMS) ($E_T > m_{\gamma\gamma}/2$ and $m_{\gamma\gamma}/4$ for CMS dijet-tag)
- Introduce categories to
 1) improve a global sensitivity
 2) enhance a certain "production" channel

ATLAS H-> $\gamma\gamma$ with 2 jets

ATLAS : 12 categories (8TeV), 10 cate (7TeV) 1 for lepton (for VH) 2 for di-jets (for VH and VBF) 9 for others (for ggF).

CMS : 6 categories (8TeV), 5 cate (7TeV) 2 for VBF 4 for others using MVA Typical cut for VBF tag (ATLAS/CMS) - $M_{jj} > 400-500$ GeV - $\Delta \eta_{jj} > 3$ Purity of VBF process in VBF-tag - ~70-80%

Observed a significant peak around 126GeV in both experiments!

13 Feb, 2013

11

		ATLAS	CMS				
	Data (7TeV+8TeV)	4.8 + 13.0	5.1 + 5.3				
	Local p ₀	4.4 x 10 ⁻¹⁰ (6.1σ) @126.5GeV	1.8 x 10 ⁻⁵ (4.1σ) @125GeV				
	Signal strength (µ)	1.80+0.42-0.36 @126.6GeV	1.56+-0.43 @125GeV				
13 Feb, 20	13 Feb, 2013 HPNP2013@Toyama in Japan						

H->ZZ*->4I

H->ZZ*->41

- Clean but rare!
- Good mass resolution
 - 4l mass resolution (ATLAS, 125GeV)
 - 2.0GeV for 4μ
 - 2.3GeV for $2e2\mu$
 - 2.6GeV for 4e

m _H [GeV]	ਰ∙BR[fb⁻¹] @8TeV	Width [GeV]
125	15	0.005
200	33	1.4
400	13	29
600	2	120

CMS includes $2I2\tau$ channel for high mass.

- Event Selection for low mass region -> leptons from Z* has low pT.
 - Lepton pT
 - ATLAS : p_T>20, 15, 10 and 7/6GeV (elec/muon)
 - CMS : p_T>20, 10, 7/5 and 7/5GeV (elec/muon)
 - Z/Z* mass window
 - ATLAS : 50<m(Z)<106GeV, 17.5<m(Z*)<115GeV
 - CMS: 40<m(Z)<120GeV, 12<m(Z*)<120GeV
 - Typical selection efficiency (ATLAS, 125GeV)
 - 37% for 4 μ , 23% for 2e2 μ , 20% for 4e

4 lepton invariant mass

• Observed a peak around 126GeV in both experiments!

13 Feb, 2013

• Also we can see a peak around 90GeV, which comes from Z with FSR Z*.

MELA

~15% improvement

CMS uses MELA (Matrix element likelihood analysis) to get the final results. The kinematics of this final state can be described by only 7 parameters.

$$\mathrm{KD} = \frac{\mathcal{P}_{\mathrm{sig}}}{\mathcal{P}_{\mathrm{sig}} + \mathcal{P}_{\mathrm{bkg}}} = \left[1 + \frac{\mathcal{P}_{\mathrm{bkg}}(m_1, m_2, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\mathrm{sig}}(m_1, m_2, \vec{\Omega} | m_{4\ell})}\right]^{-1}$$

$$\vec{\Omega} = \{\theta^*, \Phi_1, \theta_1, \theta_2, \Phi\}$$

Signal-like events has a large K_D value. 6 categories based on (m_{4l}, K_D) are used.

0.80 + 0.35 - 0.28

@126GeV

 13 Feb, 20
 Signal strength (μ)
 1.3+0.5-0.4

 @123.5GeV

Mass with H-> $\gamma\gamma$ and ZZ*->4I

	ATLAS	CMS
Η->γγ	126.6+-0.3+-0.7	125 (no official value)
H->ZZ*->4	123.5+-0.9+-0.3	126.2+-0.6+-0.2
Combined	125.2+-0.3+-0.6	125.8+-0.4+-0.4

 \sim 3 σ difference (tension) between 2 channels is observed in ATLAS.

13 Feb, 2013

$H \rightarrow WW^* \rightarrow I_V I_V$

I = electron or muon

[1] cannot reconstruct Higgs mass due to 2 neutrinos [2] " $\Delta\phi(II)$ ->small" due to spin 0

-> low dilepton inv. mass (m_{\parallel})

Event topology

- 2 isolated leptons (ATLAS 25/15GeV, CMS 20/10GeV) + MET (~25GeV)
- Jets are used for categories.
 - ATLAS p_T>25GeV, |eta|<4.5 -> 0/1
 - CMS p_T >30GeV, |eta|<4.7 -> 0/1/2
- CMS use both m_T and m_{II} but ATLAS use only m_T for the final discriminant variables.

m_{T} distribution

CMS e_{μ} 0/1 jet categories use 2D(m_{T} , m_{\parallel}) to get the final results. -> ~50% improvement

$H \rightarrow WW^* \rightarrow I_V I_V$

	ATLAS	CMS
Data (7TeV+8TeV)	- + 13.0	4.9 + 12.1
Z from Local p ₀	2.6σ@125GeV (expected 1.9σ)	3.1σ@125GeV (expected 4.1σ)
Signal strength (μ)	1.5+-0.6@125GeV	0.74+-0.25@125GeV

13 Feb, 2013

H->bb

H->bb

- Two production processes with 3 final states
 - WH->lvbb ... 1lepton
 - ZH->IIbb ... 2lepton
 - ZH->vvbb ... Olepton
- B-tagging
 - Combining several information (track impact info, secondary vtx etc)

Typical performance (b/c/l-jet)

- 70%, 20%, 0.7% (ATLAS)
- 72%, 23%, 3% (CMS)
- pT(V) is used for further categorization to improve S/B.
 - ATLAS : 5 categories (1/2 lepton) and 3 categories (0 lepton)
 - CMS : 2 categories (only higher pT categories comparing to ATLAS)
- CMS uses MVA for two parts:
 - Improve mass(bb) resoluion -> 15% in $\sigma(m_{bb})$ -> 10-20% on the sensitivity
 - Use a MVA output for the final discriminant variable. -> \sim 20% on the sensitivity

13 Feb, 2013

ATLAS VH, H->bb

- m_{bb} of Highest pT(V) category
- Z+heavy flavor is dominant BG in 2 and 0 lepton categories (ZH).
- W+heavy flavor is dominant BG in 1 lepton category (WH).
- We still need more data to confirm bb excess.

CMS VH, H->bb

- Distribution of MVA output (3 top plots)
 -> See a high "output" region.
 - Z+heavy flavor (yellow) for ZH analysis
 - W+heavy flavor (green) for WH analysis
- m_{bb} with cut-based analysis for x-check.
 - Small excess can be seen around 120GeV.
 - (mass resolution ~ 10%)

13 Feb, 2013

VV observation

Observed VV excess with the same methods used in the H->bb search. -> BG estimation works well.

13 Feb, 2013

H->bb results

	ATLAS	CMS
Data (7TeV+8TeV)	4.7 + 13.0	5.0 + 12.1
95% CL limit	1.8@125GeV (expected 1.9)	2.5@125GeV (expected 1.2)
Signal strength (μ)	-0.4+-0.11@125GeV	1.3+0.7-0.6@125GeV
2012		

13 Feb, 2013

- 3 final states
 - II, Ih and hh
- Categories based on event topology (II/Ih/hh)
 - ATLAS 10 (4/4/2) categories
 - CMS 8 (3/3/2) categories

-> Focus on "VBF-tag" because S/B is better by requiring two jets.

Typical cut for VBF tag (ATLAS/CMS) - $M_{jj} > 350-500$ GeV - $\Delta \eta_{jj} > 2.6-3.5$ Purity of VBF process in VBF-tag - ~70-80% (ATLAS)

ATLAS introduces "boosted" category. - $pT(h=\tau\tau)>100GeV$ etc VH process is enhanced but a gluon-

fusion process is still dominant.

ggF:VBF:VH = ~4:~1:~0.5-1

Z->ττ **BG and mass calculation**

- Z->ττ (+jets) process is irreducible BG.
- Use data to estimate $Z \rightarrow \tau \tau$ BG shape.
 - No (or small) systematic uncertainties to on jets, UE, pile-up etc.

[Method]

- Take Z->μμ candidates from data and replace μ with simulated tau. ("embedded" method)
- Mass calculation
 - A "collinear mass approximation" has been used but now we are using more sophisticated method to get ττmass.
 - ATLAS ... MMC
 - CMS ... SVFit

-> Take into account neutrino direction. Ineff of the calculation is almost 0.

13 Feb, 2013

ττ mass for VBF(2-jet)-tag

Combination

p₀-value

A probability that background-only experiment is more signal-like than that observed.

Signal strength (µ)

The compatibility of the observed excess with the expected signal(=SM Higgs) -> μ is a signal strength in units of SM Higgs cross section(x BR).

$\mu\text{-value}$ for each decay mode

μ with different production

μ for gluon fusion and ttH -> top-quark couplings
 μ for VBF and VH -> vector boson couplings

 $\tau\tau$ and bb can determine vector boson's μ .

No power on vector boson's μ from ZZ since there is no special category for VBF and VH.

So far, all the results are consistent with SM prediction.

Spin and Parity

- ATLAS and CMS have started to check if the observed particle has 0⁺.
- They use H->γγ and H->ZZ->4l channels so far.
 H->WW->InIn channel will be involved in for this measurement in future.
- H->γγ (ATLAS)

- $\cos(\theta^*)$... angle between a photon in the "Higgs" rest frame and a Higgs in the lab frame with some modifications (so-called Collins-Soper frame) -> see ATLAS note (ATLAS-CONF-2012-168).
- Events in 123.8<m($\gamma\gamma$)<128.6 are used to see spin and parity.
- H->ZZ->4I (ATLAS and CMS)
 - 5 angles (θ^* , Φ_1 , Φ , θ_1 , θ_2) and 2 mass (m_{12} , m_{34}) are basically used.
 - ATLAS BDT-based analysis for 0+ vs 0- ... (θ^* , Φ_1) are not used.
 - ATLAS : 115-130GeV, CMS : 106-141GeV(?)
- JHU event generators are used to model "resonance" events in ATLAS/CMS.

Spin and Parity (CMS H->ZZ->4I)

- Data disfavor 0⁻ hypothesis with CLs of 2.4%. (under the assumption of SM Higgs)
- No value for 2⁺ (only distribution is available.)

Events

BSM Higgs

- CMS provides a wider exclusion region in $(m_A, \tan\beta)$ plan by adding 8TeV.
- A low mass region is being closed in all $tan\beta$ range.

Charged Higgs

- A low mass charged Higgs search with τν and cb has been done.
 No signal so far.
- Update results with 8TeV data.
- Search for high mass changed Higgs needs to be prioritized.

HPNP2013@Toyama in Japan

SUSY and other BSM

SUSY search with Jets + MET

mSUGRA is almost gone -> "Our idea before the LHC start was too optimistic(?)". We need to re-consider what SUSY can be found at the present LHC data (8TeV).

Stop search (Natural SUSY)

- To avoid hierarchy problems, roughly speaking "Higgs mass ~ stop mass ~ gluino mass" can be expected. ("Natural SUSY")
- HOWEVER, from LHC results a "mild" hierarchy should exist, that is, Higgs mass < stop mass < gluion mass

C.I., dimuon, destructve LLIM

C L dimuon constructive LLIM

ating, MD=3TeV, nED = 2, BlackMa n-mt_MD=3TeV_nED = 2, BlackMa

remn., MD=3TeV, nED = 2, Charybdis remn., MD=3TeV, nED = 2, Charybdis BH, Quantum BH, MD=3TeV, nED = 2

C L single lepton (HnCM

- Many searches has been done for BSM scenario.
 - Resonances
 - Dilepon
 - Dijet
 - tt
 - VV
 - qγ/lγ
 etc
 - Enhancement (no clear resonance)
 - Dijet
 - Mono-jet
 - Multi-objects
 - Dilepton

etc

13 Feb, 2013

No hint of these models -> more data with higher energy

HPNP2013@Toyama in Japan

Black Holes

2015 and later

LHC schedule

Year		
2013	LHC-shutdown to go to the design	
2014	energy and nominal energy (13-14TeV)	
2015	√s=13-14TeV,	Results of 2015 will
2016	$\sim 1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$,	play important role
2017		for the future plans of
2018	LHC-shutdown, upgrade to go to the full design luminosity	physics.
2019	√s=13-14TeV,	
2020	$\sim 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$,	
2021		
2022	LHC-shutdown for the high luminosity	
2023	√s=13-14TeV,	Not approved vet
\sim	$\sim 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (pileup ~ 140)	Not approved yet.
2030		J
13 Feb, 2013	B HPNP2013@Toyama in Japan	

Higgs measurements

No way to measure Γ_h and absolute couplings at LHC w/o making theory assumptions.

ATLAS Preliminary (Simulation) √s = 14 TeV: ∫Ldt=300 fb⁻¹; ∫Ldt=3000 fb⁻¹ Ldt=300 fb⁻¹ extrapolated from 7+8 TeV Γ_7 / Γ_q 8 $\Gamma_{\rm f}/\Gamma_{\rm a}$ $\Gamma_{\tau}/\Gamma_{\mu}$ Γ_{μ}/Γ_{Z} Γ_{τ}/Γ_{7} Γ_{W}/Γ_{Z} Ratios $\Gamma_{\gamma}/\Gamma_{Z}$ of partial widths (model independent) $\Gamma_{q} \bullet \Gamma_{7} / \Gamma_{H}$ 0.2 0.6 0.8 0 4

• Double higgs can be observed with $bb_{\gamma\gamma}$ channel with $\sim 3\sigma$.

sample	$\sigma \times BR$ (fb)
$HH \rightarrow b\overline{b}\gamma\gamma (\lambda_{HHH} = 1)$	0.09
$HH \rightarrow b\overline{b}\gamma\gamma (\lambda_{HHH} = 0)$	0.19
$HH \rightarrow b\overline{b}\gamma\gamma (\lambda_{HHH} = 2)$	0.04

HPNP2013@Toyama in Japan (λ_{HHH} : trilinear self-coupling)

BSM direct search

Summary

- LHC has finished the first run period with a great success.
- One of LHC physics goals, that is, "Higgs" discovery was achieved in 2012.
 - A new boson exists at ~126GeV.
 - A phase shift in the Higgs physics : "search" -> "measurements"
 - Couplings, spin/CP and mass
 - Need more data for the precise measurements in order to understand this new boson, in particular by using "coupling properties".
- No indication of BSM with 7/8TeV direct search
 - Adopt "new" search strategies for the existing data (7/8TeV)
 - Wait for 13/14TeV collision, which will start from 2015.
- Results from 13/14TeV collision are very important to decide what we should do for the particle physics in future.
 - HL-LHC, HE-LHC, VHE-HC, (HE-)LC etc

Backup materials

Challenging Z->µµ candidate with 25 vtx

a (nb)

Challenging Z->µµ candidate with 25 vtx

a (nb)

13 Feb, 2013

ATLAS H-> $\gamma\gamma$

	\sqrt{s}			8 TeV				
	Category	$\sigma_{CB}(GeV)$	FWHM (GeV)	Observed	N _S	N _B	N_S/N_B	
	Unconv. central, low p_{Tt}	1.47	3.45	569	29	538	0.053	
	Unconv. central, high p_{Tt}	1.37	3.22	25	4.2	25	0.168	
	Unconv. rest, low p_{Tt}	1.59	3.75	2773	61	2610	0.023	
	Unconv. rest, high p_{Tt}	1.52	3.59	148	8.7	138	0.063	
	Conv. central, low p_{Tt}	1.64	3.86	446	18	417	0.044	
	Conv. central, high p_{Tt}	1.49	3.51	18	2.8	17	0.163	
	Conv. rest, low p_{Tt}	1.83	4.32	2898	54	2763	0.019	
	Conv. rest, high p_{Tt}	1.7	4.00	144	7.4	138	0.053	
	Conv. transition	2.35	5.57	1872	25	1825	0.014	
	High Mass two-jet	1.55	3.65	47	6.8	33	0.204	
	Low Mass two-jet	1.46	3.45	62	4.2	45	0.093	
	One-lepton	1.63 3.85		18	1.7	16	0.108	
	Inclusive	1.64	3.87	8802	223	8284	0.027	
Unconverted central low Pn Unconverted intral high Pn Unconverted rest low Pn Unconverted central low Pn Converted central low Pn Converted isentral high Pn Converted rest low Pn converted		ATLAS Prelimin Data 20 $\sqrt{s} = 8$ 1 $\int Ldt = 13.0$ $- SM H \rightarrow$ $(m_{H} = 126.5 C)$	$\begin{array}{c} \text{Ws} \\ \text{mary} \\ \text{12} \\ \text{TeV} \\ \text{fb}^{-1} \\ \text{fb}^{-1} \\ \text{fb}^{-1} \\ \text{GeV} \\ \text{GeV} \\ \text{i} \\ \text$	7 + Bes 6 95% 5 × SM 4 2 0 - ATLAS Pro- 2011-2012 -11	reliminar		$\int Ldt = 4.8 \text{ fb}^{-1},$ $\int Ldt = 13.0 \text{ fb}^{-1},$	TTTT S = 7
	-1 0 1 2 3	4 5 Signal strend	^{ان} @Toya ath (۱۱)	-1 -0.5 0	0.5	1 1.5	522.5 μ	3 ₀F₊#₽

СМЅ Н->үү

Exp	Expected signal and estimated background										
E	opt classes	SN	Background								
Event classes							$\sigma_{\rm eff}$	FWHM/2.35	$m_{\gamma\gamma} = 125 \text{GeV}$		
		Total	ggH	VBF	VH	ttH	(GeV)	(GeV)	(ev./GeV)		
-1	Untagged 0	3.2	61%	17%	19%	3%	1.21	1.14	3.3 ± 0.4		
1fb	Untagged 1	16.3	88%	6%	6%	1%	1.26	1.08	37.5 ± 1.3		
S.	Untagged 2	21.5	91%	4%	4%	_	1.59	1.32	74.8 ± 1.9		
ΓeV	Untagged 3	32.8	91%	4%	4%	_	2.47	2.07	193.6 ± 3.0		
2	Dijet tag	2.9	27%	73%	1%	-	1.73	1.37	1.7 ± 0.2		
1	Untagged 0	6.1	68%	12%	16%	4%	1.38	1.23	7.4 ± 0.6		
-e	Untagged 1	21.0	88%	6%	6%	1%	1.53	1.31	54.7 ± 1.5		
5.31	Untagged 2	30.2	92%	4%	3%	-	1.94	1.55	115.2 ± 2.3		
	Untagged 3	40.0	92%	4%	4%	-	2.86	2.35	256.5 ± 3.4		
3 Te	Dijet tight	2.6	23%	77%	_	_	2.06	1.57	1.3 ± 0.2		
~	Dijet loose	3.0	53%	45%	2%	-	1.95	1.48	3.7 ± 0.4		

ATLAS H->ZZ->4I

• The number of remaining events in 120<m(4l)<130GeV

	$\sqrt{s} = 8$ TeV											
	Signal (m_H =125 GeV)	$ZZ^{(*)}$	$Z + jets, t\bar{t}$	Observed								
4μ	3.1 ± 0.4	1.55 ± 0.07	0.31 ± 0.09	6								
2µ2e	1.4 ± 0.2	0.56 ± 0.04	0.78 ± 0.16	1								
2e2µ	1.9 ± 0.3	0.80 ± 0.04	0.26 ± 0.07	3								
4 <i>e</i>	1.5 ± 0.2	0.77 ± 0.08	1.20 ± 0.19	4								
total	7.9 ± 1.1	3.7 ± 0.2	2.6 ± 0.3	14								
		$\overline{s} = 7$ TeV										
4μ	0.88 ± 0.11	0.48 ± 0.02	0.05 ± 0.02	2								
2µ2e	0.32 ± 0.05	0.14 ± 0.01	0.43 ± 0.09	1								
2e2µ	0.48 ± 0.06	0.22 ± 0.01	0.04 ± 0.02	1								
4 <i>e</i>	0.28 ± 0.04	0.17 ± 0.02	0.52 ± 0.13	0								
total	2.0 ± 0.3	1.0 ± 0.1	1.0 ± 0.2	4								
	$\sqrt{s} = 8$ Te	V and $\sqrt{s} = 1$	7 TeV									
4μ	4.0 ± 0.5	2.03 ± 0.09	0.36 ± 0.09	8								
2µ2e	1.7 ± 0.2	0.70 ± 0.05	1.21 ± 0.18	2								
$2e2\mu$	2.4 ± 0.3	1.02 ± 0.05	0.30 ± 0.07	4								
4 <i>e</i>	1.8 ± 0.3	0.94 ± 0.09	1.72 ± 0.23	4								
total	9.9 ± 1.3	4.7 ± 0.3	3.6 ± 0.3	18								

CMS H->ZZ->4

• The number of remaining events in 110<m(4l)<160GeV

Channel	4e	4μ	2e2µ	4ℓ
ZZ background	4.7 ± 0.6	9.6 ±1.0	12.5 ± 1.4	26.8 ± 1.8
Z+X	$3.4^{+3.0}_{-2.3}$	$1.6^{+1.2}_{-0.9}$	$5.6^{+5.4}_{-3.6}$	$10.6^{+5.3}_{-4.4}$
All backgrounds	$8.0^{+3.1}_{-2.3}$	$11.2^{+1.6}_{-1.4}$	$18.1^{+5.6}_{-3.8}$	$37.3^{+6.6}_{-4.7}$
$m_H = 125 \text{GeV}$	2.4 ± 0.4	4.6 ± 0.5	5.9 ± 0.7	12.9 ± 0.9
$m_H = 126 \text{ GeV}$	$2.7 \hspace{0.2cm} \pm 0.4$	5.1 ± 0.6	6.6 ± 0.8	14.4 ± 1.1
Observed	12	16	19	47

ATLAS H->WW->InIn

Cutflow evolution in the different signal regions

<i>H</i> +0-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
Jet veto	110 ± 1	3004 ± 12	242 ± 8	387 ± 8	215 ± 8	1575 ± 20	340 ± 5	5762 ± 28	5960
$\Delta \phi_{\ell\ell, E_{\mathrm{T}}^{\mathrm{miss}}} > \pi/2$	108 ± 1	2941 ± 12	232 ± 8	361 ± 8	206 ± 8	1201 ± 21	305 ± 5	5246 ± 28	5230
$p_{\mathrm{T},\ell\ell} > 30 \mathrm{GeV}$	99±1	2442 ± 11	188 ± 7	330 ± 7	193 ± 8	57 ± 8	222 ± 3	3433 ± 19	3630
$m_{\ell\ell} < 50 \text{ GeV}$	78.6 ± 0.8	579 ± 5	69 ± 4	55 ± 3	34 ± 3	11 ± 4	65 ± 2	814 ± 9	947
$\Delta \phi_{\ell\ell} < 1.8$	75.6 ± 0.8	555 ± 5	68 ± 4	54 ± 3	34 ± 3	8 ± 4	56 ± 2	774 ± 9	917
1.55									
H+ 1-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
H+1-jet One jet	Signal 59.5 ± 0.8	WW 850±5	$WZ/ZZ/W\gamma$ 158 ± 7	<i>tī</i> 3451 ± 24	<i>tW/tb/tqb</i> 1037 ± 17	Z/γ^* + jets 505 ± 9	W + jets 155 ± 5	Total Bkg. 6155 ± 33	Obs.
H+1-jet One jet b-jet veto	Signal 59.5 ± 0.8 50.4 ± 0.7	WW 850±5 728±5	$\frac{WZ/ZZ/W\gamma}{158 \pm 7}$ 128 ± 5	$t\bar{t}$ 3451 ± 24 862 ± 13	tW/tb/tqb 1037 ± 17 283 ± 10	$Z/\gamma^* + \text{jets}$ 505 ± 9 429 ± 8	$W + jets$ 155 ± 5 126 ± 4	Total Bkg. 6155 ± 33 2555 ± 20	Obs. 6264 2655
H+ 1-jet One jet b-jet veto $Z \rightarrow \tau \tau$ veto	Signal 59.5 ± 0.8 50.4 ± 0.7 50.1 ± 0.7	WW 850±5 728±5 708±5	$WZ/ZZ/W\gamma$ 158 ± 7 128 ± 5 122 ± 5	$t\bar{t}$ 3451 ± 24 862 ± 13 823 ± 12	tW/tb/tqb 1037 ± 17 283 ± 10 268 ± 9	$Z/\gamma^* + \text{jets}$ 505 ± 9 429 ± 8 368 ± 8	W + jets 155 ± 5 126 ± 4 122 ± 4	Total Bkg. 6155 ± 33 2555 ± 20 2411 ± 19	Obs. 6264 2655 2511
H + 1-jet One jet b-jet veto $Z \rightarrow \tau \tau$ veto $m_{\ell\ell} < 50 \text{ GeV}$	Signal 59.5 ± 0.8 50.4 ± 0.7 50.1 ± 0.7 37.7 ± 0.6	$WW \\ 850 \pm 5 \\ 728 \pm 5 \\ 708 \pm 5 \\ 130 \pm 2 \\ WW \\$	$\frac{WZ/ZZ/W\gamma}{158 \pm 7} \\ 128 \pm 5 \\ 122 \pm 5 \\ 39 \pm 2 \\ \frac{1}{2}$	$t\bar{t}$ 3451 ± 24 862 ± 13 823 ± 12 142 ± 5	$\frac{tW/tb/tqb}{1037 \pm 17}$ 283 ± 10 268 ± 9 55 ± 4	$Z/\gamma^* + \text{jets}$ 505 ± 9 429 ± 8 368 ± 8 99 ± 3	W + jets 155 ± 5 126 ± 4 122 ± 4 30 ± 2	Total Bkg. 6155 ± 33 2555 ± 20 2411 ± 19 495 ± 8	Obs. 6264 2655 2511 548

Signal 1	region yield f	for <i>eμ</i> and μe	channels sep	oarately
	0-jet <i>eµ</i>	0-jet <i>µe</i>	1-jet <i>eµ</i>	1-jet µe
Total bkg.	392 ± 7	382 ± 6	202 ± 6	184 ± 5
Signal	41.8 ± 0.6	33.8 ± 0.5	18.9 ± 0.4	16.0 ± 0.4
Observed	469	448	226	207

	Source (0-jet)	Signal (%)	Bkg. (%)
	Inclusive ggF signal ren./fact. scale	13	-
	1-jet incl. ggF signal ren./fact. scale	10	-
s separately	PDF model (signal only)	8	-
	QCD scale (acceptance)	4	-
eµ 1-ietµe	Jet energy scale and resolution	4	2
<i>μ j j i μ</i>	W+jets fake factor	-	5
6 184±5	WW theoretical model	-	5
$0.4 16.0 \pm 0.4$	Source (1-jet)	Signal (%)	Bkg. (%)
207	1-jet incl. ggF signal ren./fact. scale	26	-
	2-jet incl. ggF signal ren./fact. scale	15	-
	Parton shower/ U.E. model (signal only)	10	-
	b-tagging efficiency	-	11
	PDF model (signal only)	7	-
	QCD scale (acceptance)	4	2
	Jet energy scale and resolution	1	3
HPNP2013@Toyama in Ja	W+jets fake factor	-	5
-	WW theoretical model	-	3

ATLAS H->WW->InIn

CMS H->WW->InIn

m _H	H		WZ + ZZ	Тор	W + jets	$W\gamma^{(*)}$	all bkg.	data
	$\rightarrow vv + vv$	$\rightarrow vv + vv$	$+\Sigma/\gamma \rightarrow \ell^{-}\ell$	ame av final at	hata			
0-jet category eµ final state								
120	34.0 ± 7.3	162 ± 16	5.3 ± 0.5	8.6 ± 2.0	38 ± 14	23.1 ± 8.8	237 ± 23	285
125	58 ± 12	203 ± 19	6.6 ± 0.6	11.0 ± 2.5	44 ± 16	25.6 ± 9.5	291 ± 27	349
	•	•	0-jet catego	ry ee/μμ final	state		•	•
120	20.8 ± 4.5	108 ± 10	48 ± 14	3.9 ± 1.1	24.5 ± 9.3	5.8 ± 2.5	191 ± 20	209
125	37.0 ± 8.0	140 ± 13	59 ± 18	5.2 ± 1.3	30 ± 11	6.7 ± 2.8	241 ± 25	266
			1-jet categ	gory $e\mu$ final st	tate			
120	14.9 ± 4.3	38.9 ± 6.4	5.3 ± 0.6	40.3 ± 3.0	19.1 ± 7.4	7.1 ± 3.4	111 ± 11	123
125	27.3 ± 8.0	47.9 ± 7.8	6.5 ± 0.7	49.5 ± 3.3	22.4 ± 8.6	7.1 ± 3.4	134 ± 13	160
			1-jet catego	ry ee/μμ final	state			
120	6.5 ± 1.9	19.2 ± 3.2	11.5 ± 3.0	20.6 ± 2.0	6.1 ± 2.6	2.0 ± 1.2	59.5 ± 5.6	77
125	11.8 ± 3.4	24.8 ± 4.1	13.1 ± 3.5	26.7 ± 2.3	6.5 ± 2.8	2.0 ± 1.2	73.0 ± 6.6	92
	1	1	2-jet categ	gory $e\mu$ final st	tate		1	
120	1.7 ± 0.2	0.8 ± 0.5	0.1 ± 0.0	0.9 ± 0.3	0.3 ± 0.2	0.1 ± 0.1	2.2 ± 0.6	2
125	2.8 ± 0.4	0.9 ± 0.5	0.1 ± 0.0	1.5 ± 0.5	0.3 ± 0.2	0.1 ± 0.1	$\textbf{2.9}\pm\textbf{0.8}$	2
			2-jet catego	ry ee/uu final	state			
120	1.0 ± 0.1	0.5 ± 0.3	3.2 ± 1.5	0.7 ± 0.2	0.8 ± 0.5	0.1 ± 0.1	5.2 ± 1.7	9
125	1.5 ± 0.2	0.5 ± 0.3	4.4 ± 1.3	0.7 ± 0.2	0.8 ± 0.5	0.1 ± 0.1	6.5 ± 1.5	11

ATLAS H->bb

	0-lepton, 2 jet			0-lepton, 3 jet			1-lepton				2-lepton					
Bin			$E_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]					$p_{\rm T}^W$ [GeV]		$p_{\rm T}^{\rm Z}[{\rm GeV}]$				
	120-160	160-200	>200	120-160	160-200	>200	0-50	50-100	100-150	150-200	> 200	0-50	50-100	100-150	150-200	>200
ZH	2.9	2.1	2.6	0.8	0.8	1.1	0.3	0.4	0.1	0.0	0.0	4.7	6.8	4.0	1.5	1.4
WH	0.8	0.4	0.4	0.2	0.2	0.2	10.6	12.9	7.5	3.6	3.6	0.0	0.0	0.0	0.0	0.0
Тор	89	25	8	92	25	10	1440	2276	1120	147	43	230	310	84	3	0
W + c,light	30	10	5	9	3	2	580	585	209	36	17	0	0	0	0	0
W + b	35	13	13	8	3	2	770	778	288	77	64	0	0	0	0	0
Z + c,light	35	14	14	8	5	8	17	17	4	1	0	201	230	91	12	15
Z + b	144	51	43	41	22	16	50	63	13	5	1	1010	1180	469	75	51
Diboson	23	11	10	4	4	3	53	59	23	13	7	37	39	16	6	4
Multijet	3	1	1	1	1	0	890	522	68	14	3	12	3	0	0	0
Total Bkg.	361	127	- 98	164	63	42	3810	4310	1730	297	138	1500	1770	665	97	72
	± 29	± 11	± 12	± 13	± 8	± 5	± 150	± 86	± 90	± 27	± 14	± 90	± 110	± 47	± 12	± 12
Data	342	131	90	175	65	32	3821	4301	1697	297	132	1485	1773	657	100	69

Η->ττ

p₀-value (full mass range)

Spin and Parity with ATLAS H-> $\gamma\gamma$

13 Feb, 2013

Spin and Parity (ATLAS H->ZZ->4I)

78

ATLAS-CONF-2012-127

$\kappa_F VS \kappa_V$

13 Feb, 2013

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec 2012)

	MSUGRA/CMSSM : 0 lep + j's + E _{7,miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.50 TeV q = g mass	
	MSUGRA/CMSSM : 1 lep + j's + E _{7,miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104]	1.24 TeV q = g mass	ATLAS
60	Pheno model : 0 lep + j's + E _{7,miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, \text{ light } \vec{\chi}_1^0)$	AILAS
the	Pheno model : 0 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.38 TeV \vec{q} mass $(m(\vec{g}) < 2$ TeV, light $\vec{\chi}_1^0$) Preliminary
arc	Gluino med. $\tilde{\chi}^{x}$ ($\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^{x}$) : 1 lep + j's + $E_{T \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	900 GeV \tilde{g} mass $(m(\chi_1^{(2)}) < 200 \text{ GeV}, m(\chi^{(2)}) = \frac{1}{2}(m(\chi_1^{(2)}))$	n(x̃)+m(ĝ))
Se	GMSB (I NLSP) : 2 lep (OS) + j's + E	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	1.24 TeV g mass (tanβ < 15)	
Ve	GMSB ($\overline{\tau}$ NLSP): 1-2 τ + 0-1 lep + j's + $E_{T \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1210.1314]	1.20 TeV \tilde{g} mass $(\tan \beta > 20)$	ſ
nsi	GGM (bino NLSP) : $\gamma\gamma + E_{T miss}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.07 TeV \tilde{g} mass $(m(\chi_{1}^{0}) > 50 \text{ GeV})$	$Ldt = (2.1 - 13.0) \text{ fb}^{-1}$
nol	GGM (wino NLSP) : γ + lep + $E_{T \text{ miss}}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-144]	619 GeV g mass	J (,
	GGM (higgsino-bino NLSP) : γ + b + $E_{T miss}^{\gamma, mas}$	L=4.8 fb ⁻¹ , 7 TeV [1211.1167]	900 GeV g̃ mass (m(χ̃) > 220 GeV)	s = 7, 8 TeV
	GGM (higgsino NLSP) : Z + jets + E _{T.miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-152]	690 GeV $\tilde{g}_{mass} (m(\tilde{H}) > 200 \text{ GeV})$	
	Gravitino LSP : 'monojet' + ET miss	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	645 GeV $F^{1/2}$ scale $(m(\tilde{G}) > 10^4 \text{ eV})$	
6.6	$\tilde{q} \rightarrow b \bar{b} \tilde{\chi}^{\vee}$ (virtual \tilde{b}) : 0 lep + 3 b-i's + $E_{T,min}$	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.24 TeV \tilde{g} mass $(m(\chi^0) < 200 \text{ GeV})$	
. Si	$\tilde{q} \rightarrow t t \tilde{\chi}^{(0)}$ (virtual \tilde{t}) : 2 lep (SS) + i's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-105]	850 GeV \tilde{g} mass $(m(\chi^0) < 300 \text{ GeV})$	
nen o r	$\vec{q} \rightarrow t \vec{t} \vec{y}^0$ (virtual \vec{t}) : 3 lep + i's + $E_{T min}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-151]	860 GeV $\tilde{\tilde{g}}$ mass $(m(\chi^{b}) < 300 \text{ GeV})$	8 TeV results
d g uin	$\tilde{q} \rightarrow t t \tilde{\tau}^{\circ}$ (virtual \tilde{t}) : 0 lep + multi-i's + E_{τ}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103]	1.00 TeV \tilde{g} mass $(m(\chi^0) < 300 \text{ GeV})$	7 TeV results
31	$\tilde{q} \rightarrow t\bar{t}\bar{y}^{0}$ (virtual \tilde{t}) : 0 lep + 3 b-i's + E_{π}	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.15 TeV \tilde{g} mass $(m(\bar{\chi}^0) < 200 \text{ GeV})$	1 10 1 10 50115
	bb, b, $\rightarrow b\overline{\gamma}$: 0 lep + 2-b-iets + E_{τ}	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-165]	620 GeV \vec{b} mass $(m(\vec{\chi}^0) < 120 \text{ GeV})$	
ks on	$bb, b \rightarrow t \overline{\gamma}^{\pm}$: 3 lep + i's + $E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-151]	405 GeV \vec{b} mass $(m(\vec{\chi}^{\pm}) = 2 m(\vec{\chi}^{-}))$	
uai	$\tilde{t}\tilde{t}$ (light), $\tilde{t} \rightarrow b\tilde{\chi}^{\pm 1}$: $1/2^{1}$ lep (+ b-jet) + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4305, 1209.2102]167 GeV	\tilde{t} mass $(m(\bar{\chi}^0) = 55 \text{ GeV})$	
sdi	$\tilde{t}\tilde{t}$ (medium), $\tilde{t} \rightarrow b\tilde{\chi}^{\pm}$: 1 lep + b-jet + $E_{\chi \text{ mass}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-166]	160-350 GeV t mass $(m(\chi^0) = 0 \text{ GeV}, m(\chi^{\pm}) = 150 \text{ GeV})$	
pro	\widetilde{t} (medium), $\widetilde{t} \rightarrow b \widetilde{\chi}^{\pm}$: 2 lep + $E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-167]	160-440 GeV \tilde{t} mass $(m(\bar{\chi}^0) = 0 \text{ GeV}, m(\tilde{t}) - m(\bar{\chi}^{\pm}) = 10 \text{ GeV})$	
ge oct	$\widetilde{ft}, \widetilde{f} \rightarrow t \widetilde{\gamma}^0$: 1 lep + b-iet + E_{π}	L=13.0 fb ⁻¹ . 8 TeV [ATLAS-CONF-2012-166]	230-560 GeV \tilde{t} mass $(m(\tilde{\tau}^0) = 0)$	
Srd	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\tau}^{0}$: $0/1/2$ lep (+ b-iets) + E_{τ}	L=4.7 fb ⁻¹ , 7 TeV [1208.1447,1208.2590,1209.418	6) 230-465 GeV \tilde{t} mass $(m(\bar{x}^0) = 0)$	
., 0	tt (natural GMSB) : Z(→II) + b-jet + E	L=2.1 fb ⁻¹ , 7 TeV [1204.6736]	310 GeV \tilde{t} mass (115 < $m(\tilde{y})$ < 230 GeV)	
	$ \vec{l}_{1} = \vec{r}_{1} ^{0}$: 2 lep + $F_{\pi}^{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884] 85-195 (GeV $\int mass (m(\overline{r}^0) = 0)$	
Sct ~	$\tilde{\gamma}^+ \tilde{\gamma}^-, \tilde{\gamma}^+ \rightarrow \tilde{V} (\tilde{V}) \rightarrow \tilde{V} \tilde{\gamma}^-; 2 \text{ lep } + F_{\pi}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884]	110-340 GeV $\tilde{\chi}^{\pm}$ mass $(m(\chi^0) < 10 \text{ GeV}, m(\tilde{\chi}) = \frac{1}{2}(m(\chi^{\pm}) + m(\chi^0)))$	
Ц Ш Ш	$\tilde{\chi}^{\pm}\tilde{\chi}^{0} \rightarrow [,v], [(\tilde{\chi}v), [\tilde{v}], [(\tilde{\chi}v)]; 3 \text{ lep } + E$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-154]	580 GeV $\tilde{\chi}^{\pm}$ mass $(m(\tilde{\chi}^{\pm}) = m(\tilde{\chi}^{0}), m(\tilde{\chi}^{0}) = 0, m(\tilde{l}\tilde{\chi})$ as	above)
0	$\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2} W^{(*)}\widetilde{\chi}_{2}^{\pm}\widetilde{\chi}_{1}^{\circ}$ 3 lep + $E_{\pi}^{T,\text{miss}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-154]	40-295 GeV $\tilde{\chi}^{\pm}$ mass $(m(\tilde{\chi}^{\pm}) = m(\tilde{\chi}^{0}), m(\tilde{\chi}^{0}) = 0$, sleptons decoupled)	,
~	Direct $\hat{\chi}^{\text{transform}}$ pair prod. (AMSB) : long-lived $\hat{\chi}^{\text{transform}}$	L=4.7 fb ⁻¹ . 7 TeV [1210.2852] 22	0 GeV $\tilde{\gamma}^{\pm}$ mass $(1 \le \tau(\tilde{\gamma}^{\pm}) \le 10 \text{ ns})$	
/e0 9S	Stable & R-hadrons : low & By (full detector)	L=4.7 fb ⁻¹ . 7 TeV [1211.1597]	985 Gev g mass	
7-liv fic/	Stable f R-badrons : low ß ßy (full detector)	L=4.7 fb ⁻¹ . 7 TeV [1211.1597]	683 Gev t mass	
art	GMSB : stable ž	L=4.7 fb ⁻¹ . 7 TeV [1211.1597]	300 GeV τ mass (5 < tanβ < 20)	
7 7	$\tilde{\chi}^0 \rightarrow qqu (RPV) : u + beavy displaced vertex$	L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	700 GeV α mass (0.3×10 ⁻⁵ < λ < 1.5×10 ⁻⁵ , 1 mm <	cτ < 1 m. α decoupled)
	L_1 FV: nn $\sqrt{2}$ +X $\sqrt{2}$ \rightarrow e+u resonance	L=4.6 fb ⁻¹ . 7 TeV [Preliminary]	1.61 TeV \tilde{V}_{i} mass $(\lambda_{i}^{*}=0.10, \lambda_{i})=$	0.05)
>	$I = V : pp \rightarrow v_{\tau} \cdot X, v_{\tau} \rightarrow e(u) + \tau$ resonance	L=4.6 fb ⁻¹ . 7 TeV [Preliminary]	1.10 TeV V mass ($\lambda_{-}=0.10, \lambda_{-}=-9.05$)	,
	Bilinear RPV CMSSM : 1 lep + 7 i's + E_{T}	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140] 1.2 TeV $\tilde{Q} = \tilde{Q}$ [mass (ct, < 1 mm)		
5	$\tilde{\chi}^+ \tilde{\chi}^-, \tilde{\chi}^+ \rightarrow W \tilde{\chi}^0, \tilde{\chi}^0 \rightarrow eev euv : 4 lep + E$	L=13.0 fb ⁻¹ . 8 TeV IATLAS-CONF-2012-1531	700 GeV $\widetilde{\chi}^+$ mass $(m(\widetilde{\chi}^0) > 300 \text{ GeV}, \lambda_{m} \text{ or } \lambda_{m} > 300 \text{ GeV})$	0)
	$\lambda_1 \lambda_2 \lambda_4 \dots \lambda_6, \lambda_6 \rightarrow 000^{\circ} \mu, 0 \mu \nu + 10 \mu + E$	/ =13.0 fb ⁻¹ .8 TeV [ATLAS-CONE-2012-153]	430 GeV [mass $(m(x_1^0) > 100 \text{ GeV} m(\tilde{L}) = m(\tilde{L}) = m(\tilde{L})$ or λ	> 0)
	$\tilde{\alpha}_{\mu}, \tilde{\alpha}_{\mu}, \tilde{\alpha}$	/ =4.6 fb ⁻¹ , 7 TeV [1210.4813]	666 GeV Q MASS	122 -7
	Scalar gluon : 2-jet resonance pair	/ =4.6 fb ⁻¹ , 7 TeV [1210.4826]	0-287 GeV Soluon mass (incl. limit from 1110 2693)	
WIMP interaction (D5, Dirac χ) : 'monojet' + E		L=10.5 fb ⁻¹ , 8 TeV (ATLAS-CONE-2012-147)	704 GeV M* SCAle. (m_ < 80 GeV limit of < 687 GeV	for DB)
	T,miss.			
		40-1	4	10
		10-1	1	10

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty. Mass scale [TeV]

13 Feb, 2013

*Only a selection of the available mass limits on new states or phenomena shown

2elec+2muon candidate with m_{4l} =124.3GeV $m_{12(ee)}$ =76.8GeV, $m_{34(\mu\mu)}$ =45.7GeV

