Status of the Inert Doublet Model

Michel H.G. Tytgat Université Libre de Bruxelles

«Higgs as a probe of New Physics 2013» February 13-16, 2013, University of Toyama, Japan

mercredi 13 février 2013

The Model

SM Scalar (SMS) + extra Scalar Doublet $H_2 = \begin{pmatrix} H^+ \\ \frac{H_0 + iA_0}{\sqrt{2}} \end{pmatrix}$

Unbroken Z_2 symmetry $H_2 \rightarrow -H_2$

H_0 Dark Matter ~ WIMP

(Deshpande, Ma; Barbieri, Hall, Ryshkov)

$\mathcal{L} \supset \mu_2^2 |H_2|^2 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \lambda_5 Re(H_1^2 H_2)^2$

 $\mathcal{L} \supset \mu_2^2 |H_2|^2 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2$ $+\lambda_4 |H_1^{\dagger}H_2|^2 + \lambda_5 Re(H_1^2H_2)^2$

1.
$$\mathcal{L} \supset -\frac{\lambda_2}{4}H_0^4 - \lambda_L H_0^2 H^{\dagger} H$$

Like a singlet scalar
(McDonald; Patt&Wilczek...)

$$\Delta T \approx \frac{1}{24\pi^2 \alpha v^2} (m_H + m_A) (m_H + m_H) \qquad \text{large ?}$$

With the SMS @ 125 GeV, large custodial symmetry breaking is no longer an option

mercredi 13 février 2013

Z₂ parity of SM matter fields?

 $(Q_L, L, E_R, U_R, D_R) \rightarrow \pm (Q_L, L, E_R, U_R, D_R)$

Both are possible since fermions come in pairs No coupling to H_2 , hence H_0 is stable

Rem: if odd SM fermions, «natural» embedding in SO(10) Z₂ identified with Matter Parity $= (-1)^{3(B-L)}$ Fermions & Inert doublet in **16's** (unique) SM Scalar in **10**

Why the Inert Doublet Model?

One of the simplest extensions of the SM

Yet, rich, specific phenomenology

Versatile (dark matter, neutrino masses, EWSB,...)

e.g. The Higgs Portal Patt & Wilczek (2006)

-> S stable and neutral

Silveira & Zee '85; McDonald '94; Burgess, Pospelov, ter Veldhuis '00; Patt,Wilczek '06; Barger et al '08; Andreas, Hambye, M.T. '08

-> S stable and neutral

Silveira & Zee '85; McDonald '94; Burgess, Pospelov, ter Veldhuis '00; Patt,Wilczek '06; Barger et al '08; Andreas, Hambye, M.T. '08

UED Spectrum

Inert Doublet Model Dark Matter Candidates

Instance : A massive Neutrino

Possible H₀ Candidates?

(Courtesy M. Gustafsson)

Middle Mass Range ~ 60-70 GeV

High Mass Range ~ 0.5-50 TeV

> Low Mass Range ~5-10 GeV

Middle Mass Range ~ 60-70 GeV

High Mass Range ~ 0.5-50 TeV

> Low Mass Range ~5-10 GeV

Possible H₀ Candidates : the «Ugly»

 λ_L

 $m_S \equiv m_{H_0}$

mass

$$\sigma(SS \to \bar{f}f)v_{rel} = n_c \frac{\lambda_L^2}{\pi} \frac{m_f^2}{m_h^4 m_S^3} (m_S^2 - m_f^2)^{3/2} \qquad \text{Low mass}$$

$$\sigma(SN \to SN) = \frac{\lambda_L^2}{\pi} \frac{\mu_r^2}{m_h^4 m_S^2} f^2 m_N^2 \qquad \text{Only parameters:}$$

$$R \equiv \sum_f \frac{\sigma(SS \to \bar{f}f)v_{rel}}{\sigma(SN \to SN)} = \sum_f \frac{n_c m_f^2}{f^2 m_N^2 \mu_r^2} \frac{(m_s^2 - m_f^2)^{3/2}}{m_s} \qquad \text{Coupling to SMS}$$

Relevant combination of parameters is $\frac{\lambda_L}{m_h^2}$

WMAP and perturbativity require a light SMS,

for
$$\lambda_L \sim 1$$
 if $m_h^2 = 125$

Also fine tuning is requested, for

$$m_{H_0}^2 = \mu_2^2 + \lambda_L v^2$$
 implies $\mu_2^2 \sim -\lambda_L v^2$

in order to have a «light» WIMP

Back in 2009!

Singlet Scalar through the Higgs Portal

Figure from Andreas, Arina, Hambye, Ling & M.T. arXiv:1003.2595

Limits from nearby dwarf spheroidal galaxies (Fermi-LAT)

Last nail in the coffin is the observation of the SMS at 125 GeV

mercredi 13 février 2013

mercredi 13 février 2013

m_{H^0}	m_{A^0}	m_{H^\pm}	μ_2^2	λ_{H^0}	λ_{A^0}	$\lambda_{H^{\pm}}$	$\sigma v_{ m tot/3-body}$	$\sigma v_{\gamma\gamma/\gamma Z}$	$\sigma^{ m SI}$	$\Omega_{H^0} h^2$	$\operatorname{Br}(h \to \operatorname{inv})$
53.0	120	130	2100	0.023	0.39	0.47	0.097/0.0089	1.8/0.095	1.5	0.115	26%
54.0	140	110	2500	0.013	0.54	0.31	0.056/0.016	2.3/0.17	0.50	0.107	11%
60.0	160	160	3624	$-7.6\cdot10^{-4}$	0.70	0.70	0.16/0.15	4.5/0.14	0.0015	0.110	0.02%
65.0	72.9	120	4200	$8.0\cdot10^{-4}$	0.036	0.32	0.40/0.38	5.7/3.1	0.0013	0.109	0
65.0	120	150	3640	0.019	0.34	0.60	3.1/1.9	20/14	0.69	0.110	0
75.5	130	98.0	6900	-0.038	0.32	0.086	1.0/0.91	4.5/3.8	2.1	0.104	0

TABLE VII: Benchmark models with $m_h=126.0$ GeV. Masses are given in units of GeV. Annihilation cross sections, at relative impact velocity $v \rightarrow 10^{-3}c$, are in units of 10^{-26} cm³/s for $\sigma v_{\text{tot},3-\text{body}}$ and in units of 10^{-29} cm³/s for $\sigma v_{\gamma\gamma,\gamma Z}$. Spin-independent cross sections σ^{SI} are in units of 10^{-45} cm². $\lambda_2 = 0.01$ for all models.

Vanilla candidate but challenged by constraints on SMS invisible width

m_{H^0}	m_{A0}	m_{H^\pm}	μ_2^2	λ_{H^0}	λ_{40}	λ_{H^\pm}	$\sigma v_{\rm tot/3-body}$	$\sigma v_{\gamma\gamma/\gamma Z}$	$\sigma^{ m SI}$	$\Omega_{H^0} h^2$	$Br(h \rightarrow inv)$
53.0	120	130	2100	0.023	0.39	0.47	0.097/0.0089	1.8/0.095	1.5	0.115	26%
54.0	140	110	2500	0.013	0.54	0.31	0.056/0.016	2.3/0.17	0.50	0.107	11%
60.0	160	160	3624	$-7.6\cdot10^{-4}$	0.70	0.70	0.16/0.15	4.5/0.14	0.0015	0.110	0.02%
65.0	72.9	120	4200	$8.0\cdot10^{-4}$	0.036	0.32	0.40/0.38	5.7/3.1	0.0013	0.109	0
65.0	120	150	3640	0.019	0.34	0.60	3.1/1.9	20/14	0.69	0.110	0
75.5	130	98.0	6900	-0.038	0.32	0.086	1.0/0.91	4.5/3.8	2.1	0.104	0

TABLE VII: Benchmark models with $m_h=126.0$ GeV. Masses are given in units of GeV. Annihilation cross sections, at relative impact velocity $v \to 10^{-3}c$, are in units of 10^{-26} cm³/s for $\sigma v_{\text{tot},3-\text{body}}$ and in units of 10^{-29} cm³/s for $\sigma v_{\gamma\gamma,\gamma Z}$. Spin-independent cross sections σ^{SI} are in units of 10^{-45} cm². $\lambda_2 = 0.01$ for all models.

SMS resonance for relic abundance - No direct detection

m_{H^0}	m_{A^0}	m_{H^\pm}	μ_2^2	λ_{H^0}	λ_{A^0}	λ_{H^\pm}	$\sigma v_{ m tot/3-body}$	$\sigma v_{\gamma\gamma/\gamma Z}$	σ^{SI}	$\Omega_{H^0} h^2$	$Br(h \rightarrow inv)$
53.0	120	130	2100	0.023	0.39	0.47	0.097/0.0089	1.8/0.095	15	0.115	26%
54.0	140	110	2500	0.013	0.54	0.31	0.056/0.016	2.3/0.17	0.50	0.107	11%
60.0	160	160	3624	$-7.6\cdot10^{-4}$	0.70	0.70	0.16/0.15	4.5/0.14	0.0015	0.110	0.02%
65.0	72.9	120	4200	$8.0\cdot10^{-4}$	0.036	0.32	0.40/0.38	5.7/3.1	0.0013	0.109	0
65.0	120	150	3640	0.019	0.34	0.60	3.1/1.9	20/14	0.69	0.110	0
75.5	130	98.0	6900	-0.038	0.32	0.086	1.0/0.91	4.5/3.8	2.1	0.104	0

TABLE VII: Benchmark models with $m_h=126.0$ GeV. Masses are given in units of GeV. Annihilation cross sections, at relative impact velocity $v \rightarrow 10^{-3}c$, are in units of 10^{-26} cm³/s for $\sigma v_{\text{tot},3-\text{body}}$ and in units of 10^{-29} cm³/s for $\sigma v_{\gamma\gamma,\gamma Z}$. Spin-independent cross sections σ^{SI} are in units of 10^{-45} cm². $\lambda_2 = 0.01$ for all models.

SMS resonance/Co-annihilation for relic abundance No direct detection either

m_{H^0}	m_{A^0}	m_{H^\pm}	μ_2^2	λ_{H^0}	λ_{A^0}	λ_{H^\pm}	$\sigma v_{ m tot/3-body}$	$\sigma v_{\gamma\gamma/\gamma \mathrm{Z}}$	$\sigma^{\rm SI}$	$\Omega_{H^0} h^2$	$Br(h \rightarrow inv)$
53.0	120	130	2100	0.023	0.39	0.47	0.097/0.0089	1.8/0.095	1.5	0.115	26%
54.0	140	110	2500	0.013	0.54	0.31	0.056/0.016	2.3/0.17	0 <mark>.5</mark> 0	0.107	11%
60.0	160	160	3624	$-7.6 \cdot 10^{-4}$	0.70	0.70	0.16/0.15	4.5/0.14	0.0015	0.110	0.02%
65.0	72.9	120	4200	$8.0\cdot10^{-4}$	0.036	0.32	0.40/0.38	5.7/3.1	0.0013	0.109	0
65.0	120	150	3640	0.019	0.34	0.60	3.1/1.9	20/14	0.69	0.110	0
75.5	130	98.0	6900	-0.038	0.32	0.086	1.0/0.91	4.5/3.8	2.1	0.104	0

TABLE VII: Benchmark models with $m_h=126.0$ GeV. Masses are given in units of GeV. Annihilation cross sections, at relative impact velocity $v \to 10^{-3}c$, are in units of 10^{-26} cm³/s for $\sigma v_{\text{tot},3-\text{body}}$ and in units of 10^{-29} cm³/s for $\sigma v_{\gamma\gamma,\gamma Z}$. Spin-independent cross sections σ^{SI} are in units of 10^{-45} cm². $\lambda_2 = 0.01$ for all models.

3-body annihilation through W W* for relic abundance (L. Lopez Honorez, C. Yaguna)

m_{H^0}	m_{A^0}	m_{H^\pm}	μ_2^2	λ_{H^0}	λ_{A^0}	λ_{H^\pm}	$\sigma v_{ m tot}$	3-body	$\sigma v_{\gamma\gamma/\gamma \mathrm{Z}}$	$\sigma^{ m SI}$	$\Omega_{H^0} h^2$	$Br(h \rightarrow inv)$
53.0	120	130	2100	0.023	0.39	0.47	0.097	0.0089	1.8/0.095	1.5	0.115	26%
54.0	140	110	2500	0.013	0.54	0.31	0.056	/0.016	2.3/0.17	0.50	0.107	11%
60.0	160	160	3624	$-7.6\cdot10^{-4}$	0.70	0.70	0.16	/0.15	4.5/0.14	0.0015	0.110	0.02%
65.0	72.9	120	4200	$8.0\cdot10^{-4}$	0.036	0.32	0.40	/0.38	5.7/3.1	0.0013	0.109	0
65.0	120	150	3640	0.019	0.34	0.60	3.1	/1.9	20/14	0.69	0.110	0
75.5	130	98.0	6900	-0.038	0.32	0.086	1.0/	/0.91	4.5/3.8	2.1	0.104	0

TABLE VII: Benchmark models with $m_h=126.0$ GeV. Masses are given in units of GeV. Annihilation cross sections, at relative impact velocity $v \to 10^{-3}c$, are in units of 10^{-26} cm³/s for $\sigma v_{\text{tot},3-\text{body}}$ and in units of 10^{-29} cm³/s for $\sigma v_{\gamma\gamma,\gamma Z}$. Spin-independent cross sections σ^{SI} are in units of 10^{-45} cm². $\lambda_2 = 0.01$ for all models.

Gamma-ray spectral features?

m_{H^0}	m_{A^0}	m_{H^\pm}	μ_2^2	λ_{H^0}	λ_{A^0}	λ_{H^\pm}	$\sigma v_{ m tot/3-body}$	$\sigma v_{\gamma\gamma/\gamma Z}$	$\sigma^{ m SI}$	$\Omega_{H^0} h^2$	$Br(h \rightarrow inv)$
53.0	120	130	2100	0.023	0.39	0.47	0.097/0.008	1.8/0.095	1.5	0.115	26%
54.0	140	110	2500	0.013	0.54	0.31	0.056/0.016	2.3/0.17	0.50	0.107	11%
60.0	160	160	3624	$-7.6\cdot10^{-4}$	0.70	0.70	0.16/0.15	4.5/0.14 0	.0015	0.110	0.02%
65.0	72.9	120	4200	$8.0\cdot 10^{-4}$	0.036	0.32	0.40/0.38	5.7/3.1 0	.0013	0.109	0
65.0	120	150	3640	0.019	0.34	0.60	3.1/1.9	20/14	0.69	0.110	0
75.5	130	98.0	6900	-0.038	0.32	0.086	1.0/0.91	4.5/3.8	2.1	0.104	0

TABLE VII: Benchmark models with $m_h=126.0$ GeV. Masses are given in units of GeV. Annihilation cross sections, at relative impact velocity $v \rightarrow 10^{-3}c$, are in units of 10^{-26} cm³/s for $\sigma v_{\text{tot,3-body}}$ and in units of 10^{-29} cm³/s for $\sigma v_{\gamma\gamma,\gamma Z}$. Spin-independent cross sections σ^{SI} are in units of 10^{-45} cm². $\lambda_2 = 0.01$ for all models.

Significant Gamma-Ray lines from IDM?

							TABLE II: II	DM ber	nchma	rk	moo	del result	s.
TA	BLE I: IL	OM bend	chmark 1	nodels. (In unit:	s of GeV.)	$v\sigma_{tot}^{v ightarrow 0}$	$v\sigma_{tot}^{v \to 0}$ Branchin					$\Omega_{ m CDM} h^2$
Mode	m_h	r_{H^0}	m_{A^0}	m_{H^\pm}	μ_2	$\lambda_2 \times 1 \text{ GeV}$	[cm³c⁻¹]	11	27	ιī	υē	,+,-	
Ι	500	70	76	190	120	0.1	1.6×10^{-28}	36	33	26	2	3	0.10
II	500	50	58.5	170	120	0.1	0.2 X 10	29	0.0	00	4	(0.10
III	200	70	80	120	125	0.1	$8.7 imes10^{-27}$	2	2	81	5	9	0.12
IV	120	70	80	120	95	0.1	1.9×10^{-26}	0.04	0.1	85	5	10	0.11

Gustafsson, Lundstrom, Bergstrom, Edsjo, arXiv:astro-ph/0703512

Significant Gamma-Ray lines from IDM?

							TABLE II. II	111 001	<i>cum</i>	uin	mou	ici resuii	o.
TA	BLE I: IL	OM bend	chmark 1	nodels. (In unit	$v\sigma_{tot}^{v ightarrow 0}$	Brar	nchin	g ra	tios	: [%]:	$\Omega_{ m CDM} h^2$	
Mode	m_h	$r_{h_{H^0}}$	m_{A^0}	m_{H^\pm}	μ_2	$\lambda_2 imes 1 \text{ GeV}$	[01130-1]	11	2,	ιī	υŪ	,+,-	
Ι	500	70	76	190	120	0.1	1.6×10^{-28}	36	33	26	2	3	0.10
II	500	50	58.5	170	120	0.1	8.2 × 10	29	0.0	00	4	1	0.10
III	200	70	80	120	125	0.1	$8.7 imes 10^{-27}$	2	2	81	5	9	0.12
IV	120	70	80	120	95	0.1	$1.9 imes 10^{-26}$	0.04	0.1	85	5	10	0.11

TABLE II: IDM benchmark model results.

Gustafsson, Lundstrom, Bergstrom, Edsjo, arXiv:astro-ph/0703512

SMS diphoton decay rate?

(cf talk of Maria Krawczyk)

SMS diphoton decay rate?

(cf talk of Maria Krawczyk)

Swiezewksa & Krawczyk arXiv:1212.4100

Multi-leptons signals @ LHC

FIG. 1: Diagrams corresponding to the contributions to the $pp \to \ell^+ \ell^- \not\!\!\!E_T$ in the IDM discussed in the text.

Typically 3σ discovery for 100 fb⁻¹

Dolle, Miao, Su & Thomas arXiv:0909.3094

FIG. 1: Diagrams corresponding to the processes which provide the leading contributions to the $\ell^+\ell^-\ell^\pm + \not\!\!\!E_T$ cross-section in the IDM.

tri-leptons

Miao, Su & Thomas arXiv:1005.0090

4 to 6-leptons

FIG. 4: Feynman diagrams contributing to $pp \rightarrow 4l + \not\!\!\!E_T$ in the IDM.

Gustafsson, Rydbeck, Lopez Honorez, Lundstrom arXiv:1206.6316

High Mass Range ~ the «Bad»

$\lambda' s \to 0$ Minimal Dark Matter

Cirelli, Fornengo & Strumia hep-ph/0512090

Figure 1: Dark matter relic abundance in the pure gauge limit as a function of the DM mass. Dashed (Solid) curve : Instantaneous freeze-out approximation without (with) velocity-dependent terms in σv . Points : Output from MicrOMEGAs

Figure 3: Contours of λ for the WMAP value $\Omega_{\rm DM}h^2 = 0.1131 \pm 0.0034$ for $m_{H_0} = 600$ (interior), 1000, 3000 (exterior) GeV, with $m_{A_0} = m_{H_0}$ (left panel) and $m_{H_c} = (m_{H_0} + m_{A_0})/2$ (right panel). Dashed curve corresponds to the approximate ellipsoid.

Figure 3: Contours of λ for the WMAP value $\Omega_{\rm DM}h^2 = 0.1131 \pm 0.0034$ for $m_{H_0} = 600$ (interior), 1000, 3000 (exterior) GeV, with $m_{A_0} = m_{H_0}$ (left panel) and $m_{H_c} = (m_{H_0} + m_{A_0})/2$ (right panel). Dashed curve corresponds to the approximate ellipsoid.

Figure 3: Contours of λ for the WMAP value $\Omega_{\rm DM}h^2 = 0.1131 \pm 0.0034$ for $m_{H_0} = 600$ (interior), 1000, 3000 (exterior) GeV, with $m_{A_0} = m_{H_0}$ (left panel) and $m_{H_c} = (m_{H_0} + m_{A_0})/2$ (right panel). Dashed curve corresponds to the approximate ellipsoid.

1-loop contributions to Direct Detection make it within reach of Xenon1T!

Klasen, Yaguna, Ruiz-Alvarez arXiv:1302.1657

A Versatile Model...

Radiative Electroweak Symmetry Breaking by DM ?

Pratt & Wilczek; Espinosa & Quiros; Hambye & M.T. (2007);...

IDM dark matter with Strong EW phase transition

FIG. 2: Scatter plot of λ_{DM} versus m_{DM} for models with strong EWPT, correct relic density (dark points), and $m_h =$ 126 GeV. The 90% c.l. upper bound on λ_{DM} from XENON100 is shown by the slanted line. The light shaded points denote models whose relic density is subdominant, $\Omega_H h^2 <$ 0.085, but which still satisfy the correspondingly relaxed XENON100 limit. The other curves indicate the upper limit on λ_{DM} from requiring that the branching ratio for the invisible decay $h \to HH$ not exceed 10% or 40%, respectively.

See also Chowdhury, Nemevsek, Senjanovic & Zhang arXiv:1110.5334

mercredi 13 février 2013

An interesting application : neutrino masses from radiative corrections

Ma (2006)

with N RH Majorana, odd under Z₂

See Schmidt, Schwetz & Toma arXiv:1201.0906 for an update

mercredi 13 février 2013

Gamma-ray spectral feature from Leptonic WIMP

$\mathcal{L} \supset y_l \bar{L} H_2 N + M_N N^T C N + h.c.$

- Annihilation in lepton pairs is p-wave suppressed

$$\sigma v \propto \frac{y_l^4}{M_H^4} \left(m_l^2 + 2/3M_N^2\beta^2 \right)$$

$$\beta \sim 0.3$$
 at Freeze-Out, but $\sim 10^{-3}$ @ GC

Bergstrom & Baltz, 2002

$$\mathcal{L} \supset y_l \bar{L} H_2 N + M_N N^T C N + h.c.$$

- Annihilation in lepton pairs is p-wave suppressed

$$\sigma v \propto \frac{y_l^4}{M_H^4} \left(m_l^2 + 2/3M_N^2 \beta^2 \right)$$

 $\beta \sim 0.3$ at Freeze-Out, but $\sim 10^{-3}$ @ GC

 $\langle \sigma v \rangle \approx 6.7 \cdot 10^{-29} \mathrm{cm}^3 \mathrm{s}^{-1}$

- Annihilation through emission of photons (IB) dominant @ Galactic Centre

- Both $\gamma \gamma$ and γZ (*a*) 1-loop

 $\langle \sigma v \rangle \approx 2.3 \cdot 10^{-29} \mathrm{cm}^3 \mathrm{s}^{-1}$

Rem: direct detection impossible

Bergstrom & Baltz, 2002

«The 130 GeV Fingerprint of Right-handed Neutrino Dark Matter»

Gamma-rays from N_R model

continuum from Z in γ Z γ from γZ

> Continuum $M_N \sim 135 \text{ GeV}$ «fingerprint» (negligible)

> > Bergstrom, arXiv:1208.6082

A not-so-inert Doublet

$$\longrightarrow \qquad \mathcal{O}_{\text{eff}} \sim \frac{m_q}{m_{Q_H}^2} \bar{q} q H_0^2$$

Giacchino, Lopez Honorez, M.T., work in progress

H₀ with a gamma-ray spectral feature

Conclusions

A nice WIMP archetype?

