SUSY Extended Higgs Sector and SUSY Strong Dynamics

Toshifumi Yamada *Univ. of Tokyo*

In collaboration with S.Kanemura (Toyama), E.Senaha(KIAS) and T.Shindou (Kogakuin). Based on papers Phys.Rev.D86 (2012) 055023 [arXiv:1206.1006 [hep-ph]] and arXiv:1211.5883 [hep-ph].

Contents

1. Introduction

- Extended Higgs sector and electroweak baryogenesis
- Simplest example: (Non-SUSY) two Higgs doublet model
- 2. UV complete model for strongly first order phase transition– UV picture = SUSY SU(2) gauge theory
 - IR picture = Extended Higgs sector with large coupling constants
- 3. Electroweak phase transition in the model
- 4. Signatures of the model
- 5. Conclusions

Introduction

Higgs boson (?) has been discovered, but no one knows the **structure of the Higgs sector**. *Number of Higgs doublets ?*

If there are several, how do they couple ? Are there singlets ?

Many possibilities for the Higgs sector.

Need a guiding principle based on some UV theory and/or motivated by phenomenological requirements.

In this talk, we consider

"realizing electroweak baryogenesis (EWBG) scenario" as the guiding principle for building a model of extended Higgs sector.

EW Baryogenesis requires ...

1. Large CP-violating phase (beyond SM).

This can be added by hand, *e.g.*, CP phases of A-terms in SUSY standard models.

2. Strongly first order EW phase transition (not realized in SM with $m_h = 125 \text{ GeV}$).

This is deeply connected with the mechanism of EW symmetry breaking and the structure of the Higgs sector.

EW Baryogenesis requires ...

1. Large CP-violating phase (beyond SM).

This can be added by hand, *e.g.*, CP phases of A-terms in SUSY standard models.

2. Strongly first order EW phase transition (not realized in SM with $m_h = 125 \text{ GeV}$).

This is deeply connected with the mechanism of EW symmetry breaking and the structure of the Higgs sector.

Lessons from Two Higgs Doublet Model

M.Joyce, T.Prokopec and N.Turok (1996)

(Non-SUSY) two Higgs doublet model is the simplest model that can realize strongly first order phase transition.

$$V_{\text{tree}} = m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - (m_3^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}) \\ + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \left[\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.}\right] \\ \Phi_1, \ \Phi_2: \text{ Higgs doublets}$$

SM Higgs-like scalar h + Extra scalars H, A, H^{\pm} .

Thermal loop corrections involving extra scalars, H, A, H^{\pm} , enhance the cubic term in the effective potential at finite temperature,

$$V_{\text{eff}}(\varphi, T) \simeq D(T^2 - T_0^2)\overline{\varphi^2} - ET[\varphi]^3 + \frac{\lambda_T}{4}\varphi^4 + \cdots$$

When the decoupling parameter is zero (*i.e.* masses come exclusively from Higgs VEV), the cubic term is given by

$$E = \frac{1}{12\pi v^3} (6m_W^3 + 3m_Z^3 + m_H^3 + m_A^3 + 2m_{H^{\pm}}^3)$$

Large cubic term makes strongly first order phase transition possible.

Strongly first order phase transition, $\varphi_C/T_C \gtrsim 1$, occurs for

$$m_H = m_A = m_{H^{\pm}} \gtrsim 180 \text{ GeV}$$

when the decoupling parameter is zero and $\ \tan\beta = 1$.

The two Higgs doublet model may not be the fundamental theory because

- The gauge hierarchy problem is not discussed.
- $m_H = m_A = m_{H^{\pm}} \gtrsim 180 \text{ GeV}$ with zero decoupling parameter means that some of the coupling constants in the Higgs sector are so large that they blow up below the Planck scale.

But we learn that

- 1. extra scalars with zero or small decoupling parameter
- 2. large coupling constants among the SM-like Higgs and the extra scalars, which may be related to some strong dynamics

Here we build a **UV complete model** based on **SUSY strongly-coupled gauge theory** whose low-energy theory contains extra scalars and large coupling constants that make strongly first order phase transition possible.

Motivation for SUSY

We will work on **SUSY Higgs sector** because

- SUSY solves the gauge hierarchy problem.
- Some of the quantities in strongly-coupled theory are calculable in softly-broken SUSY models.

In particular, we have an elegant mechanism for deriving the top quark Yukawa.

Model based on SUSY SU(2) Gauge Theory

UV Picture

Consider a new SUSY SU(2) gauge theory with six doublets, $T_1, T_2, ..., T_6$, charged under SM gauge groups.

Also introduce a Z_2 -parity for phenomenological reasons.

Field	$SU(2)_L$	$U(1)_Y$	Z_2
$\left(\begin{array}{c}T_1\\T_2\end{array}\right)$	2	0	+
T_3	1	+1/2	+
T_4	1	-1/2	+
T_5	1	+1/2	_
T_6	1	-1/2	_

Mass term ("current mass"): $W_m = m_1 T_1 T_2 + m_3 T_3 T_4 + m_5 T_5 T_6$

Confinement

K.Intriligator and N.Seiberg (1996)

- The SUSY gauge theory becomes strongly-coupled and the doublets are confined at an IR scale Λ_H .
- Below the scale Λ_H , the theory is described in terms of mesonic superfields, $M_{ij} = T_i T_j$, with the superpotential: $W_{eff} = \frac{1}{\Lambda^3} \epsilon_{ijklmn} M_{ij} M_{kl} M_{mn} + m_1 M_{12} + m_3 M_{34} + m_5 M_{56}$
- Using Naïve Dimensional Analysis, we obtain the following superpotential with canonically normalized fields \hat{M}_{ij} :

 $W_{eff} \simeq \lambda \epsilon_{ijklmn} \hat{M}_{ij} \hat{M}_{kl} \hat{M}_{mn} + \frac{m_1 \Lambda_H}{4\pi} \hat{M}_{12} + \frac{m_3 \Lambda_H}{4\pi} \hat{M}_{34} + \frac{m_5 \Lambda_H}{4\pi} \hat{M}_{56}$

where the coupling λ becomes non-perturbative at the scale Λ_H , i.e., $\lambda(\mu = \Lambda_H) \simeq 4\pi$.

Meaning of Naïve Dimensional Analysis

 Naïve Dimensional Analysis is just an assumption that the IR description in terms of mesons breaks down at the same scale where the UV description of the gauge theory breaks down.

IR Picture

We identify fifteen mesons, $M_{ij} \propto T_i T_j$ (i, j = 1, 2, ..., 6), with MSSM Higgs and exotic fields as

(c.f. R.Harnik et al. (2003))

The superpotential is rewritten as

 $W_{eff} = \lambda \left\{ N(H_u H_d + v_0^2) + N_{\Phi}(\Phi_u \Phi_d + v_{\Phi}^2) + N_{\Omega}(\Omega^+ \Omega^- + v_{\Omega}^2) - NN_{\Phi}N_{\Omega} - N_{\Omega}\zeta\eta + \zeta H_d\Phi_u + \eta H_u\Phi_d - \Omega^+ H_d\Phi_d - \Omega^- H_u\Phi_u \right\}$

IR Picture

We identify fifteen mesons, $M_{ij} \propto T_i T_j$ (i, j = 1, 2, ..., 6), with MSSM Higgs and exotic fields as

_	Field	$SU(2)_L$	$U(1)_Y$	Z_2	
	H_u	2	+1/2	+	
MSSM Higgs doublets	H_d	2	-1/2	+	
Extra Higgs doublets -	Φ_u	2	+1/2	—	. 11
	Φ_d	2	-1/2	—	$\bigstar M_{ij}$
	Ω^+	1	+1	—	
Charged singlets	Ω^{-}	1	-1	_	
Z_2 -even Neutral singlets	N, N_{Φ}, N_{Ω}	1	0	+	
Z_2 -odd Neutral singlets	ζ, η	1	0	_	
The superpotential is rewritten as $(c.f. R.Harnik \ et \ al. \ (2005)$					
	MSSM Higgs doublets $\left[\begin{array}{c} \\ \text{Extra Higgs doublets} \\ \\ \text{Charged singlets} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	MSSM Higgs doublets MSSM Higgs doublets Extra Higgs doublets Charged singlets Z_2 -even Neutral singlets Z_2 -odd Neutral singlets ζ, η	$\begin{bmatrix} \text{Field} & SU(2)_L \\ H_u & 2 \\ H_d & 2 \\ \hline H_d & 2 \\ \hline H_d & 2 \\ \hline \Phi_d & 2$	$ \begin{array}{c c} \text{MSSM Higgs doublets} & & \\ \text{MSSM Higgs doublets} & & \\ \text{Extra Higgs doublets} & & \\ \text{Charged singlets} & & \\ \text{Z}_2\text{-even Neutral singlets} & & \\ \text{Z}_2\text{-odd Neutral singlets} & & \\ \text{Charged singlets} & & \\ \text{Charged neutral singlets} & & \\ \text{Charged neutral singlets} & & \\ \text{Charged neutral singlets} & & \\ \text{MSSM Higgs doublets} & & \\ \text{MSSM Higgs doublets} & & \\ \text{Field} & & \\ \frac{H_u}{2} & 2 & +1/2 \\ \hline \Phi_u & 2 & +1/2 \\ \hline \Phi_d & 2 & -1/2 \\ \hline \Phi_d & 2 & -$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

The superpotential is rewritten as

 $W_{eff} = \lambda \left\{ N(H_u H_d + v_0^2) + N_\Phi(\Phi_u \Phi_d + v_\Phi^2) + N_\Omega(\Omega^+ \Omega^- + v_\Omega^2) - NN_\Phi N_\Omega - N_\Omega \zeta \eta + \zeta H_d \Phi_u + \eta H_u \Phi_d - \Omega^+ H_d \Phi_d - \Omega^- H_u \Phi_u \right\}$

Higgs couples to exotic fields with large coupling λ .

Tadpole terms

• The tadpole terms for N, N_{Φ}, N_{Ω} induce the VEVs of their scalar components, which give effective μ -terms.

The superpotential can be rewritten as

 $W_{eff} = -\mu H_u H_d - \mu_\Phi \Phi_u \Phi_d - \mu_\Omega (\Omega^+ \Omega^- - \zeta \eta)$

 $+ \lambda \left\{ nH_uH_d + H_d\Phi_u\zeta + H_u\Phi_d\eta - H_u\Phi_u\Omega^- - H_d\Phi_d\Omega^+ \right\}$

14

12

0.001

0.01

0.1

+ (terms irrelevant to phenomenology)

physical component of N

• The coupling constant λ is large. For $\Lambda_H = 10$ TeV, we have $\lambda(\mu = M_Z) \sim 2$.

 Electroweak symmetry breaking is triggered by soft SUSY breaking terms, as in MSSM and NMSSM.

The mass of the SM-like Higgs boson follows the same formula as that in NMSSM.

Deriving Yukawa Couplings

- SM Yukawa couplings can be generated by introducing elementary $SU(2)_L$ doublets, H'_u , H'_d , that couple as
 - $W_{Yuk} = (T_1, T_2)T_3H'_d + (T_1, T_2)T_4H'_u + mH'_uH'_d$ $+ y_{uij} Q^iH'_uU^j + y_{dkl} Q^kH'_dD^l + \dots m \sim \Lambda_H$

and integrating them out below the scale $m (\sim \Lambda_H)$.

- Higgs = composite superfield
 Top quark = elementary superfield
 - Difficulty in deriving *O(1)* top Yukawa coupling
- But we already have an elegant mechanism for this.

"Conformal enhancement"

H. Murayama (2003)

Introduce two more $SU(2)_H$ doublets, T_7 , T_8 , with mass term: $W_7 = m_7 T_7 T_8$ ($m_7 > \Lambda_H$). The theory above the scale m_7 is in the conformal window. Assume that the theory approaches to the IR fixed point at the scale $\Lambda_7 (> m_7)$. conformal $----- m_7$ Yukawa couplings are enhanced by $\left(\frac{\Lambda_7}{m_7}\right)^{1/2}$ while running from Λ_7 to m_7 .

Electroweak Phase Transition in the Model

We have built a **UV complete model** of an extended Higgs sector that contains large coupling constant λ between MSSM Higgs fields H_u , H_d and exotic fields Φ_u , Φ_d , Ω^+ , Ω^- .

Strongly first order phase transition is possible due to thermal loop corrections involving the scalar components of Φ_u , Φ_d , Ω^+ , Ω^- .

(Thermal loops involving the fermionic components work negatively. Scalar components need to be lighter than fermionic components.)

We will evaluate the order of the phase transition by taking a benchmark mass spectrum.

Benchmark Mass Spectrum $W_{eff} = -\mu H_u H_d - \mu_{\Phi} \Phi_u \Phi_d - \mu_{\Omega} (\Omega^+ \Omega^- - \zeta \eta)$ $+ \lambda \{ H_d \Phi_u \zeta + H_u \Phi_d \eta - H_u \Phi_u \Omega^- - H_d \Phi_d \Omega^+ \}$ (+ soft SUSY breaking terms.)

(Fixed parameters)

MSSM Higgs parameters: $\tan \beta = 3$, $m_{H^{\pm}} = 400 \text{ GeV}$. μ -terms for exotic superfields: $\mu_{\Phi}~=~\mu_{\Omega}~=~250~{
m GeV}$. Soft SUSY breaking terms: (A, B terms for exotic fields) = 0. $m_{\Phi_{d}}^{2} + \mu_{\Phi}^{2} = m_{\Omega_{+}}^{2} + \mu_{\Omega}^{2} = m_{c}^{2} + \mu_{\Omega}^{2} = (1000 \text{ GeV})^{2}$ Stops and sbottoms are almost decoupled. n (physical component of N) is decoupled. (Free parameters) $m_{\Phi_u}^2 = m_{\Omega_-}^2 = m_{\eta}^2$, λ . We take negative values for these parameters. (: Some of the scalars must be lighter than the fermions.)

- Light scalars are essential for strongly first order phase transition.
- Some of the scalars are assumed to be heavy in order that radiative corrections to the SM-like Higgs mass is not negative.

Result

Signatures of the Model

- 1. EW production of exotic charged scalars and fermions.
- 2. Indirect signatures:
 - Triple coupling for the SM-like Higgs boson
 - Higgs to di-photon branching ratio

Deeply connected with $\, arphi_C/T_C \,$. Reflect large coupling constant $\, \lambda^2 \,$

1. EW production of exotic charged scalars and fermions. 2. Indirect signatures: - Triple coupling for the SM-like Higgs boson - Higgs to di-photon branching ratio Effective potential h Φ_u, Φ_d, Ω^+ λ^2 : Large

Deeply connected with φ_C/T_C . Reflect large coupling constant λ^2 Same benchmark mass spectrum as before

Conclusions

- We have proposed a UV-complete model of SUSY extended Higgs sector containing extra scalars with large couplings to the SM-like Higgs boson.
- We have confirmed that thermal loop corrections involving these **extra scalars with large couplings** can realize strongly first order phase transition.
- Large deviations in Higgs to di-photon branching ratio and the Higgs triple coupling are predicted.