LHC Higgs Signatures from Extended Electroweak Guage Symmetry

based on JHEP 1301 (2013) 082

Tomohiro Abe (Tsinghua U.)

In collabollations with Ning Chen, Hong-Jian He (Tsinghua U.)

HPNP2013, February 15th

Contents

I. Motivation

2. Model

3. LHC signatures of the Higgs bosons

4. Summary

Introduction

- LHC found a new particle around 125 GeV!
- 2 photon signal is larger than the SM Higgs prediction
- Are there any new physics? (or statistics...)

How to enhance di-photon signal?

• $h \rightarrow \gamma \gamma$ is loop induced process

- new particle modify the amplitude of this process
- new particle's spin = 0, 1/2, 1..... which is better?
- naively, if new particle coupling to the higgs is the same sign as the SM case, gauge boson loop enhance the amplitude
- Does W' help enhancing this signal?

• Let us extend gauge sector and see what happen!

Contents

I. Motivation

2. Model

3. LHC signatures of the Higgs bosons

4. Summary

Model : gauge sector

electroweak gauge symmetry

$$SU(2)_0 \times SU(2)_1 \times U(1)_2$$

• two Higgs fields for electroweak symmetry breaking

$$H_1 = (2,2)_0 \quad \ni \left(h_1, \pi_1^1, \pi_1^2, \pi_1^3\right)$$
$$H_2 = (1,2)_{1/2} \ni \left(h_2, \pi_2^1, \pi_2^2, \pi_2^3\right)$$

- All π 's are eaten by the gauge bosons
- mass eigenstates are given as linear combinations

spin I:
$$W^{\pm}, Z, \gamma, W'^{\pm}, Z'$$

spin 0: h, H

 $h = \cos \alpha \ h_1 - \sin \alpha \ h_2$ $H = \sin \alpha \ h_1 + \cos \alpha \ h_2$

Model : fermion sector

• vector like fermions as well as chiral fermions

Fermions	$SU(2)_0$	$SU(2)_1$	$U(1)_{2}$	$SU(3)_c$		
Ψ_{0L}	2	1	$\frac{1}{6}\left(-\frac{1}{2}\right)$	3 (1)	←	chiral
Ψ_{1L}	1	2	$\frac{1}{6} \left(-\frac{1}{2}\right)$	3 (1)		vector like
Ψ_{1R}	1	2	$\frac{1}{6}\left(-\frac{1}{2}\right)$	${f 3}~({f 1})$	X	
Ψ^u_{2R}	1	1	$\frac{2}{3}$ (0)	3 (1)	←	chiral
Ψ^d_{2R}	1	1	$-\frac{1}{3}(-1)$	3 (1)	←	chiral

- reasons why we introduce vector like fermions:
 - 1. they are mixed with chiral fermions, and relax
 - * S parameter constraint
 - * m_w[,] constraint
 - 2. they can enhance $\sigma(gg \rightarrow h)$

Model: W'ff coupling and mw'

• gW'ff ~ 0 is possible by tuning parameter (ideal delocalization)

$$g_{W'ff} \simeq -g_1 \left(\frac{1+r^2}{r^2} \frac{m_W^2}{m_{W'}^2} - \sin^2 \theta_f \right) \qquad r = \frac{\langle H_2 \rangle}{\langle H_1 \rangle}$$

• Then
* S parameter is OK with light mw'

$$\alpha S \simeq -4 \sin^2 \theta_W \frac{M_W}{M_{W'}} \frac{g_{W'ff}}{g_{Wff}}$$

- * direct detection bounds through Drell-Yan process can be ignored
- <u>Hereafter we set gW'ff = 0</u>
 - * fermion sector depend on m_w/m_w'

Model : Higgs couplings (1)

$$g_{WWh} = \frac{2m_W^2}{v} \left(\frac{r^3}{(1+r^2)^{3/2}} \cos \alpha - \frac{1}{(1+r^2)^{3/2}} \sin \alpha + \mathcal{O}\left(\frac{m_W^2}{m_{W'}^2}\right) \right) \le g_{WWh}^{SM}$$

- smaller than SM
- Br($h \rightarrow \gamma\gamma$, WW, ZZ) highly depend on "r" and " α "

Model : Higgs couplings (2)

$$g_{W'W'h} = \frac{2m_{W'}^2}{v} \left(\frac{r}{(1+r^2)^{3/2}} \cos \alpha - \frac{r^2}{(1+r^2)^{3/2}} \sin \alpha + \mathcal{O}\left(\frac{m_W^2}{m_{W'}^2}\right)\right)$$

Model : summary of matter contens

Contents

I. Motivation

2. Model

3. LHC signatures of the Higgs bosons

4. Summary

$\underline{\sigma(gg \rightarrow h)}/\sigma(gg \rightarrow h)_{\text{SM}}$

- highly depending on mixing angle, α .
- depending on m_{W'.}
- bigger than SM due to the heavy fermion loops.

- depending on α and $m_{W'}$
- In r = I case
 - * $\gamma \gamma$ signal can be enhanced!
 - ***** WW and ZZ signals are suppressed

• $\ln r \neq 1$ case

- * $\gamma \gamma$ signal can be enhanced!
- *WW and ZZ signals are compareble with the SM case

• other production processes

- W' does not propagate because gw'ff = 0 in our set up
- difference from the SM is gwwh coupling

$$\frac{\sigma(pp \to hqq')}{\sigma(pp \to hqq')_{\rm SM}} = \frac{\sigma(pp \to hW)}{\sigma(pp \to hW)_{\rm SM}} = \left(\frac{g_{WWh}}{g_{WWh}^{\rm SM}}\right)^2 \simeq \left(\frac{r^3}{(1+r^2)^{3/2}}\cos\alpha - \frac{1}{(1+r^2)^{3/2}}\sin\alpha\right)^2 \le 1$$

• These production xsec is always smaller than SM

σ (VBF/Wh/Zh) x BR(h \rightarrow ff) / SM

- (ex) $\sigma(VBF) Br(h \rightarrow \tau \tau^{bar}) < SM$
- suppressed

★

- to improve the result, for example, we need to
 - * change parameter space
 - * give up ideal delocalization
 - * change fermion sector itself

Contents

I. Motivation

2. Model

3. LHC signatures of the Higgs bosons

4. Summary

- LHC found a new particle around 125 GeV
- $\gamma\gamma$ signal is larger than the SM Higgs boson case
- We consider SU(2)xSU(2)xU(1) model
 - * $\sigma(gg \rightarrow h \rightarrow \gamma \gamma)/\sigma_{SM} > 1$ is possible

* $\sigma(gg \rightarrow h \rightarrow WW/ZZ) / \sigma_{SM} \leq 1$

- these are compatible with the current LHC data
- other production process is suppressed, for example

* $\sigma(VBF) Br(h \rightarrow \tau \tau^{bar}) < SM$

• These results highly depend on parameter choice and structure of fermion sector. It is worthwhile to study more general analysis in this gauge symmetry. **BACKUP SLIDES**

Model : fermion mass terms

mass terms

$$-\left(\begin{array}{cc}\Psi_{0L}^{u}\Psi_{1L}^{u}\end{array}\right)\left(\begin{array}{cc}\frac{1}{2}y_{1}f_{1}&0\\M&\frac{1}{2}y_{2u}f_{2}\end{array}\right)\left(\begin{array}{c}\Psi_{1R}^{u}\\\Psi_{2R}^{u}\end{array}\right)-\left(\begin{array}{c}\Psi_{0L}^{d}\Psi_{1L}^{d}\end{array}\right)\left(\begin{array}{c}\frac{1}{2}y_{1}f_{1}&0\\M&\frac{1}{2}y_{2d}f_{2}\end{array}\right)\left(\begin{array}{c}\Psi_{1R}^{d}\\\Psi_{2R}^{d}\end{array}\right)+(h.c.)$$
$$\langle H_{1}\rangle =f_{1}/2,\ \langle H_{2}\rangle =f_{2}/2$$

mass

$$m_u \simeq \frac{1}{4} \frac{y_1 y_{2u} f_1 f_2}{M}$$
$$m_{u'} \simeq \sqrt{M^2 + \frac{1}{4} y_1^2 f_1^2 + \frac{1}{4} y_{2u}^2 f_2^2} \simeq M$$

- We assume $M >> y_1f_1$, y_2f_2
- \bullet y_{2x} determine the SM fermion masses
- $y_{2x} \simeq 0$ except top sector

<u>Model : why gWWh/SM < 1 ?</u>

perturbative unitarity of longitudinal gauge boson scattering
 * In the SM, Higgs cancels the E² behavior

<u>Model : why gWWh/SM < 1 ?</u>

perturbative unitarity of longitudinal gauge boson scattering
 * In the SM, Higgs cancels the E² behavior

* In our model, W' and heavy Higgs as well as light Higgs

* both "spin 1" and "spin 0" particles contribute
* WWh coupling is smaller than the SM one

Model : perturbative unitarity (2)

unitarity sum rules for couplings (here W stands for both W[±] and Z)
 * to cancel O(E⁴) terms

$$g_{WWWW} = g_{WWW}^2 + g_{WWW'}^2$$

* to cancel O(E²) terms $4g_{WWWW}M_W^2 = 3g_{WWW}^2 M_W^2 + 3g_{WWW'}^2 M_{W'}^2 + g_{WWh}^2 + g_{WWH}^2 + g_{WWH}^2$

- $g_{WWW} \simeq g_{WWW}^{SM}$ by precision measurement
- now we see the following realtion

$$\left(g_{WWh}\right)^2 \le \left(g_{WWh}^{SM}\right)^2$$

Model : lower bound on Mw'

W

• triple gauge boson coupling

K.Hagiwara, R.D.Peccei, D.Zeppenfeld, and K.Hikasa, Nucl.Phys. B282,253(1987)

$$\mathcal{L} = -ig_{WWZ}^{SM} \left(1 + \Delta \kappa_Z\right) W^+_{\mu} W^-_{\nu} Z^{\mu\nu} - ig_{WWZ}^{SM} \left(1 + \Delta g_1^Z\right) \left(W^+_{\mu\nu} W^{-\mu} - W^-_{\mu\nu} W^{+\mu}\right) Z^{\nu} \qquad Z \qquad W$$

• This model prediction

$$\Delta \kappa_Z = \Delta g_1^Z = \frac{1}{2c^2} \frac{M_W^2}{M_{W'}^2} + \mathcal{O}\left(\frac{M_W^4}{M_{W'}^4}\right) \qquad \qquad c = \frac{M_W}{M_Z}$$

• constraint from LEP-II

 $\Delta g_1^Z < 0.028 \ (95\% C.L.)$

Model : parameters in Higgs sector

• Higgs VEVs

$$\langle H_1 \rangle = f_1/2, \ \langle H_2 \rangle = f_2/2$$

* They are related to the Fermi constant

$$\sqrt{2}G_F \simeq \frac{1}{f_1^2} + \frac{1}{f_2^2} \equiv \frac{1}{v^2}$$

* we introduce the VEV ratio "r"

$$r = f_2/f_1$$

* we use G_F (or v) and $r = f_2/f_1$ instead of f_1 and f_2

mixing angle between two Higgses "a"

$$h = \cos \alpha \ h_1 - \sin \alpha \ h_2$$
$$H = \sin \alpha \ h_1 + \cos \alpha \ h_2$$

 \bullet two input parameters in Higgs sector: $\boldsymbol{\alpha}$ and \boldsymbol{r}

 $\sigma(qq \rightarrow h) \times BR / SM$

- depending on α and $m_{W'}$
- In r = I case
 - * $\gamma \gamma$ signal can be enhanced!
 - \star WW and ZZ signals are suppressed

Model : Higgs couplings (3)

• gffh is smaller than SM

Model : Higgs couplings (4)

$$g_{FFh} \simeq \frac{m_F}{v} \left(\frac{\sqrt{1+r^2}}{r} \frac{m_W^2}{m_{W'}^2} \cos \alpha - \frac{m_f^2}{m_F^2} \frac{m_{W'}^2}{m_W^2} \frac{r^2}{(1+r^2)^{3/2}} \sin \alpha \right) \lesssim 0.1 \frac{m_F}{v}$$

Model : Higgs couplings (4)

• gFFh is much suppressed, because F is almost vector like fermion

Comment on the heavy higgs

• constraint on heavy Higgs mass from LHC

 $H \rightarrow ZZ \rightarrow 4$ leptons

- m_{W'} = 400 GeV, r = I case
- m_H < 600 GeV is allowed because gwwh < gwwhSM
- very loose constraint on $\alpha = 0.8\pi$
- ($\alpha = 0.8\pi$ is preferred for $h \rightarrow \gamma \gamma$ enhancement)

Model : constraint from S parameter

• S parameter at tree level

$$\alpha S \simeq -4 \sin^2 \theta_W \frac{M_W}{M_{W'}} \frac{g_{W'ff}}{g_{Wff}} \qquad {\rm f:SM\ fermion}$$

- two ways to reduce S parameter
- (i) Heavy W' mass
 - ... but light W' seems good for changing Br(h $\rightarrow \gamma \gamma$)
 - we do not consider this case here
- (ii) small gW'ff couplings
 - gW'ff = 0 by tuning the mixing angle (ideal delocalization)
 - we consider this case in this talk

W' decay mode

- \bullet yellow reasion is consistent with ATLAS and CMS within 1σ
- W' \rightarrow WZ is dominant
- W' \rightarrow hW is subdominant
- other channels are negligible

$\sigma(gg \to h)/\sigma(gg \to h)_{\text{SM}}$

• contributions from top and extra fermions

$$\frac{\sigma(gg \to h)}{\sigma(gg \to h)_{\rm SM}} \simeq \left| \frac{r}{\sqrt{1+r^2}} \cos \alpha - \frac{1}{\sqrt{1+r^2}} \sin \alpha + 5 \frac{m_1^2}{M^2 + m_1^2} \frac{r}{\sqrt{1+r^2}} \cos \alpha \right|^2 \\ \simeq \left| \frac{r}{\sqrt{1+r^2}} \cos \alpha - \frac{1}{\sqrt{1+r^2}} \sin \alpha + 5 \frac{\sqrt{1+r^2}}{r} \frac{M_W^2}{M_{W'}^2} \cos \alpha \right|^2$$

- first two terms : sum of the top and heavy top contritutions
- last term : contributions from u', d', s', c', and b'.
- $m_1^2/(M^2 + m_1^2)$: mixing angle in fermion sector.
- assume ideal delocalization in the second line

 $g_{W'ff} \sim g_1 \frac{1+r^2}{r^2} \left(-\frac{M_W^2}{M_{W'}^2} + \frac{y_1^2 v^2}{4M^2} \right)$

 $m_1 = \frac{y_1 f_1}{2M}$

partial decay width / SM

• partial decay width (tree processes)

$$\frac{\Gamma(h \to f\bar{f})}{\Gamma(h \to f\bar{f})_{\rm SM}} = \left(\frac{g_{ffh}}{g_{ffh}^{\rm SM}}\right)^2 \simeq \left(\frac{r}{\sqrt{1+r^2}}\cos\alpha - \frac{1}{\sqrt{1+r^2}}\sin\alpha\right)^2 \le 1$$
$$\frac{\Gamma(h \to WW)}{\Gamma(h \to WW)_{\rm SM}} = \left(\frac{g_{WWh}}{g_{WWh}^{\rm SM}}\right)^2 \simeq \left(\frac{r^3}{(1+r^2)^{3/2}}\cos\alpha - \frac{1}{(1+r^2)^{3/2}}\sin\alpha\right)^2 \le 1$$

• $\Gamma(h \rightarrow ff)$ and $\Gamma(h \rightarrow WW)$ is smaller than the SM

partial decay width / SM

• partial decay width (loop induced processes)

$$\frac{\Gamma(h \to gg)}{\Gamma(h \to gg)_{\rm SM}} \simeq \left| \frac{r}{\sqrt{1+r^2}} \cos \alpha - \frac{1}{\sqrt{1+r^2}} \sin \alpha + 5 \frac{\sqrt{1+r^2}}{r} \frac{M_W^2}{M_{W'}^2} \cos \alpha \right|^2$$
$$\frac{\Gamma(h \to \gamma\gamma)}{\Gamma(h \to \gamma\gamma)_{\rm SM}} \simeq \left| \frac{r}{\sqrt{1+r^2}} \cos \alpha - \frac{1}{\sqrt{1+r^2}} \sin \alpha - \frac{80}{47} \frac{\sqrt{1+r^2}}{r} \frac{M_W^2}{M_{W'}^2} \cos \alpha \right|^2$$

- first two terms: t, t' (and W, W') contributions
- last terms: others

Model : Yukawa interaction

• Yukawa

$$-y_{1}^{ij}\overline{\Psi}_{0L}^{i}H_{1}\Psi_{1R}^{j} - M^{ij}\overline{\Psi}_{1L}^{i}\Psi_{1R}^{j} - \overline{\Psi}_{1L}^{i}H_{2}\begin{pmatrix} y_{2u}^{ij} & 0\\ 0 & y_{2d}^{ij} \end{pmatrix} \begin{pmatrix} \Psi_{2R}^{u}\\ \Psi_{2R}^{d} \end{pmatrix}^{j} + (h.c.)$$

i and j : generation indices

• To avoid FCNC, we assume Minimal Flavor Violation

$$y_1^{ij} = y_1 \delta^{ij}, \quad M^{ij} = M \delta^{ij}$$

- Flavor structure is determind by y_{2u} and y_{2d}
- \bullet y_1 is constrained by S parameter or $g_{W^{\prime} \mathrm{ff}}$ coupling

Model: W'ff coupling and mw'

• gW'ff ~ 0 is possible by tuning parameter (ideal delocalization)

$$g_{W'ff} \sim g_1 \frac{1+r^2}{r^2} \left(-\frac{M_W^2}{M_{W'}^2} + \frac{y_1^2 v^2}{4M^2} \right)$$

- \bullet S parameter is OK with light $m_{W^{\prime}}$
- A Bonus: direct detection bound is also OK
 - \star we often see the lower bound on $m_{W'} \thicksim 2 TeV$
 - * this is derived with the following assumptions:
 - * gW'ff = gWff
 - *W' is produced via Drell-Yan process
 - * therefore constraint is changed if gW'ff < gWff

- example: $m_h = 125 \text{ GeV}, m_{w'} = 400 \text{ GeV}, M = 2500 \text{ GeV}, and r = 1$
- $\gamma\gamma$ can be ehnahced.