HPNP2013 in Toyama 16 February 2013

B physics and Extended Higgs sectors

Ryoutaro Watanabe, Osaka University in collaboration with Minoru Tanaka, Osaka Univ. based on "arXiv:1212.1878"

HPNP2013 in Toyama 16 February 2013

Tauonic B decays and 2 Higgs doublet models

Ryoutaro Watanabe, Osaka University in collaboration with Minoru Tanaka, Osaka Univ. based on "arXiv:1212.1878" Higgs like boson was discovered at LHC. So,

What can we do in B physics?

Higgs like boson was discovered at LHC. So,

What can we do in B physics?

My viewpoint is ...

What is sensitive to Higgs sector in B physics?

Higgs like boson was discovered at LHC. So,

What can we do in B physics?

My viewpoint is ...

What is sensitive to Higgs sector in B physics?

That is ...

Tauonic B decays in terms of Charged Higgs Today's topic !

Tauonic B decay : $\bar{B} \to D^{(*)} \tau \bar{\nu}$ $\bar{B} \to \tau \bar{\nu}$

Tauonic B decay : $\bar{B} \to D^{(*)} \tau \bar{\nu}$ $\bar{B} \to \tau \bar{\nu}$

Problem we focus on in this talk

BABAR result implies "charged Higgs is disfavored"

Tauonic B decay : $\bar{B} \to D^{(*)} \tau \bar{\nu}$ $\bar{B} \to \tau \bar{\nu}$

Problem we focus on in this talk

BABAR result implies "charged Higgs is disfavored"

What we will show in this work is as follows;

"Usual" 2HDMs cannot explain the BABAR result

2HDMs allowing FCNC solves this problem

Super B factory, LHC and ILC are possible to confirm this scenario

Contents

· Tauonic B decays

• Status of tauonic B decays

- Analysis
 - 1. 2HDMs
 - 2. 2HDMs allowing FCNC
 - 3. Future prospect : super B factory, ILC, (and LHC?)

Tauonic B decay

Sensitivity to "Higgs sector"

Measuring B meson decays are suitable to investigate the flavor changing current

If a model contains charged Higgs (CH), It contributes to flavor changing charged current

Sensitivity of "Higgs sector"

Furthermore, CH interaction is enhanced as fermion mass is large

Example: 2HDM of type II

Tauonic B decay

Bottom quark decay including tau is sensitive to CH For B meson decays : $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu} \quad \bar{B} \rightarrow \tau \bar{\nu}$ (Standard Model)

Experimental results were improved last year

May : BABAR reported the results on $\bar{B} \to D^{(*)} \tau \bar{\nu}$ July : Belle reported the results on $\bar{B} \to \tau \bar{\nu}$

Status of tauonic B decays

 \gg Measured quantities of B \rightarrow D(*) $\tau \nu$

 $\ell = e, \text{ or } \mu$

$$R(D) = \frac{\Gamma(\bar{B} \to D\tau\bar{\nu})}{\Gamma(\bar{B} \to D\ell\bar{\nu})} \qquad R(D^*) = \frac{\Gamma(\bar{B} \to D^*\tau\bar{\nu})}{\Gamma(\bar{B} \to D^*\ell\bar{\nu})}$$

Status of tauonic B decays

Comparison between Experimental result and SM prediction

 \gg Measured quantities of B \rightarrow D(*) $\tau \nu$

 $\ell = e, \text{ or } \mu$

$$R(D) = \frac{\Gamma(\bar{B} \to D\tau\bar{\nu})}{\Gamma(\bar{B} \to D\ell\bar{\nu})} \qquad R(D^*) = \frac{\Gamma(\bar{B} \to D^*\tau\bar{\nu})}{\Gamma(\bar{B} \to D^*\ell\bar{\nu})}$$

Status of tauonic B decays

Comparison between Experimental result and SM prediction

Detail

 $\bar{B} \to \tau \bar{\nu}$: Belle latest result is quite consistent with SM prediction $\bar{B} \to D^{(*)} \tau \bar{\nu}$: As a view point of quark current, the deviation from SM prediction reach 3.4 σ 1/4

BABAR, PRL109,101802(2012)

 b_R

 c_L

2/4

CH boson in typell 2HDM is excluded with 99.8%CL

BABAR, PRL109,101802(2012)

Detail

CH cannot explain both results at the same time

Technical things

Results depend on CH parameter because they include estimation of the effect of CH on R(D)&R(D*) by reweighting the simulated events at the matrix element level.

CH boson in typell 2HDM is excluded with 99.8%CL

What happen if the result of $B \rightarrow \tau \nu$ is included ?

My naive estimation

 $R(D) \& R(D^*)$: ----- $+B \rightarrow \tau \nu$: -----

★CL of exclusion within small parameter region reduces, (because B→ $\tau \nu$ is consistent with SM) while exclusion in the region $\tan \beta/m_{H^{\pm}} > 0.15 (\text{GeV})^{-1}$ almost reaches 5 σ

Summary of this section

• Small deviation $(1.7 \sigma @WA)$ (Belle result is quite consistent with SM)

 $(\bar{B} \to D^{(*)} \tau \bar{\nu})$

- · Large deviation (3.4 σ @WA)
- CH boson in typell 2HDM is excluded (99.8%)

Summary of this section

• Small deviation $(1.7 \sigma @WA)$ (Belle result is quite consistent with SM)

 $(\bar{B} \to D^{(*)} \tau \bar{\nu})$

- · Large deviation (3.4 σ @WA)
- CH boson in typell 2HDM is excluded (99.8%)

And then? → Two Possibilities to extend this analysis
(1) Other type of 2HDM
(2) Allowing FCNC in Yukawa sector

• Tauonic B decays 🗸

 \cdot Status of tauonic B decays \checkmark

- Analysis
 - 1. 2HDMs
 - 2. 2HDMs allowing FCNC
 - 3. Future prospect : super B factory, ILC, (and LHC?)

Analysis

1. 2HDMs and their constraints

$$\mathcal{L}_{\text{yukawa}} = -\bar{Q}_L Y_u \tilde{H}_u u_R - \bar{Q}_L Y_d H_d d_R - \bar{L}_L Y_\ell H_\ell \ell_R + \text{h.c.}$$

$$H_1 \text{ or } H_2$$

In order to forbid tree level FCNC, One of the Higgs doublets should be coupled to the fermion doublet in each term

Type I:
$$H_2 = H_u = H_d = H_\ell$$
Type II: $H_2 = H_u$, $H_1 = H_d = H_\ell$ Type X: $H_2 = H_u = H_d$, $H_1 = H_\ell$ Type Y: $H_2 = H_u = H_\ell$, $H_1 = H_d$ ramed by Aoki, Kanemura, Tsumura, Yagyu(2009)

Contribution to tauonic B decays

Parameter :

|--|

$$H_a = \begin{pmatrix} h_a^+ \\ h_a^0 \end{pmatrix} \quad (a = 1, 2)$$

Contribution to tauonic B decays

Parameter :

$$\tan \beta = \frac{\langle h_2^0 \rangle}{\langle h_1^0 \rangle} \qquad \qquad H_a = \begin{pmatrix} h_a^+ \\ h_a^0 \end{pmatrix} \quad (a = 1, 2)$$

Contribution to tauonic B decays is summarized into Wilson coefficient,

defined as

$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{qb} \Big(\bar{q}_L \gamma^\mu b_L \,\bar{\tau}_L \gamma_\mu \nu_L + C^q_{S_1} \bar{q}_L b_R \,\bar{\tau}_R \nu_L + C^q_{S_2} \bar{q}_R b_L \,\bar{\tau}_R \nu_L \Big)$$

Contribution to tauonic B decays

To begin with, let me show the study on Wilson coefficient itself in terms of effective Lagrangian approach.

Correlation between R(D)&R(D*) in the presence of S1 or S2

Constraint on C (Exclusion@99%CL : -----)

★S1 is not favored at all

★S2 can explain data but needs large contribution

Is it possible to have a sizable effect of S2 in 2HDM?

Remember the contribution of S2 to $B \rightarrow D(*) \tau \nu$

- Charm mass is not so large compared to bottom mass
- The requirement for the top Yukawa interaction to be perturbative results in $\tan\beta\gtrsim 0.4$

Is it possible to have a sizable effect of S2 in 2HDM?

Remember the contribution of S2 to $B \rightarrow D(*) \tau \nu$

- Charm mass is not so large compared to bottom mass
- The requirement for the top Yukawa interaction to be perturbative results in $\tan\beta\gtrsim 0.4$
- ★In usual 2HDM of any type, S2 cannot have a sizable effect on $B \rightarrow D(*) \tau \nu$

Is it possible to have a sizable effect of S2 in 2HDM?

Remember the contribution of S2 to B \rightarrow D(*) $\tau \nu$

Charm mass

 The requirem perturbative

★In usual 2F S2 cannot

2.2HDMs allowing FCNC

A possible solution to have a large S2 contribution within 2HDMs

CASE : type II + FCNC

 $\mathcal{L}_{\text{yukawa}} = -\bar{Q}_L Y_u \tilde{H}_2 u_R - \bar{Q}_L Y_d H_1 d_R - \bar{L}_L Y_\ell H_1 \ell_R + \text{h.c.}$

2.2HDMs allowing FCNC

A possible solution to have a large S2 contribution within 2HDMs

CASE : type II + FCNC

 $\mathcal{L}_{\text{yukawa}} = -\bar{Q}_L Y_u \tilde{H}_2 u_R - \bar{Q}_L Y_d H_1 d_R - \bar{L}_L Y_\ell H_1 \ell_R + \text{h.c.}$ $-\bar{Q}_L \epsilon'_u \tilde{H}_1 u_R - \bar{Q}_L \epsilon'_d H_2 d_R + \text{h.c.}$

• $\epsilon'_{u,d}$ is parameter that control FCNC (in the weak basis)

$2\,.\,2 HDMs$ allowing FCNC

A possible solution to have a large S2 contribution within 2HDMs

CASE : type II + FCNC

 $\mathcal{L}_{\text{yukawa}} = -\bar{Q}_L Y_u \tilde{H}_2 u_R - \bar{Q}_L Y_d H_1 d_R - \bar{L}_L Y_\ell H_1 \ell_R + \text{h.c.}$ $-\bar{Q}_L \epsilon'_u \tilde{H}_1 u_R - \bar{Q}_L \epsilon'_d H_2 d_R + \text{h.c.}$

- $\epsilon'_{u,d}$ is parameter that control FCNC (in the weak basis)
- In terms of mass eigenstate, one of CH-q-q terms is written as

 $-\sin\beta \,\bar{u}_R \,\epsilon_u^{\dagger} V_{\rm CKM} \,d_L$ ($\epsilon_{u,d}$ is that in the mass eigenstate)

2.2HDMs allowing FCNC

A possible solution to have a large S2 contribution within 2HDMs

CASE : type II + FCNC

$$\mathcal{L}_{\text{yukawa}} = -\bar{Q}_L Y_u \tilde{H}_2 u_R - \bar{Q}_L Y_d H_1 d_R - \bar{L}_L Y_\ell H_1 \ell_R + \text{h.c.}$$
$$-\bar{Q}_L \epsilon'_u \tilde{H}_1 u_R - \bar{Q}_L \epsilon'_d H_2 d_R + \text{h.c.}$$

- $\epsilon'_{u,d}$ is parameter that control FCNC (in the weak basis)
- In terms of mass eigenstate, one of CH-q-q terms is written as

How about the other types?

How about the other types?

How about the other types?

Summary of this section

1. 2HDMs without FCNC

★Not favored at all

2.2HDMs allowing FCNC

★Type II and X are possible to explain data at the cost of sizable FCNC in Yukawa term

Is there no constraint from the other observables?

Not yet. For more detail \rightarrow 3. Future prospects

Of course, such models induce direct FCNC process

★FCNC induced by ϵ_d is highly limited from B physics, while constraints on ϵ_u are rather weak.

Of course, such models induce direct FCNC process

★FCNC induced by ϵ_d is highly limited from B physics, while constraints on ϵ_u are rather weak.

★In particular, ϵ_u^{ct} is only constrained from $t \to c(h, H, A)$. For example, decay rate of t → c h turns out to be $\frac{\Gamma(t \to ch)}{\Gamma(t \to bW)} \simeq 0.12 \frac{|\epsilon_u^{tc}|^2 \cos^2(\alpha - \beta)}{\sin^2 \beta}$

FCNC process @ LHC

★It might be challenging for LHC (I don't know detail)

 3σ discovery limits for top FCN interactions at LHC, for an integrated luminosity of 100 fb⁻¹. The limits are expressed in terms of top decay branching ratios.

	Top decay	Single top			Top decay	Single top
$egin{aligned} t & ightarrow uZ(\gamma_\mu) \ t & ightarrow uZ(\sigma_{\mu u}) \ t & ightarrow u\gamma \ t & ightarrow uq \end{aligned}$	$\begin{array}{c} 3.6 \times 10^{-5} \\ 3.6 \times 10^{-5} \\ 1.2 \times 10^{-5} \\ -\end{array}$	$8.0 \times 10^{-5} \\ 2.3 \times 10^{-5} \\ 3.1 \times 10^{-6} \\ 2.5 \times 10^{-6}$		$t \rightarrow cZ(\gamma_{\mu}) t \rightarrow cZ(\sigma_{\mu\nu}) t \rightarrow c\gamma t \rightarrow cq$	3.6×10^{-5} 3.6×10^{-5} 1.2×10^{-5} -	3.9×10^{-4} 1.4×10^{-4} 2.8×10^{-5} 1.6×10^{-5}
$t \rightarrow u H$	5.8×10^{-5}	5.1×10^{-4}	($t \rightarrow cH$	5.8×10^{-5}	2.6×10^{-3}

Acta Physica Polonica B (2004)

FCNC process @ LHC

★It might be challenging for LHC (I don't know detail)

 3σ discovery limits for top FCN interactions at LHC, for an integrated luminosity of 100 fb⁻¹. The limits are expressed in terms of top decay branching ratios.

	Top decay	Single top		Top decay	Single top
$egin{aligned} t & ightarrow uZ(\gamma_\mu) \ t & ightarrow uZ(\sigma_{\mu u}) \ t & ightarrow u\gamma \ t & ightarrow uq \end{aligned}$	3.6×10^{-5} 3.6×10^{-5} 1.2×10^{-5} -	$8.0 \times 10^{-5} \\ 2.3 \times 10^{-5} \\ 3.1 \times 10^{-6} \\ 2.5 \times 10^{-6}$	$t \to cZ(\gamma_{\mu})$ $t \to cZ(\sigma_{\mu\nu})$ $t \to c\gamma$ $t \to cq$	3.6×10^{-5} 3.6×10^{-5} 1.2×10^{-5} -	3.9×10^{-4} 1.4×10^{-4} 2.8×10^{-5} 1.6×10^{-5}
$t \rightarrow u H$	5.8×10^{-5}	5.1×10^{-4}	$t \to cH$	5.8×10^{-5}	2.6×10^{-3}

Acta Physica Polonica B (2004)

FCNC process @ ILC

★If the excesses in R(D)&R(D*) will remain in future, Please try to measure THIS

3. Future prospects : super B factory

Tauonic B decays are good target for super B factory

★Super B factory will reduce statistical error in R(D)&R(D*)

- 3. Future prospects : super B factory
 - Tauonic B decays are good target for super B factory
- ★Super B factory will reduce statistical error in R(D)&R(D*)
- ★Furthermore, large number of signal events allow us to measure tau polarization, which is useful to confirm the NP interaction to be SCALAR or NOT

M.Tanaka and RW (2012)

10/10

• Tauonic B decays \checkmark

 \cdot Status of tauonic B decays \checkmark

- \cdot Analysis \checkmark
 - 1. 2HDMs
 - 2. 2HDMs allowing FCNC
 - 3. Future prospect : super B factory, ILC, (and LHC?)

Tauonic B decay : $\bar{B} \to D^{(*)} \tau \bar{\nu}$ $\bar{B} \to \tau \bar{\nu}$

Problem we focus on in this talk

BABAR result implies "charged Higgs is disfavored"

What we have shown

Usual 2HDMs cannot explain the BABAR result

2HDM allowing FCNC (type II & X) solves this problem

Super B factory, LHC and ILC are possible to confirm this scenario

Back up

Prediction on polarization (Appendix)

[Ex] R(D)&R(D*) are measured here

We can predict polarization from the measured values of R(D)&R(D*)

$(R(D), R(D^*))$		(0.37, 0.28)	
X	S_2	V_2	T
C_X^c	$-0.81 \pm i 0.87$	$0.03 \pm i 0.40$	$0.16 \pm i 0.14$
$P_{\tau}(D)$	0.44	0.33	0.22
$P_{\tau}(D^*)$	-0.35	-0.50	-0.26
P_{D^*}	0.51	0.45	0.32

Detailed representation (Appendix)

 $\mathcal{L}_{H^{\pm}} = \left(\bar{u}_R \mathbf{Z}_{\boldsymbol{u}}^{\dagger} V_{\text{CKM}} d_L + \bar{u}_L V_{\text{CKM}} \mathbf{Z}_{\boldsymbol{d}} d_R\right) H^+ + \text{h.c.}$

	Z_u	Z_d
Type I & X	$\frac{\sqrt{2}M_u}{v}\cot\beta - \epsilon_u\sin\beta(1+\cot^2\beta)$	$-\frac{\sqrt{2}M_d}{v}\cot\beta + \epsilon_d\sin\beta(1+\cot^2\beta)$
Type II & Y	$\frac{\sqrt{2}M_u}{v}\cot\beta - \epsilon_u\cos\beta(\tan\beta + \cot\beta)$	$\frac{\sqrt{2}M_d}{v}\tan\beta - \epsilon_d \sin\beta(\tan\beta + \cot\beta)$

Is it consistent with $B \rightarrow \tau \nu$? (Appendix) Component of FCNC matrix is different

$$C_{S_2}^u \simeq \frac{V_{tb}}{\sqrt{2}V_{ub}} \frac{vm_{\tau}}{m_{H^{\pm}}^2} (\epsilon_u^*)^{ut} \sin\beta \tan\beta$$
$$C_{S_2}^c \simeq \frac{V_{tb}}{\sqrt{2}V_{cb}} \frac{vm_{\tau}}{m_{H^{\pm}}^2} (\epsilon_u^*)^{ct} \sin\beta \tan\beta$$

Effective Lagrangian : $b \rightarrow q \tau \nu$

$$\mathcal{L}_{\text{eff}}^{\text{SM}} = C_{\text{SM}}^{\boldsymbol{q}} \bar{\boldsymbol{q}}_{\boldsymbol{L}} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{L} \quad \left(C_{\text{SM}}^{\boldsymbol{q}} = -2\sqrt{2}G_{F} V_{\boldsymbol{q}b} \right)$$

Input parameter :

 $\bar{B} \to \tau \bar{\nu}$

 V_{ub}

Strong

B meson decay constant :

 f_B

$$\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$$
Electroweak
$$V_{cb}$$
Strong
$$B \rightarrow D(*) \text{ form factors :}$$

$$V_1, S_1, A_1, R_{1,2,3}$$

$$(\bar{B} \rightarrow D) \qquad (\bar{B} \rightarrow D^*)$$

Input values to use here $~~B ightarrow auar{ u}$ $|V_{ub}|$ is determined by the fit to CKM unitarity triangle EW 0.6 0.5 Δm_{B_d} 0.4 $\eta 0.3$ $\overline{\Delta}m_{B_s}$ $|V_{ub}| = (3.38 \pm 0.15) \times 10^{-3}$ 0.2 $|V_{ub}|$ ϕ_1 0.2 0.4 0.6 0.8 1.0 0.0 f_B is obtained from Lattice study Strong (HPQCD2012) $f_B = (191 \pm 9) \text{MeV}$ $\langle 0|\bar{u}\gamma^{\mu}\gamma^{5}b|\bar{B}\rangle = f_{B}p^{\mu}$ Summary $\mathcal{B}(\bar{B} \to \tau \bar{\nu}) = \frac{\tau_B}{8\pi} G_F^2 |V_{ub}|^2 f_B^2 m_B m_\tau^2 \left(1 - \frac{m_\tau^2}{m_\tau^2}\right)^2$

Input values to use here $\ \bar{B} \to D^{(*)} \tau \bar{\nu}$

$$\left(\frac{\bar{B} \to D\ell\bar{\nu}}{dw} \left(\bar{B} \to D\ell\bar{\nu}\right) = \frac{G_F m_B^5}{48\pi^3} r^3 (1+r)^2 (w^2-1)^{3/2} V_1(w)^2 |V_{cb}|^2\right)$$

• Shape is parametrized as "slope parameter"

Caprini et.al.(1996)

Shape: $V_1(w) = V_1(1) \left[1 - 8\rho_1^2 z + (51\rho_1^2 - 10)z^2 - (252\rho_1^2 - 84)z^3 \right]$

Hight : $V_1(1)|V_{cb}|$

 $V_1(1)|V_{cb}| = (4.26 \pm 0.07 \pm 0.14) \times 10^{-2}$ $\rho_1^2 = 1.186 \pm 0.055$ 2.評価・予言・計算のための予備知識

Input values to use here $\ \bar{B} \to D^{(*)} \tau \bar{\nu}$

HQET

 $ar{B} o D au ar{
u}$ contains new form factor $S_1(w)$

 $S_1(w)$ is estimated by using HQET

$$\frac{S_1(w)}{V_1(w)} \simeq 0.981 + 0.041(w-1) - 0.015(w-1)^2$$

Summary

Input : $V_1(1)|V_{cb}|$ and ho_1^2 . Taking the ratio, $V_1(1)|V_{cb}|$ is canceled

$$R(D) = \frac{\Gamma(\bar{B} \to D\tau\bar{\nu})}{\Gamma(\bar{B} \to D\ell\bar{\nu})} \qquad R(D^*) = \frac{\Gamma(\bar{B} \to D^*\tau\bar{\nu})}{\Gamma(\bar{B} \to D^*\ell\bar{\nu})}$$

(Appendix)

• $471 \times 10^6 B\bar{B}$ pairs

• After "full reconstruction" and "Tau tagging" :

Decay	$N_{ m sig}$	$N_{ m norm}$	$\varepsilon_{ m sig}/arepsilon_{ m norm}$	$\mathcal{R}(D^{(*)})$	$\mathcal{B}(B \to D^{(*)} \tau \nu) (\%)$	$\Sigma_{\rm stat}$	$\Sigma_{\rm tot}$
$B^- \to D^0 \tau^- \overline{\nu}_{\tau}$	314 ± 60	1995 ± 55	0.367 ± 0.011	$0.429 \pm 0.082 \pm 0.052$	$0.99 \pm 0.19 \pm 0.13$	5.5	4.7
$B^- \to D^{*0} \tau^- \overline{\nu}_{\tau}$	639 ± 62	8766 ± 104	0.227 ± 0.004	$0.322 \pm 0.032 \pm 0.022$	$1.71 \pm 0.17 \pm 0.13$	11.3	9.4
$\overline{B}{}^0 \to D^+ \tau^- \overline{\nu}_{\tau}$	177 ± 31	986 ± 35	0.384 ± 0.014	$0.469 \pm 0.084 \pm 0.053$	$1.01 \pm 0.18 \pm 0.12$	6.1	5.2
$\overline{B}{}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}$	245 ± 27	3186 ± 61	0.217 ± 0.005	$0.355 \pm 0.039 \pm 0.021$	$1.74 \pm 0.19 \pm 0.12$	11.6	10.4
$\overline{B} \rightarrow D\tau^- \overline{\nu}_{\tau}$	489 ± 63	2981 ± 65	0.372 ± 0.010	$0.440 \pm 0.058 \pm 0.042$	$1.02 \pm 0.13 \pm 0.11$	8.4	6.8
$\overline{B} \rightarrow D^* \tau^- \overline{\nu}_{\tau}$	888 ± 63	11953 ± 122	0.224 ± 0.004	$0.332 \pm 0.024 \pm 0.018$	$1.76 \pm 0.13 \pm 0.12$	16.4	13.2

BaBar, arXiv:1205.5442

SM predictionExp. result $\bar{B} \rightarrow D \tau \bar{\nu}$ 0.302 ± 0.015 0.43 ± 0.06 $\bar{B} \rightarrow D^* \tau \bar{\nu}$ 0.254 ± 0.005 0.33 ± 0.04

MSSM: コメントだけ

基本的に、
・Treeだと「type II」
・Loopを考慮すると「type II + FCNC」

つまり、
$$\left(C_{S_2}^c \simeq \frac{V_{tb}}{\sqrt{2}V_{cb}} \frac{vm_{\tau}}{m_{H^{\pm}}^2} (\epsilon_u^*)^{ct} \sin\beta \tan\beta\right)$$
が有力候補になる

 ϵ_u^{tc} はSUSY粒子のループから出てきて、だいたい

 $\epsilon_u^{tc} \sim \frac{\alpha_s}{4\pi} \times f(\text{MSSM parameter})$

コメント:

・cMSSMなどの"自然な"シナリオでは ϵ_u^{tc} を大きくできない ・何でもアリにすると何でもアリ? MSSM

$$C_{S_1} = -\frac{m_b m_\tau}{m_{H^{\pm}}^2} \cdot \frac{\tan^2 \beta}{(1 + \Delta_e \tan \beta)(1 + \Delta_d \tan \beta)}$$
$$C_{S_2} = -\frac{m_c m_\tau}{m_{H^{\pm}}^2} \cdot \frac{1}{1 + \Delta_e \tan \beta} \qquad \text{I+oh, Komine, Okada (2010)}$$

$$\Delta_{e} = \frac{m_{Z}^{2} - m_{W}^{2}}{4v^{2}\pi^{2}} \,\mu M_{\tilde{B}} \,f(M_{\tilde{B}}, M_{\tilde{L}_{L}}, M_{\tilde{L}_{R}})$$
$$\Delta_{d} = \frac{2\alpha_{s}}{3\pi} \,\mu^{*} M_{\tilde{g}} \,f(M_{\tilde{g}}, M_{\tilde{D}_{L}}, M_{\tilde{D}_{R}})$$

$$f(a,b,c) = \frac{a^2b^2\ln\frac{a^2}{b^2} + b^2c^2\ln\frac{b^2}{c^2} + c^2a^2\ln\frac{c^2}{a^2}}{(a^2 - b^2)(b^2 - c^2)(c^2 - a^2)}$$

<u>Vector operators</u>

$$\mathcal{O}_{V_1} = \bar{c}_L \gamma^\mu b_L \,\bar{\tau}_L \gamma_\mu \nu_L \qquad \mathcal{O}_{V_2} = \bar{c}_R \gamma^\mu b_R \,\bar{\tau}_L \gamma_\mu \nu_L$$

$$\bar{B} \to D\tau\bar{\nu}$$

$$\langle D|\bar{c}\gamma^{\mu}\gamma^{5}b|\bar{B}\rangle = 0 \quad \Longrightarrow \quad \langle D\tau\bar{\nu}|\mathcal{O}_{V_{1}}|\bar{B}\rangle = \langle D\tau\bar{\nu}|\mathcal{O}_{V_{2}}|\bar{B}\rangle$$

$$\bar{B} \to D^* \tau \bar{\nu}$$

$$\langle D^* | \bar{c} \gamma^{\mu} \gamma^5 b | \bar{B} \rangle \gg \langle D^* | \bar{c} \gamma^{\mu} b | \bar{B} \rangle$$

$$\langle D^* \tau \bar{\nu} | \mathcal{O}_{V_1} | \bar{B} \rangle \sim - \langle D^* \tau \bar{\nu} | \mathcal{O}_{V_2} | \bar{B} \rangle$$

Scalar operators

 $\mathcal{O}_{S_1} = \bar{c}_L b_R \, \bar{\tau}_R \nu_L$

$$\mathcal{O}_{S_2} = \bar{c}_R b_L \, \bar{\tau}_R \nu_L$$

$$\bar{B} \to D\tau\bar{\nu}$$

$$\langle D|\bar{c}\gamma^5 b|\bar{B}\rangle = 0 \quad \longrightarrow \quad \langle D\tau\bar{\nu}|\mathcal{O}_{S_1}|\bar{B}\rangle = \langle D\tau\bar{\nu}|\mathcal{O}_{S_2}|\bar{B}\rangle$$

$$\bar{B} \to D^* \tau \bar{\nu}$$

$$\langle D^* | \bar{c}b | \bar{B} \rangle = 0$$

$$\diamond \quad \langle D^* \tau \bar{\nu} | \mathcal{O}_{S_1} | \bar{B} \rangle = - \langle D^* \tau \bar{\nu} | \mathcal{O}_{S_2} | \bar{B} \rangle$$

Tau polarization is useful but,

- How is it measured ?
- Capability of new physics search ?

Identification of tau

 $\bullet \quad \tau \to \pi \nu : N \sim 70$

 $\tau \to l \nu \bar{\nu}$: $N \sim 100$

@B factory

BABAR(2008), Belle (2009)

How to measure tau polarization

$$\frac{d\Gamma}{dq^2 dz} (\bar{B} \to D\tau\bar{\nu} \to \cdots) = \frac{d\Gamma}{dq^2} (\bar{B} \to D\tau\bar{\nu}) \times \underline{F(\cdots)}$$
$$\tau \to \pi\nu$$
$$\tau \to l\nu\bar{\nu}$$
$$q^2 = (p_B - p_D)^2$$

$$F(\cdots) = Br(\cdots) \left[f(z,q^2) + P_\tau(q^2) g(z,q^2) \right]$$

$$\int f(z,q^2)dz = 1, \quad \int g(z,q^2)dz = 0$$

- In rest frame of q^{μ}
- $p^{\mu}_{\bar{B}}, p^{\mu}_{D} \rightarrow q^2, E_{\tau}$
- $E_{\tau}, E_{\pi(l)} \rightarrow z$

Tau polarization can be determined by pion (or lepton) energy distribution of the decay rate of this chain.

Estimation of statistical error of tau polarization

$$\delta P_{\tau} = \frac{1}{S\sqrt{N}} \qquad P_{\tau} = P_{\tau 0} \pm \delta P_{\tau}$$

 $N: \# \text{ of event for } \bar{B} \to D\tau \bar{\nu} \to \cdots$

$$N_{(\pi)} \sim 70, \ N_{(l)} \sim 100$$
 B factory
 $N_{(\pi)} \sim 2000, \ N_{(l)} \sim 3000$ super B factory

S: "sensitivity"

$$S^{2} = \int dz \frac{g^{2}}{f + P_{\tau}g}$$
$$S_{(\pi)} \sim 0.6, \quad S_{(l)} \sim 0.2$$

Estimation of statistical error of tau polarization

$$\delta P_{\tau} = \frac{1}{S\sqrt{N}} \qquad P_{\tau} = P_{\tau 0} \pm \delta P_{\tau}$$

Super B factory:

$$\delta P_{\tau(\pi)} \sim 0.04, \ \delta P_{\tau(l)} \sim 0.08$$
 We may see H^{\pm} effect

Form Factors (Tensor)

 $\bar{B} \to D \tau \bar{\nu}$

$$\langle D(p_D) | \bar{c} \sigma^{\mu\nu} b | \bar{B}(p_B) \rangle = iT(q^2)(p_B^{\mu} p_D^{\nu} - p_B^{\nu} p_D^{\mu})$$
$$\langle D(p_D) | \bar{c} \sigma^{\mu\nu} \gamma^5 b | \bar{B}(p_B) \rangle = T(q^2) \epsilon^{\mu\nu\alpha\beta} p_{D\alpha} p_{B\beta}$$

 $\bar{B} \to D^* \tau \bar{\nu}$

 $\langle D^*(p_D) | \bar{c} \sigma^{\mu\nu} b | \bar{B}(p) \rangle = \epsilon^{\mu\nu\alpha\beta} [T_1 \varepsilon^*_{\alpha} p_{B\beta}]$

 $+T_2\varepsilon_{\alpha}^*p_{D\beta}+T_3(\varepsilon^*\cdot p_B)p_{B\alpha}p_{D\beta}]$

 $\langle D^*(p_D)|\bar{c}\sigma^{\mu\nu}\gamma^5b|\bar{B}(p)\rangle = \cdots$

 $i\partial_{\mu}\left\{\bar{c}[\gamma^{\mu},\gamma^{\nu}]b\right\} = -2(m_b + m_c)\bar{c}\gamma^{\nu}b - 2(i\partial^{\nu}\bar{c})b + 2\bar{c}(i\partial^{\nu}b)$ $2\sqrt{r}$ (-r $m_{h} + m_{h}$

$$T(q^2) = \frac{2\sqrt{r}}{q^2} \left\{ m_B^2 \frac{1}{m_b - m_c} (w+1) S_1(q^2) - \frac{m_b + m_c}{1 + r} 2V_1(q^2) \right\}$$