# The 4-Dimensional Composite Higgs Model and the 125 GeV Higgs-like signals at the LHC

Stefano Moretti (NExT Institute, Southampton & RAL) With D. Barducci, A. Belyaev, M.S. Brown, S. De Curtis and G.M. Pruna Based on arXiv:1302.2371

HPNP2013

16 February 2013

Outline 4DCHM Implementation Results Results Conclusions Conclusions Backup slid

### Outline

### Preamble:

- A Higgs-like signal has been observed at the LHC (supplemental earlier evidence from Tevatron as well)
- Both ATLAS and CMS confirm it
- Mass measurements around 125 GeV
- Candidate data samples include  $\gamma\gamma$ , ZZ\*, WW\*,  $b\bar{b}$  and  $\tau^+\tau^-$  (in order of decreasing accuracy and/or significance)

### Motivation:

- Some inconsistency with the SM predictions exists, particularly in the (most significant)  $\gamma\gamma$  channel
- It is therefore mandatory to explore BSM solutions
- Whereas the 'fundamental Higgs' hypothesis is being quantitatively tested in several models, the 'composite Higgs' one has only been marginally studied in comparison
- All (pseudo)scalar objects discovered in Nature have always been fermion composites

Outline 4DCHM Implementation Results Results Conclusions Conclusions Backup slid

### Outline

### ATLAS results



All channels (left) and  $\gamma\gamma$  (right)

Outline 4DCHM Implementation Results Results Conclusions Conclusions Backup slic

### Outline

### CMS results



Whole mass range (left) and mass fit to excess (right)

Outline 4DCHM Implementation Results Results Conclusions Conclusions Backup slic

### Outline

### Desclaimer:

- This talk is about a phenomenological analysis aimed at capturing the essentials of CHMs, it is not about building them and/or comparing their pros and cons
- It thus adopts a specific CHM realisation that it is entirely calculable, the 4DCHM, apart from its UV structure
- For an analysis of the Higgs data, knowledge of the latter is not strictly necessary

#### Content:

- The 4DCHM (touch and go)
- Implementation (trust me, it is damn complicated but it is correct)
- Results (not exciting as one might have hoped, yet not so frustrating as in many other BSM scenarios)

ıtline 4DCHM Implementation Results Results Conclusions Conclusions Backup slic

### 4DCHM

Even with the discovery of a Higgs-like particle we know that the SM is not the end of the story

- Hierarchy problem
- Naturalness problem

Two possible scenarios

Weak coupling

Supersymmetry

Strong coupling

- Technicolor
- Extra dimensions
- Composite Higgs

### A possible scenario

- Higgs doublet arise from a strong dynamics
- Higgs as a (Pseudo) Nambu-Goldstone Boson (PNGB)

Higgs boson is naturally light

Idea from the '80s: spontaneous breaking of a symmetry  $G \to H$  Georgi and Kaplan, Phys.Lett. B136, 183 (1984)

4DCHM Implementation Results Results Conclusions Conclusions Backup slid-

### 4DCHM

Simplest example was considered by Agashe, Contino and Pomarol (arXiv:0412089)

• Symmetry pattern  $SO(5) \rightarrow SO(4)$ 

The coset SO(5)/SO(4) turn out to be one of the most economical:

4 Pseudo Nambu-Goldstone Bosons (PNGBs) (minimum number to be identified with the SM Higgs doublet)

Potential generated by radiative corrections  $\rightarrow$  light Higgs

(a la Coleman, Weinberg '73)

Extra-particle content is present

- Spin 1 resonances
- Spin 1/2 resonances

4DCHM of De Curtis, Redi, Tesi (arXiv:1110.1613): highly deconstructed 4D version of general 5D theory

- Just two sites: Elementary and Composite sectors
- Mechanism of partial compositness (e.g. mixing between elementary and composite states  $3^{rd}$  generation quarks, cfr  $\gamma-\rho$  mixing in QCD)

Effective 4D model, hence needs UV completion, (largely) irrelevant for Higgs sector

Minimal: single SO(5) multiplet of resonances from composite sector (only dof's accessible at the LHC)

The 4DCHM represents the framework to study CHMs in a complete and computable way

Generic features of all relevant CHMs are captured

### Elementary sector and composite sector

### ELEMENTARY SECTOR

- $SU(2)_L \otimes U(1)_Y$  fields
- Elementary fermions
  - $t_L b_L t_R b_R$

Fermions are embedded in fundamental representations of  $SO(5) \otimes U(1)_X$ 

### COMPOSITE SECTOR

- $SO(5) \otimes U(1)_X$ Gauge fields
- New physics fermions

$$\mathbf{5} \rightarrow \textbf{(2,2)} \oplus \textbf{(1,1)}$$

First two generation quarks and all leptons considered as in SM.

### Bosonic sector



De Curtis, Redi, Tesi '11

$$\Omega_1 = exp(\frac{i\Pi}{2f})$$
  $\Pi$  Goldstone Matrix

f scale of the symmetry breaking (compositeness scale)

$$\Phi_2 = \Omega_1 \phi_0 \quad \phi_0 = (0, 0, 0, 0, 1) = \delta^{i5}$$

11 new gauge resonances

5 Neutral

6 Charged (c.c.)

### Bosonic sector mass spectrum

Bosonic sector mass spectrum



Gauge boson mass  $\geq 1.5~\text{TeV}$ 

$$M_Z^2 \simeq rac{f^2}{4} g_*^2 (s_{ heta}^2 + rac{s_{\psi}^2}{2}) \xi \ M_{Z_1}^2 = f^2 g_*^2$$

$$an heta = s_{ heta}/c_{ heta} = g_0/g_* \ an \psi = s_{\psi}/c_{\psi} = \sqrt{2}g_{0Y}/g_* \ \xi = sin(\frac{v}{2f}) \simeq \frac{v}{2f} \ v = \langle h \rangle = 246 \text{ GeV}$$

Model parameters (gauge):

$$f \simeq 1 \; {\sf TeV}$$
 and  $g_*$  perturbative  $(\leq 4\pi)$   $M_* = f \, g_*$ 

### Fermionic sector



Explicit breaking of SO(5) through Yukawas in composite sector  $Y_T$ ,  $Y_R$ 

20 new fermionic resonances

- 10 in the top sector
- 10 in the bottom sector

Model parameters (fermion sector)

$$m_*$$
 $\Delta_{tL}, \Delta_{tR}, Y_T, m_{Y_T},$ 
 $\Delta_{bL}, \Delta_{bR}, Y_B, m_{Y_B}$ 

Elementary fermions mix with composite ones via link fields  $\Omega_1$ 

Fermionic sector mass spectrum

## Top and bottom sector ( $\tilde{X} = X/m_*$ )

Fermionic sector mass spectrum  $m_* \simeq 1 TeV$   $m_{top} = 172 GeV$ 

$$egin{aligned} m_b^2 &\propto \xi rac{m_*^2}{2} \tilde{\Delta}_{b_L}^2 \tilde{\Delta}_{b_R}^2 \tilde{Y}_B^2 \ m_t^2 &\propto \xi rac{m_*^2}{2} \tilde{\Delta}_{t_L}^2 \tilde{\Delta}_{t_R}^2 \tilde{Y}_T^2 \ m_{T_1}^2 &\simeq rac{m_*^2}{2} \left( 2 + \tilde{M}_{Y_T}^2 - \tilde{M}_{Y_T} \sqrt{4 + \tilde{M}_{Y_T}^2} 
ight) \ m_{B_1}^2 &\simeq rac{m_*^2}{2} \left( 2 + \tilde{M}_{Y_B}^2 - \tilde{M}_{Y_B} \sqrt{4 + \tilde{M}_{Y_B}^2} 
ight) \end{aligned}$$

Fermionic resonance mass ≃1 TeV

tline 4DCHM Implementation Results Results Conclusions Conclusions Backup slid

### 4DCHM

### Higgs sector (at a glance)

- Four PNGBs in the vector representation of SO(4) one of which is composite Higgs boson.
- Physical Higgs particle acquires mass through one-loop generated potential (Coleman-Weinberg)
- 4DCHM choice for fermionic sector gives finite potential, i.e., from location of minimum one extracts  $m_H$  and  $\langle h \rangle$
- Partial compositness:
- SM gauge/fermion states couple to Higgs via mixing with composite particles
- 2. 4DCHM gauge/fermion resonances couple to Higgs directly

• For natural choice of parameters,  $m_H$  consistent with 125 GeV



Masses of lightest fermionic partners as a function of Higgs mass 165 GeV, with  $\leq m_t \leq$  175 GeV, for (left) f=500 GeV and (right) f=800 GeV. Fermionic parameters are varied between .5 and 3 TeV. Gauge contribution corresponds to  $f_1=f_2=\sqrt{2}f$  and  $M_{Z',W'}=2.5$  TeV. (From De Curtis, Redi, Tesi (arXiv:1110.1613).)

4DCHM Implementation Results Results Conclusions Conclusions Backup slid.

### Particle spectrum

The particle spectrum of the 4DCHM is

- SM leptons:  $e, \mu, \tau, \text{ and } \nu_e, \nu_\mu, \nu_\tau$
- SM quarks; u, d, c, s, t, b
- SM gauge bosons:  $\gamma, Z^0, W^{\pm}, g$
- 5 extra neutral gauge bosons:  $Z'_{i=1,\dots,5}$
- 3 extra charged gauge bosons:  $W_{i=1,2,3}^{\prime\pm}$
- 8 extra charged 2/3 fermions:  $t'_{i=1,\dots,8}$
- 8 extra charged -1/3 fermions:  $b'_{i=1,...,8}$
- 2 charged 5/3 fermions:  $T'_{i=1,2}$
- 2 charged -4/3 fermions:  $B'_{i=1,2}$
- Higgs boson

utline 4DCHM **Implementation** Results Results Conclusions Conclusions Backup slid-

### Calculation

- More than 3000 Feynman rules! A non-automated approach would have been impossible
- Implementation of the 4DCHM in numerical tools:
  - LanHEP for automated generation of Feynman rules A.Semenov (arXiv:1005.1909)
  - CalcHEP for automated calculation of physical observables (cross sections, widths...) Belyaev, Christensen and Pukhov (arXiv:1207.6082)
- Uploaded onto HEPMDB: http://hepmdb.soton.ac.uk/ under 4DCHM(HAA+HGG)

### Experimental constraints

- Implemented outside LanHEP/CalcHEP tools:
  - $\alpha$ ,  $M_Z$  and  $G_F$
  - Top, bottom and Higgs masses (same for 4DCHM & SM)

$$165~{
m GeV} \leq m_t \leq 175~{
m GeV}$$
 $2~{
m GeV} \leq m_b \leq 6~{
m GeV}$ 
 $124~{
m GeV} \leq m_H \leq 126~{
m GeV}$ 

- $Zb\bar{b}$  and  $Zt\bar{t}$  couplings
- Standalone Mathematica program performs scans on model parameters
- Output can be read by LanHEP/CalcHEP to compute physical observables

### Results

### Define benchmarks

- 4DCHM parameter scans with f and  $g_*$  fixed to:
  - (a) f = 0.75 TeV and  $g^* = 2$
  - (b) f = 0.8 TeV and  $g^* = 2.5$
  - (c) f = 1 TeV and  $g^* = 2$
  - (d)  $f = 1 \text{ TeV} \text{ and } g^* = 2.5$
  - (e) f = 1.1 TeV and  $g^* = 1.8$
  - (f) f = 1.2 TeV and  $g^* = 1.8$
- All other parameters varied:
  - 0.5 TeV  $\leq m_*$ ,  $\Delta_{tL}$ ,  $\Delta_{tR}$ ,  $Y_T$ ,  $M_{Y_T}$ ,  $Y_B$ ,  $M_{Y_B} \leq$  5 TeV 0.05 TeV  $\leq \Delta_{bL}$ ,  $\Delta_{bR} \leq$  0.5 TeV
- Total number of random points for each  $(f, g_*)$ :  $\approx 15 M$ .
- Survival rate of  $\mathcal{O}(10^{-7})$ , variations amongst  $(f, g_*)$ s  $\leq 30\%$
- 4DCHM highly constrained, phenomenologically interesting

DCHM Implementation Results Results Conclusions Conclusions Backup s

### Results

### Limits on heavy gauge bosons and fermions

Call these Z', W', t' and b'

- Bosons:
  - 1. EWPTs (LEP, SLC & Tevatron) sets  $M_{Z',W'} \geq 1.5$  TeV
  - 2. Z', W' have poor lepton rates, hence no stronger limits from direct searches (Tevatron & LHC)
- Fermions:
  - 1. Direct searches (LHC) more constraining, assume pair production (7 TeV)
  - 2. CMS with 5 fb<sup>-1</sup>, BR( $t' \rightarrow W^+ b$ ) = 100% CMS with 1.14 fb<sup>-1</sup>, BR( $t' \rightarrow Zt$ ) = 100%
  - 3. CMS with 4.9 fb<sup>-1</sup>, BR( $b' \rightarrow W^- t$ ) = 100% CMS with 4.9 fb<sup>-1</sup>, BR( $b' \rightarrow Zb$ ) = 100%
  - 4. Limit on  $T_1$  and  $B_1$  about 400 GeV, but it could be slightly lower

utline 4DCHM Implementation Results **Results** Conclusions Conclusions Backup slic

### Results

### Limits on $m_{T_1}$



Black line is cross section assuming 100% BRs, red line is 95% CL observed limit and purple circles are 4DCHM points for f=1 TeV and  $g_*=2$ . Dotted-red line corresponds to extrapolations of experimental results.

utline 4DCHM Implementation Results **Results** Conclusions Conclusions Backup slid

### Results

### Limits on m<sub>B1</sub>



Black line is cross section assuming 100% BRs, red line is 95% CL observed limit and purple circles are 4DCHM points for f=1 TeV and  $g_*=2$ . Dotted-red line corresponds to extrapolations of experimental results.

### Results

• Define  $R(\mu)$  parameters, i.e., the observed events over SM:

$$R_{YY} = \frac{\sigma(pp \to HX)|_{\text{4DCHM}} \times \text{BR}(H \to YY)|_{\text{4DCHM}}}{\sigma(pp \to HX)|_{\text{SM}} \times \text{BR}(H \to YY)|_{\text{SM}}}$$

$$YY = \gamma \gamma$$
,  $b\bar{b}$ ,  $WW$ ,  $ZZ$  (neglect  $\tau^+\tau^-$ )

Relevant hadro-production processes:

$$gg o H ext{ (gluon-gluon fusion)} \quad q ar q(') o VH ext{ (Higgs-strahlung)}$$
  $V = W, Z$ 

Convenient to re-write (valid at LO)

$$\begin{split} R_{YY}^{Y'Y'} &= \frac{\Gamma(H \to Y'Y')|_{\mathrm{4DCHM}} \times \Gamma(H \to YY)|_{\mathrm{4DCHM}}}{\Gamma(H \to Y'Y')|_{\mathrm{SM}} \times \Gamma(H \to YY)|_{\mathrm{SM}}} \frac{\Gamma_{\mathrm{tot}}(H)|_{\mathrm{SM}}}{\Gamma_{\mathrm{tot}}(H)|_{\mathrm{4DCHM}}} \\ Y'Y' &= gg, \ VV \end{split}$$

ne 4DCHM Implementation Results **Results** Conclusions Conclusions Backup sli

### Results

|                    | ATLAS         | CMS                                  |
|--------------------|---------------|--------------------------------------|
| $R_{\gamma\gamma}$ | $1.8 \pm 0.4$ | $1.564^{+0.460}_{-0.419}$            |
| $R_{ZZ}$           | $1.0 \pm 0.4$ | $0.807^{+0.349}_{-0.280}$            |
| $R_{WW}$           | $1.5\pm0.6$   | $0.699_{-0.232}^{-0.230}$            |
| $R_{bb}$           | $-0.4\pm1.0$  | $1.075^{+0.\overline{593}}_{-0.566}$ |

Summary of LHC measurements of some R parameters from latest ATLAS (ATLAS-CONF-2012-170) and CMS (CMS-PAS-HIG-12-045) data.

- For  $YY=\gamma\gamma,WW,ZZ$  take Y'Y'=gg while for  $YY=b\bar{b}$  take Y'Y'=VV
- Use  $f=1~{\rm TeV}$  and  $g_*=2$  for illustration, features generic to 4DCHM

4DCHM Implementation Results Results Conclusions Conclusions Backup slide

- Use  $ZZ^* o 4\ell$  and  $WW^* o 2\ell 2\nu_\ell$  (BRs different in 4DCHM)
- Both below 1 mostly, some points above, strong correlation suggests common cause for effect



Correlation between  $R_{\gamma\gamma}$  and  $R_{VV}$ , VV=WW (red) and ZZ (purple), for f=1 TeV and  $g_*=2$ . All points compliant with direct searches for t's and b's.

- Introduce reduced couplings a la LHC HXSWG (A. Denner et al (arXiv:1209.0040))
- We can cast Rs in terms of  $\kappa$ 's

$$R_{YY}^{Y'Y'} = \frac{\kappa_{Y'}^2 \kappa_{Y}^2}{\kappa_H^2}$$

$$Y, Y' = b/\tau/g/\gamma/V$$

$$\kappa_{b/\tau/g/\gamma/V}^2 = \frac{\Gamma(H \to b\bar{b}/\tau^+\tau^-/gg/\gamma\gamma/VV)|_{\rm 4DCHM}}{\Gamma(H \to b\bar{b}/\tau^+\tau^-/gg/\gamma\gamma/VV)|_{\rm SM}}$$

$$\kappa_H^2 = \frac{\Gamma_{\mathrm{tot}}(H)|_{\mathrm{4DCHM}}}{\Gamma_{\mathrm{tot}}(H)|_{\mathrm{SM}}}.$$

ıtline 4DCHM Implementation Results Results Conclusions Conclusions Backup slic

### Results

•  $\kappa_H$  smaller: b - b' mixing, all Higgs rates rise



Distribution of  $\kappa_H$  versus (left)  $m_{T_1}$  and (right)  $m_{B_1}$  for f=1 TeV and  $g_*=2$ . Regions to left of vertical dashed-red lines excluded by t' and b' direct searches.

tline 4DCHM Implementation Results Results Conclusions Conclusions Backup slid

- $\kappa_g$  smaller: t t' mixing, t-loop dominant
- Subtle look cancellations/compensations



Distribution of  $\kappa_g$  versus (left)  $m_{T_1}$  and (right)  $m_{B_1}$  for f=1 TeV and  $g_*=2$ . Regions to left of vertical dashed-red lines excluded by t' and b' direct searches.

line 4DCHM Implementation Results Results Conclusions Conclusions Backup slid

- $\kappa_{\gamma}$  (less) smaller: t-t' mixing, t-loop subdominant
- Again, subtle look cancellations/compensations



Distribution of  $\kappa_{\gamma}$  versus (left)  $m_{T_1}$  and (right)  $m_{B_1}$  for f=1 TeV and  $g_*=2$ . Regions to left of vertical dashed-red lines excluded by t' and b' direct searches.

4DCHM Implementation Results Results Conclusions Conclusions Backup slid-

- $T_1$  and  $B_1$  masses play significant role, revisit  $R_{\gamma\gamma}$
- ullet Leakage of points towars large  $R_{\gamma\gamma}>1$  at small masses
- Asymptotic result for  $m_{T_1,B_1} o \infty$  can be wrong by 10+%



Distributions of  $R_{\gamma\gamma}$  versus (left)  $m_{T_1}$  and (right)  $m_{B_1}$  for f=1 TeV and  $g_*=2$ . Regions to left of vertical dashed-red lines excluded by t' and b' direct searches.

ie 4DCHM Implementation Results **Results** Conclusions Conclusions Backup slide

### Results

• Compare all benchmarks to SM & data



4DCHM against data for all  $(f, g_*)$  benchmarks. Points compliant with t' and b' direct searches.

tline 4DCHM Implementation Results **Results** Conclusions Conclusions Backup slid

### Results

• Perform  $\chi^2$  fit and compare to SM, can be better



4DCHM  $\chi^2$  fits for all benchmarks in  $(f, g_*)$ . Line is SM. Points compliant with t' and b' direct searches.

line 4DCHM Implementation Results Results Conclusions Conclusions Backup slid

### Results

• Add  $m_{\widetilde{T}_1} >$  600 GeV (no limits on  $m_{\widetilde{B}_1})$ 



4DCHM  $\chi^2$  fits for all benchmarks in  $(f, g_*)$ . Line is SM. Points compliant with t' and b' plus  $\tilde{T}_1$  direct searches.

4DCHM Implementation Results Results Conclusions Conclusions Backup slid

### Conclusions

### • Summary:

- 1. 4DCHM could provide better explanation than SM to LHC data pointing to Higgs discovery at 125–126 GeV (better  $\chi^2$ 's)
- 2. Substantial parameter space scans show possible moderate enhancement in  $H \to \gamma \gamma$ , i.e.,  $R_{\gamma \gamma} \approx 1.1$
- 3.  $R_{\gamma\gamma}$  could grow to  $\approx$  1.3, if t' and b' masses just below results of our extrapolations
- 4. 4DCHM main effect is reduction of *Hbb* due to b-b' mixing, smaller  $\Gamma_{\rm tot}(H)$
- 5. Competing effects from Hgg also smaller,  $H\gamma\gamma$  almost stable
- 6. Reduction of  $\Gamma_{\rm tot}(H)$  calls for LHC XSGWG coupling fits with  $\kappa_H < 1$  (common to other BSM theories, e.g., SUSY)
- 7. Relevant by-product: approximations assuming t' and b' masses infinite cannot be accurate
- 8. Composite Higgs solution to LHC data seemingly possible and wanting light fermionic partners
- 9. Revisit t' & b' searches in 4DCHM dependent way (can use HPC behind HEPMDB)

### Conclusions

#### Outlook:

- 1. ATLAS & CMS allow for  $\kappa_H \geq 1$
- 2. Need  $\kappa_H < 1$  in 4DCHM (also useful for other BSMs, e.g., SUSY, 2HDMs Higgs mixing)



CMS fits to  $\kappa_g$  and  $\kappa_\gamma$  for (left)  $\kappa_H = 1$  and (right)  $\kappa_H > 1$ .

• SM left doublet can be embedded in  $(\mathbf{2},\mathbf{2})_{2/3}\in\Psi_{\mathcal{T}}$  as,

$$\mathbf{5}_{2/3} = (\mathbf{2}, \mathbf{2})_{2/3} \oplus (\mathbf{1}, \mathbf{1})_{2/3}, \qquad (\mathbf{2}, \mathbf{2})_{2/3} = \begin{pmatrix} T & T_{\frac{5}{3}} \\ B & T_{\frac{2}{3}} \end{pmatrix}$$

- $t_R$  coupled to singlet in different  ${f 5}_{2/3}$  representation,  $\Psi_{\widetilde{T}}$
- $b_R$  coupled to singlrt in a  ${f 5}_{-1/3}$   $(\Psi_{\widetilde{B}})$
- To generate b Yukawa it is necessary (by  $U(1)_X$  symmetry) to couple SM doublet to second doublet in  ${\bf 5}_{-1/3}$  ( $\Psi_B$ ) which contains

$$\mathbf{5}_{-1/3} = (\mathbf{2}, \mathbf{2})_{-1/3} \oplus (\mathbf{1}, \mathbf{1})_{-1/3}, \qquad (\mathbf{2}, \mathbf{2})_{-1/3} = \begin{pmatrix} B_{-\frac{1}{3}} & T' \\ B_{-\frac{4}{3}} & B' \end{pmatrix}$$

### Lagrangian (gauge and fermions)

$$\begin{split} \mathcal{L}_{gauge} &= \frac{f_{1}^{2}}{4} Tr |D_{\mu}\Omega_{1}|^{2} + \frac{f_{2}^{2}}{2} (D_{\mu}\Phi_{2}) (D_{\mu}\Phi_{2})^{T} \\ &- \frac{1}{4} \rho_{\mu\nu}^{\tilde{A}} \rho^{\tilde{A}\mu\nu} - \frac{1}{4} F_{\mu\nu}^{\tilde{W}} F^{\tilde{W}\mu\nu} \\ &(\uparrow \text{ composite } \uparrow \text{ elementary kinetic terms}) \\ \mathcal{L}_{\textit{fermions}} &= \mathcal{L}_{\textit{fermions}}^{\textit{el}} + (\Delta_{t_{L}} \bar{q}_{L}^{\textit{el}} \Omega_{1} \Psi_{T} + \Delta_{t_{R}} \bar{t}_{R}^{\textit{el}} \Omega_{1} \Psi_{\tilde{T}} + h.c.) \\ &+ \bar{\Psi}_{T} (i \hat{D}^{\tilde{A}} - m_{*}) \Psi_{T} + \bar{\Psi}_{\tilde{T}} (i \hat{D}^{\tilde{A}} - m_{*}) \Psi_{\tilde{T}} \\ &- (Y_{T} \bar{\Psi}_{T,L} \Phi_{2}^{T} \Phi_{2} \Psi_{\tilde{T},R}^{T} + M_{Y_{T}} \bar{\Psi}_{T,L} \Psi_{\tilde{T},R}^{T} + h.c.) + (T \to B). \end{split}$$

Covariant derivatives

$$\begin{split} D^{\mu}\Omega_1 &= \partial^{\mu}\Omega_1 - ig_0\tilde{W}\Omega_1 + ig_*\Omega_1\tilde{A}, \quad D_{\mu}\Phi_2 = \partial_{\mu}\Phi_2 - ig_*\tilde{A}\Phi_2 \\ \tilde{W}[\tilde{A}] \text{ mediators of } SU(2)_L \otimes U(1)_Y \left[SO(5) \otimes U(1)_X\right] \end{split}$$

•  $SO(5)\otimes U(1)_X \to SO(4)\otimes U(1)_X$  from SO(5) vector

$$\Phi_2 = \phi_0 \Omega_2^T$$
 where  $\phi_0^i = \delta^{i5}$ .

- $\Psi_{T,B}$  and  $\tilde{\Psi}_{T,B}$  fundamental representations of SO(5) [embedding composite fermions]
- SM third generation quarks embedded in incomplete representation of  $SO(5) \otimes U(1)_X$  to give correct  $Y = T^{3R} + X$  under  $SU(2)_L \otimes U(1)_Y$
- Δ<sub>t,b/L,R</sub> mixing parameters between elementary and composite sectors
- $Y_{T,B}$ ,  $M_{Y_{T,B}}$  Yukawa parameters of composite sector
- $m_*$  mass parameter of fermionic resonances

#### Higgs interactions

In unitary gauge link fields  $\Omega_n = \mathbf{1} + i \frac{s_n}{h} \Pi + \frac{c_n - 1}{h^2} \Pi^2$ ,

$$s_n = \sin(fh/f_n^2), \quad c_n = \cos(fh/f_n^2), \quad h = \sqrt{h^{\hat{a}}h^{\hat{a}}}, \quad \sum_{n=1}^2 \frac{1}{f_n^2} = \frac{1}{f^2}$$

Identify  $\Pi=\sqrt{2}h^{\hat{a}}T^{\hat{a}}$  GB matrix and  $T^{\hat{a}}$ 's SO(5)/SO(4) broken generators ( $\hat{a}=1,2,3,4$ )

$$\Pi = \sqrt{2}h^{\hat{a}}T^{\hat{a}} = -i\begin{pmatrix} 0_4 & \mathbf{h} \\ -\mathbf{h}^T & 0 \end{pmatrix}, \quad \mathbf{h}^T = (h_1, h_2, h_3, h_4).$$

Relate **h** to usual SM  $SU(2)_L$  Higgs doublet

$$H = \frac{1}{\sqrt{2}} \left( \begin{array}{c} -ih_1 - h_2 \\ -ih_3 + h_4 \end{array} \right).$$

Use  $\Omega_n = \mathbf{1} + \delta\Omega_n$  to define Higgs interactions

$$\begin{split} \mathcal{L}_{\text{gauge},H} &= -\frac{f_1^2}{2} g_0 g_* \textit{Tr} \left[ \tilde{W} \delta \Omega_1 \tilde{A} + \tilde{W} \tilde{A} \delta \Omega_1^T + \tilde{W} \delta \Omega_1 \tilde{A} \delta \Omega_1^T \right] \\ &+ \frac{f_2^2}{2} g_*^2 \left[ \phi_0^T \delta \Omega_2^T \tilde{A} \tilde{A} \phi_0 + \phi_0^T \tilde{A} \tilde{A} \delta \Omega_2 \phi_0 + \phi_0^T \delta \Omega_2^T \tilde{A} \tilde{A} \delta \Omega_2 \phi_0 \right], \\ \mathcal{L}_{\textit{ferm},H} &= \! \Delta_{t_L} \bar{q}_L^{\textit{el}} \delta \Omega_1 \Psi_T + \Delta_{t_R} \bar{t}_R^{\textit{el}} \delta \Omega_1 \Psi_{\tilde{T}} \\ &- Y_T \bar{\Psi}_{T,L} (\phi_0^T \phi_0 \delta \Omega_2^T + \delta \Omega_2 \phi_0 \phi_0^T + \delta \Omega_2 \phi_0^T \phi_0 \delta \Omega_2^T) \Psi_{\tilde{T},R} \\ &+ (T \to B) + \textit{h.c.} \end{split}$$

- In unitary gauge  $h_1$ ,  $h_2$ ,  $h_3$  eaten by  $W^{\pm}$ , Z and  $h_4$  is H
- Expand  $\delta\Omega_{1,2}$  to first order in H to extract  $g_{HV_iV_j}$  and  $g_{Hf_i\bar{f}_i}$
- · Couplings to mass eigenstates obtained after diagonalization

#### Subtle loop cancellations/compensations

• Consider loop diagrams



 $H o \gamma \gamma$  induced by fermionic loop

$$--\frac{W_{i}}{H} \xrightarrow{\gamma} W_{i} W_{i} \xrightarrow{\gamma} W_{i} W_{i} \xrightarrow{\gamma} W_{i} W_{i} W_{i} \xrightarrow{\gamma} W_{i} W_{i} W_{i} \xrightarrow{\gamma} W_{i} W_{i$$

 $H o \gamma \gamma$  induced by a charged vector loop

• Consider  $HV_iV_i$  charged couplings (SM-like and Extra)



Couplings of Higgs boson in 4DCHM to charged gauge bosons (W left,  $W_2$  middle,  $W_3$  right) normalised to SM values.

• Consider  $HV_iV_i$  neutral couplings (SM-like and Extra)



Couplings of Higgs boson in 4DCHM to neutral gauge bosons (Z left,  $Z_2$  middle,  $Z_3$  right) normalised to SM values.

• Consider  $Hf_i\bar{f}_i$  couplings (SM-like)



Couplings of Higgs boson in 4DCHM to top (left) and bottom (right) quarks normalised to SM values vs  $m_{T_1}$  and  $m_{B_1}$  for f=0.8 TeV and  $g_*=2.5$ .

• Consider  $Hf_i\bar{f}_i$  couplings (extra light)



Couplings of Higgs boson in 4DCHM to lightest heavy top (left) and bottom (right) quarks normalised to SM values vs  $m_{T_1}$  and  $m_{B_1}$  for f=0.8 TeV and  $g_*=2.5$ .

tline 4DCHM Implementation Results Results Conclusions Conclusions Backup slides

### Backup slides

• Consider  $Hf_i\bar{f}_i$  couplings (extra heavy)



Couplings of Higgs boson in 4DCHM to second (left), third (middle) and fourth (right) lightest heavy top quarks normalised to SM values vs  $m_{T_1}$  and  $m_{B_1}$  for f=0.8 TeV and  $g_*=2.5$ .

e 4DCHM Implementation Results Results Conclusions Conclusions Backup slides

### Backup slides

ullet Loop compensations between SM-like and Extra quarks (gg)



Loop contributions to  $H \rightarrow gg$  in 4DCHM normalised to SM vs  $m_{T_1}$  for f = 0.8 TeV and  $g_* = 2.5$ .

ullet Loop compensations between SM-like and Extra quarks  $(\gamma\gamma)$ 



Loop contributions to  $H \to \gamma \gamma$  in 4DCHM normalised to SM vs  $m_{T_1}$  for f=0.8 TeV and  $g_*=2.5$ .

Loop cancellations between Extra quarks



Loop contributions to  $H \to gg$  (left) and  $\gamma\gamma$  (right) in 4DCHM normalised to SM amplitude vs  $m_{T_1}$  for f=0.8 TeV and  $g_*=2.5$ .