
Top FB asymmetry vs. (semi)leptonic B decays in the Multi-Higgs-Doublet Models

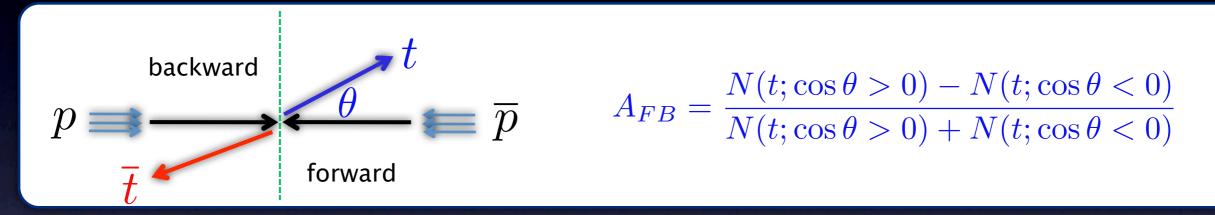
Yuji Omura (TUM)

Based on arXiv:1108.0350,1108.4005,1205.0407,1212.4607 with P. Ko and Chaehyun Yu (KIAS)

I. Introduction

 introduce BSM with extra Higgs Doublets (and Z'), originally motivated by the top forward backward asymmetry (AFB) at <u>Tevatron</u>.

	0.158
$A_{\rm FB}^t = \langle$	0.42 =
	0.19 =


SM prediction

 $A_{\rm FB}^t = 0.058 \pm 0.009 \; (\rm NLO)$

Kuhn, Rodrigo, etc.

. Introduction

introduce BSM with extra Higgs Doublets (and Z'), originally motivated by the top forward backward asymmetry (AFB) at Tevatron.

 $A_{\rm FB}^t = 0.162 \pm 0.047 \ @ 8.7 fb^{-1} \ ({\rm CDF}, \ {\rm lepton + jets})$ Conf.note 10807 $A_{\rm FB}^t = 0.164 \pm 0.045 @ 9.4 fb^{-1} ({\rm CDF, lepton+jets})$ 1211.1003

SM prediction

 $A_{\rm FB}^t = 0.058 \pm 0.009 \; (\rm NLO)$ $A_{\rm FB}^t = 0.072^{+0.011}_{-0.007} (\rm NLO + \rm NNLL)$ $A_{\rm FB}^t = 0.087 \pm 0.010 \text{ (NLO + EW correction)}$

Kuhn, Rodrigo, etc.

Ahrens, Ferroglia, Neubert, Peciak, Yang, PRD84 (2011).

Hollik, Pagani, PRD84(2011); Kuhn, Rodrigo, JHEP1201.

I. Introduction

 introduce BSM with extra Higgs Doublets (and Z'), originally motivated by the top forward backward asymmetry (AFB) at <u>Tevatron</u>.

 $A_{\rm FB}^{t} = 0.162 \pm 0.047 @ 8.7 fb^{-1} ({\rm CDF, lepton + jets}) \quad \text{conf.note 10807}$ $A_{\rm FB}^{t} = 0.164 \pm 0.045 @ 9.4 fb^{-1} ({\rm CDF, lepton + jets}) \quad \text{torsection}$ SM prediction $A_{\rm FB}^{t} = 0.058 \pm 0.009 \text{ (NLO)}$ $A_{\rm FB}^{t} = 0.072_{-0.007}^{+0.011} \text{ (NLO + NNLL)} \quad \text{Ahrens, Ferroglia, Neubert, Peciak, Yang, PRD84 (2011).}$ $A_{\rm FB}^{t} = 0.087 \pm 0.010 \text{ (NLO + EW correction)}$

Hollik, Pagani, PRD84(2011); Kuhn, Rodrigo, JHEP1201.

Our models are

so-called type-III-like 2HDM (3HDM), where Yukawa couplings controlled by gauged U(1) symmetry (P.Ko,YO,C.Yu,1108.0350,1108.4005)

Our models are

so-called type-III-like 2HDM (3HDM), where Yukawa couplings controlled by gauged U(1) symmetry (P.Ko,YO,C.Yu,1108.0350,1108.4005)

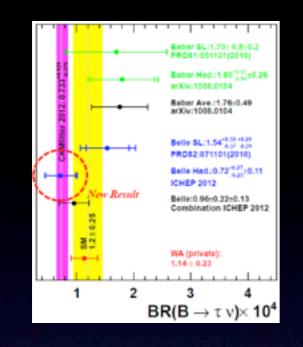
There are tree-level FCNCs. (t,q)-elements of CP-even (odd) Yukawa couplings tend to be large and enhance AFB of top

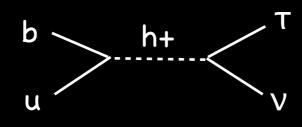
(P.Ko,YO,C.Yu, 1108.0350, 1108.4005, 1205.0407)

Our models are

so-called type-III-like 2HDM (3HDM), where Yukawa couplings controlled by gauged U(1) symmetry (P.Ko,YO,C.Yu,1108.0350,1108.4005)

There are tree-level FCNCs. (t,q)-elements of CP-even (odd) Yukawa couplings tend to be large and enhance AFB of top

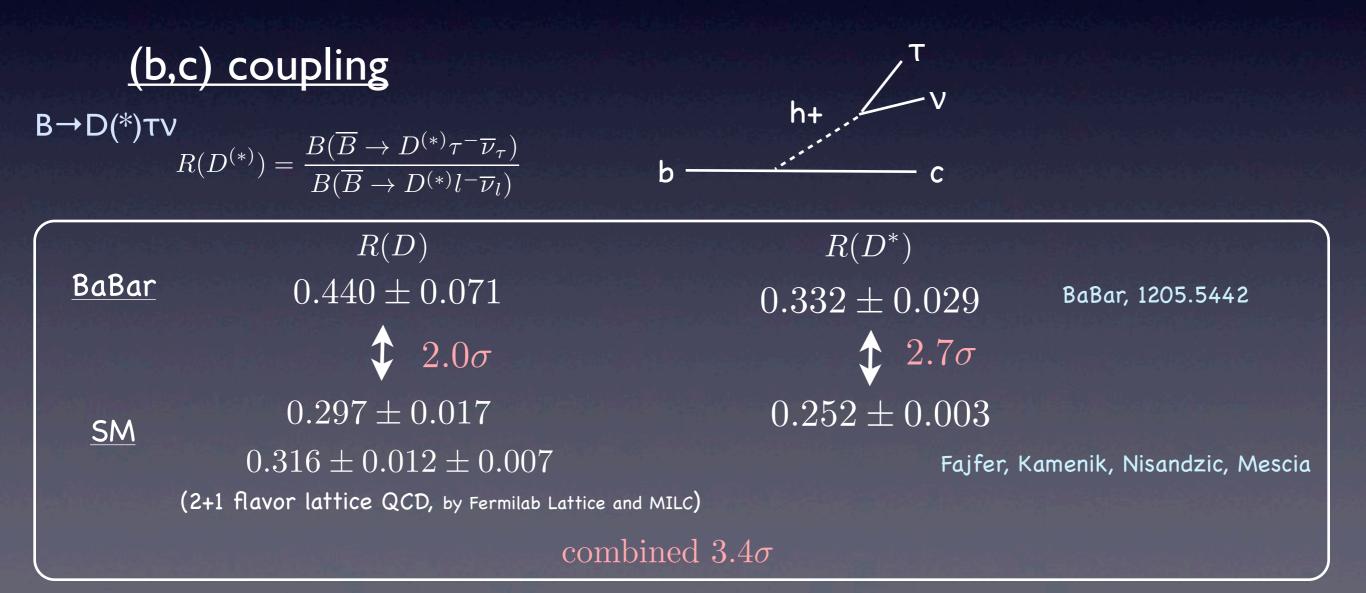



(P.Ko,YO,C.Yu, 1108.0350, 1108.4005, 1205.0407)

Such large (t,q) Yukawa predicts large (b,q) of charged Higgs B-physics constrains our models (P.Ko,YO,C.Yu,1212.4607)

(b,u) coupling

B→TV



the average

$$BR(B \to \tau \nu) = (1.67 \pm 0.3) \times 10^{-4}$$
 HFAG, 1010.1589

New Belle result

 $BR(B \to \tau \nu) = (0.72^{+0.27}_{-0.25} \pm 0.11) \times 10^{-4}$ Belle, 1208.4678

Question:

Is the enhancement of AFB compatible with the (semi)leptonic B decays in our models?

- 2. Setup
- 3. Phenomenology
- 3-1. short discussion about AFB
- 3-2. (semi)leptonic B decays in our models
- 4. Summary

2. Setup and AFB

See also C.Yu's poster

Type-III 2HDM

 $\overline{Q_L^i}(y_{dij}^1H_1 + y_{dij}^2H_2)D_R^j + \overline{Q_L^i}(y_{uij}^1\widetilde{H_1} + y_{uij}^2\widetilde{H_2})U_R^j$

neutral higgs h coupling $H_1 = h \cos \alpha - H \sin \alpha, H_2 = h \sin \alpha + H \cos \alpha$

 $\{(V_L^{d\dagger}y_d^1 V_R^d)_{ij}\cos\alpha + (V_L^{d\dagger}y_d^2 V_R^d)_{ij}\sin\alpha\}h\overline{\hat{D}_L^i}\hat{D}_R^j$

2. Setup and AFB

See also C.Yu's poster

• Type-III 2HDM

 $\overline{Q_L^i}(y_{dij}^1H_1 + y_{dij}^2H_2)D_R^j + \overline{Q_L^i}(y_{uij}^1\widetilde{H_1} + y_{uij}^2\widetilde{H_2})U_R^j$

neutral higgs h coupling

 $H_1 = h\cos\alpha - H\sin\alpha, H_2 = h\sin\alpha + H\cos\alpha$

 $\{(V_L^{d\dagger}y_d^1V_R^d)_{ij}\cos\alpha + (V_L^{d\dagger}y_d^2V_R^d)_{ij}\sin\alpha\}h\overline{\hat{D}_L^i}\hat{D}_R^j$

yland y2 should be controlled by symmetry (Z2, U(1),etc.) \rightarrow type-I, type-II (like SUSY), etc.

2. Setup and AFB

See also C.Yu's poster

• Type-III 2HDM

 $\overline{Q_{L}^{i}}(y_{dij}^{1}H_{1} + y_{dij}^{2}H_{2})D_{R}^{j} + \overline{Q_{L}^{i}}(y_{uij}^{1}\widetilde{H_{1}} + y_{uij}^{2}\widetilde{H_{2}})U_{R}^{j}$

neutral higgs h coupling

 $H_1 = h\cos\alpha - H\sin\alpha, H_2 = h\sin\alpha + H\cos\alpha$

 $\{(V_L^{d\dagger}y_d^1V_R^d)_{ij}\cos\alpha + (V_L^{d\dagger}y_d^2V_R^d)_{ij}\sin\alpha\}\frac{\text{too large FCNCs}}{h\bar{D}_L^i\bar{D}_R^j}$

yland y2 should be controlled by symmetry (Z2, U(1),etc.) \rightarrow type-I, type-II (like SUSY), etc.

• Our charge assignments:

Only up-sector charged flavor-dependently. Down and lepton are the same as the type-II.

H_1	H_2	H_3	U^1_R	U_R^2	U_R^3	D_R^i, Q_L^i, L^i, E_R^i
q_1	0	q_3	q_1	0	q_3	0

H_1	H_2	H_3	U^1_R	U_R^2	U_R^3	D^i_R,Q^i_L,L^i,E^i_R
q_1	0	q_3	q_1	0	q_3	0

 $y_{ij}^U \overline{Q_{Li}} \widetilde{H_j} U_{Rj} + y_{ij}^D \overline{Q_{Li}} H_2 D_{Rj} + y_{ij}^E \overline{L_i} H_2 E_{Rj}.$

 Depending on the charge, the num. of Higgs is different for the realistic mass matrix

> $(qI,q3)=(0,I) \rightarrow 2HDM$ $(qI,q3)=(-I,I) \rightarrow 3HDM$

• The down (and lepton) sector Yukawas are diagonal

$$\delta_{ij} \tan \beta \frac{m_i^d}{v} \overline{\hat{D}_{Li}} \hat{D}_{Rj} h + i \delta_{ij} \tan \beta \frac{m_i^d}{v} \overline{\hat{D}_{Li}} \hat{D}_{Rj} a.$$

The bounds from Flavor physics are evaded.

• The only up sector has large FCNCs

$$Y_{ij}^u \overline{\hat{U}_{Li}} \hat{U}_{Rj} h - Y_{ij}^{u-} \overline{\hat{D}_{Li}} \hat{U}_{Rj} h^- - i Y_{ij}^{au} \overline{\hat{U}_{Li}} \hat{U}_{Rj} a$$

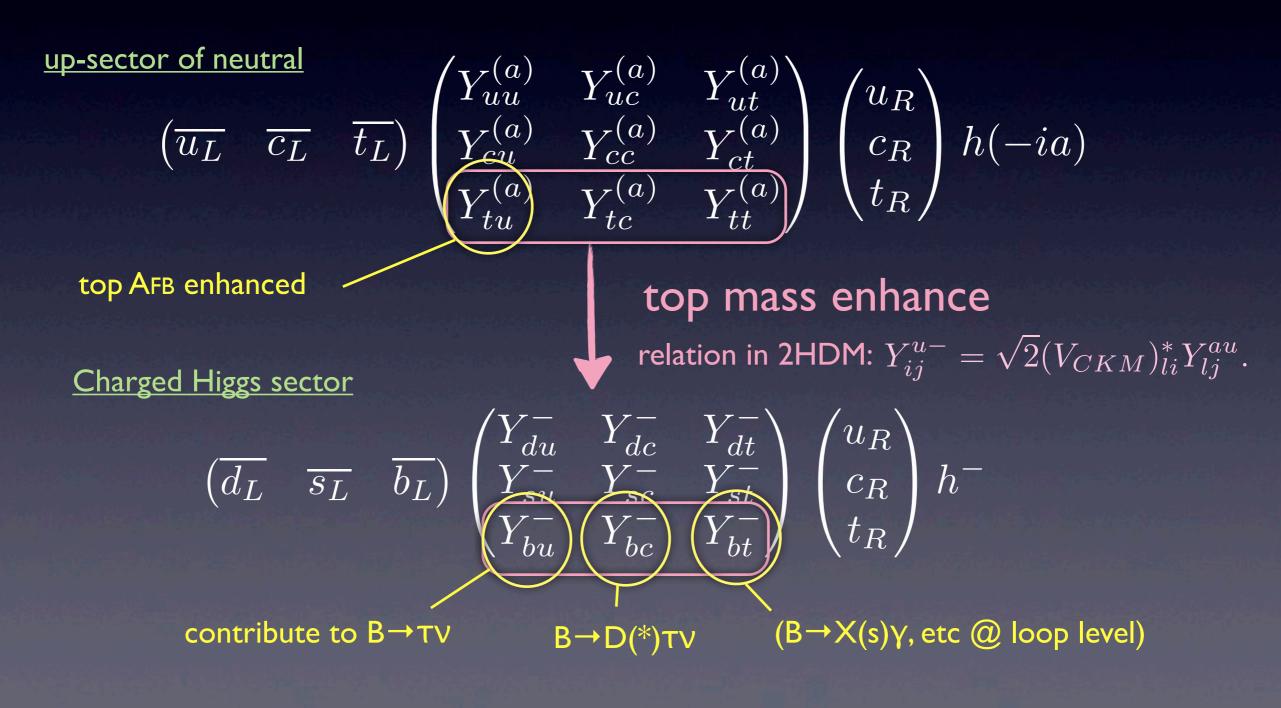
The FCNCs involving top (b) are large

$$Y_{tq}^{(a)} \propto m_t, Y_{cq}^{(a)} \propto m_c, Y_{uq}^{(a)} \propto m_u$$

up-sector of neutral

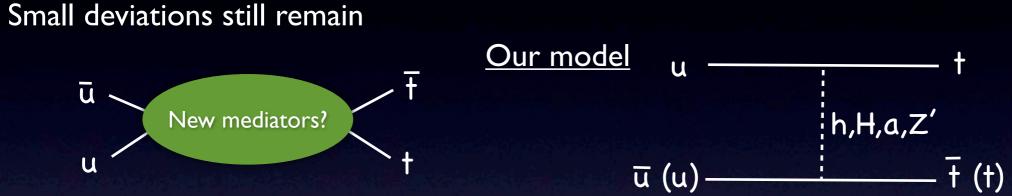
$$\begin{pmatrix} \overline{u_L} & \overline{c_L} & \overline{t_L} \end{pmatrix}$$

$$\begin{pmatrix} Y_{uu}^{(a)} & Y_{uc}^{(a)} & Y_{ut}^{(a)} \\ Y_{cu}^{(a)} & Y_{cc}^{(a)} & Y_{ct}^{(a)} \\ Y_{tu}^{(a)} & Y_{tc}^{(a)} & Y_{tt}^{(a)} \end{pmatrix} \begin{pmatrix} u_R \\ c_R \\ t_R \end{pmatrix} h(-ia)$$


top mass enhance

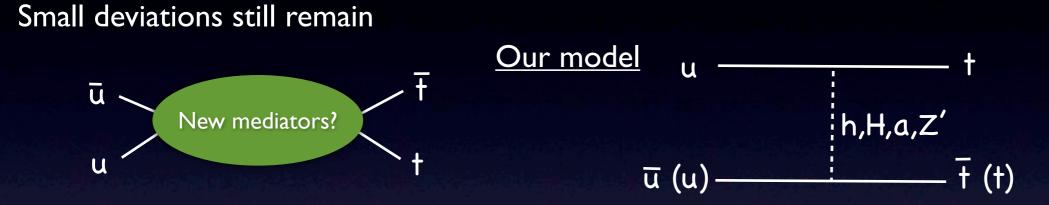
• The only up sector has large FCNCs

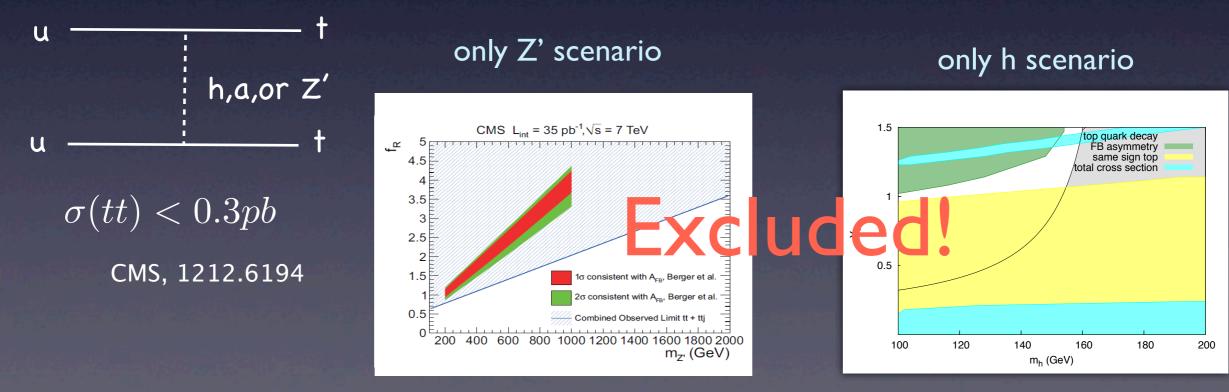
$$Y_{ij}^{u}\overline{\hat{U}_{Li}}\hat{U}_{Rj}h - Y_{ij}^{u-}\overline{\hat{D}_{Li}}\hat{U}_{Rj}h^{-} - iY_{ij}^{au}\overline{\hat{U}_{Li}}\hat{U}_{Rj}a$$


The FCNCs involving top (b) are large

$$Y_{tq}^{(a)} \propto m_t, Y_{cq}^{(a)} \propto m_c, Y_{uq}^{(a)} \propto m_u$$

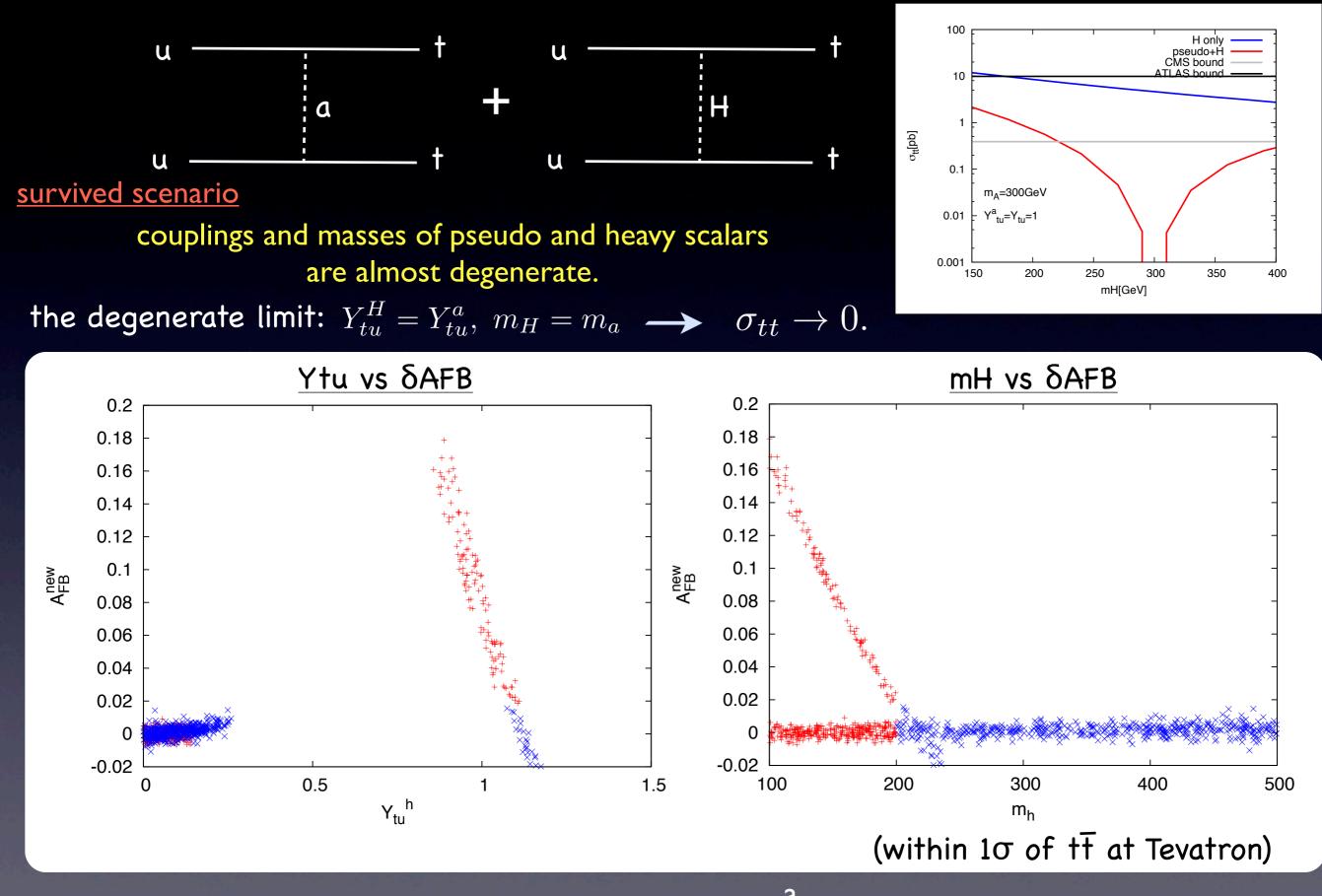
3. Phenomenology


<u>3-1. top forward-backward asymmetry (AFB) at Tevatron</u>


Small deviations still remain

3. Phenomenology

<u>3-1. top forward-backward asymmetry (AFB) at Tevatron</u>

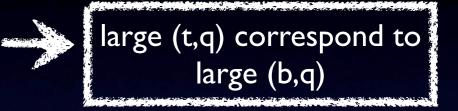

However, simple new physics scenarios (only one mediator) are excluded by $uu \rightarrow tt$

P.Ko,YO,C.Yu, 1108.4005

CMS, 1106.2142

destructive interference relaxes the bound (P.Ko, YO, C.Yu, 1108.0350, 1108.4005)

Enhancement of AFB requires light ma and $Y_{tu}^{\, a} \sim 1.$


3-2. (Semi) leptonic B decays

discuss the bounds on such large couplings of pseudo scalar from (semi) leptonic B decays.

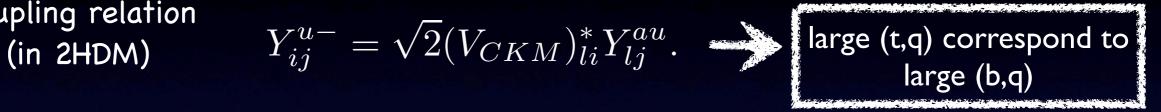
theoretical relation between pseudo and charged Higgs

coupling relation (in 2HDM)

$$Y_{ij}^{u-} = \sqrt{2} (V_{CKM})_{li}^* Y_{lj}^{au}.$$

mass relation

$$m_{h^+}^2 = m_a^2 - \tilde{\lambda}_{12} \frac{v^2}{2}$$

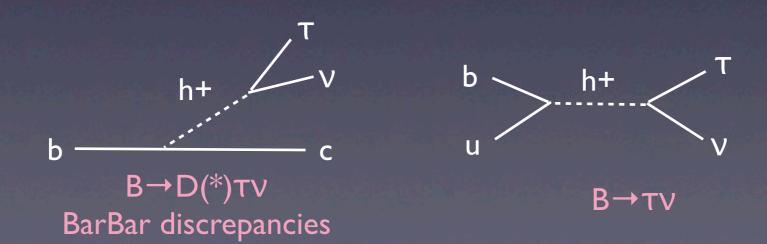

where $V(H) = \cdots + \widetilde{\lambda}_{12}(H_1^{\dagger}H_2)(H_2^{\dagger}H_1)$. mass difference at most weak scale

3-2. (Semi) leptonic B decays

discuss the bounds on such large couplings of pseudo scalar from (semi) leptonic B decays.

theoretical relation between pseudo and charged Higgs

coupling relation



mass relation

$$m_{h^+}^2 = m_a^2 - \tilde{\lambda}_{12} \frac{v^2}{2}$$

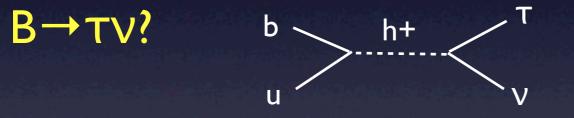
where $V(H) = \cdots + \widetilde{\lambda}_{12}(H_1^{\dagger}H_2)(H_2^{\dagger}H_1).$ mass difference at most weak scale

Indirectly, our scenario is tested by B physics

Our scenario for AFB favors large new physics contribution $m_a \sim 200 \text{GeV} |Y_{tu}^{au}| \sim 1.$

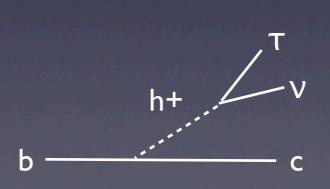
Our scenario for AFB favors large new physics contribution

 $m_a \sim 200 \text{GeV} |Y_{tu}^{au}| \sim 1.$ $Y_{bu}^{u-} \sim \sqrt{2}(V_{CKM})_{tb}^* Y_{tu}^{au}.$ O(I) (b,u) and ~200 GeV charged Higgs


predict very large new physics contribution in B physics

Our scenario for AFB favors large new physics contribution

 $m_a \sim 200 \text{GeV} |Y_{tu}^{au}| \sim 1.$ $\xrightarrow{Y_{bu}^{u-} \sim \sqrt{2}(V_{CKM})_{tb}^* Y_{tu}^{au}}$ O(I) (b,u) and ~200 GeV charged Higgs


predict very large new physics contribution in B physics

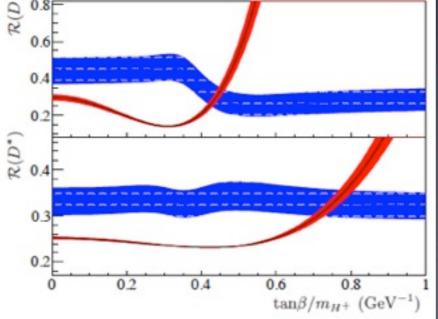
consistent with the SM. requires small new physics contribution.

B→D(*)τν?

not consistent with the SM. requires large new physics contribution.

Our scenario for AFB favors large new physics contribution

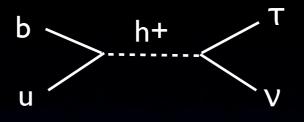
 $m_a \sim 200 \text{GeV} |Y_{tu}^{au}| \sim 1.$ $Y_{bu}^{u-} \sim \sqrt{2}(V_{CKM})_{tb}^* Y_{tu}^{au}.$ O(1) (b,u) and ~200 GeV charged Higgs


predict very large new physics contribution in B physics

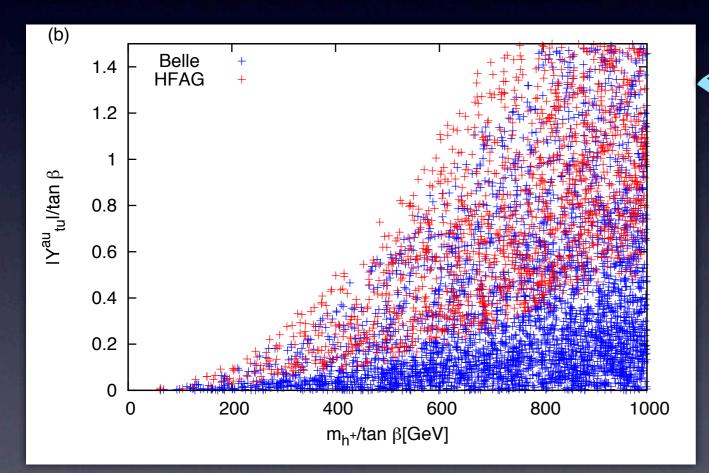
can be compatible with

 $B \rightarrow TV? b \rightarrow h^+ < \downarrow^{T}$

consistent with the SM. requires small new physics contribution.


B→D(*)τν?

not consistent with the SM. requires large new physics contribution.


Type-II 2HDM cannot explain. BaBar, 1205.5442; Crivellin, Greub, Kokulu, 1206.2634; Fajfer, Kamenik, Nisandzic, Zupan, 1206.1872; M.Tanaka, R.Watanabe, 1212.1878

Constraint on $B \rightarrow \tau \nu$ decay in our 2HDM

$$-Y_{bu}^{-u}h^{-}\overline{b_L}u_R + Y_{ub}^{+d}h^{+}\overline{u_L}b_R$$

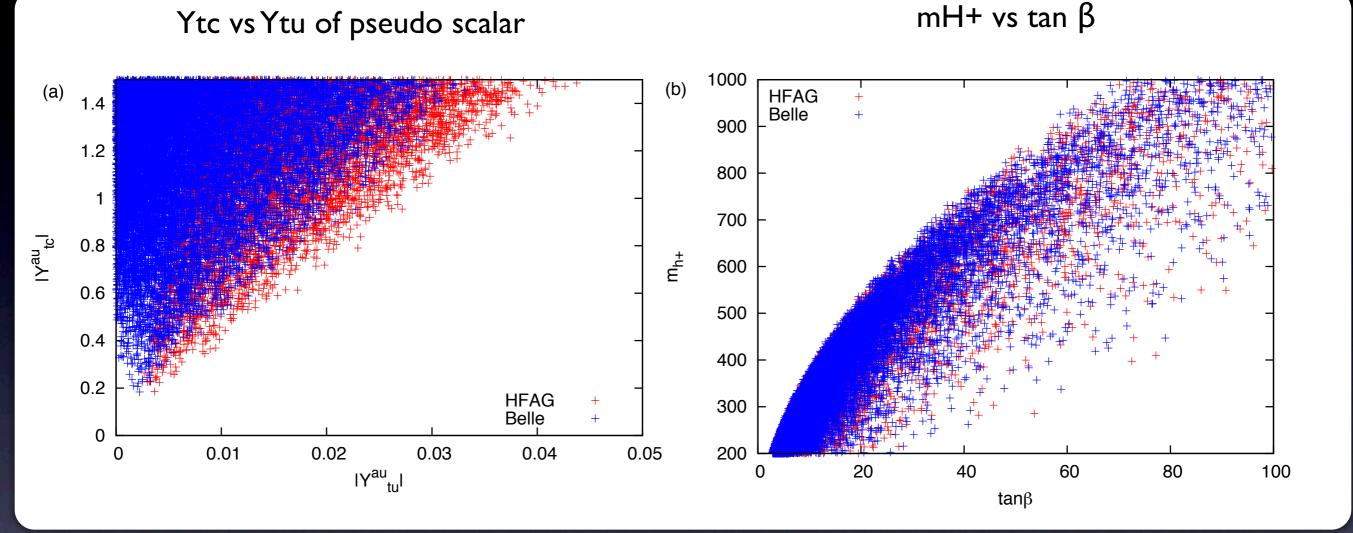
In our 2HDM

coupling relation

$$Y_{bu}^{u-} \sim \sqrt{2} (V_{CKM})_{tb}^* Y_{tu}^{au}.$$

$$Y_{ub}^{d+} = \sqrt{2} (V_{CKM})_{ub} \frac{m_b \tan \beta}{v}$$

mass relation

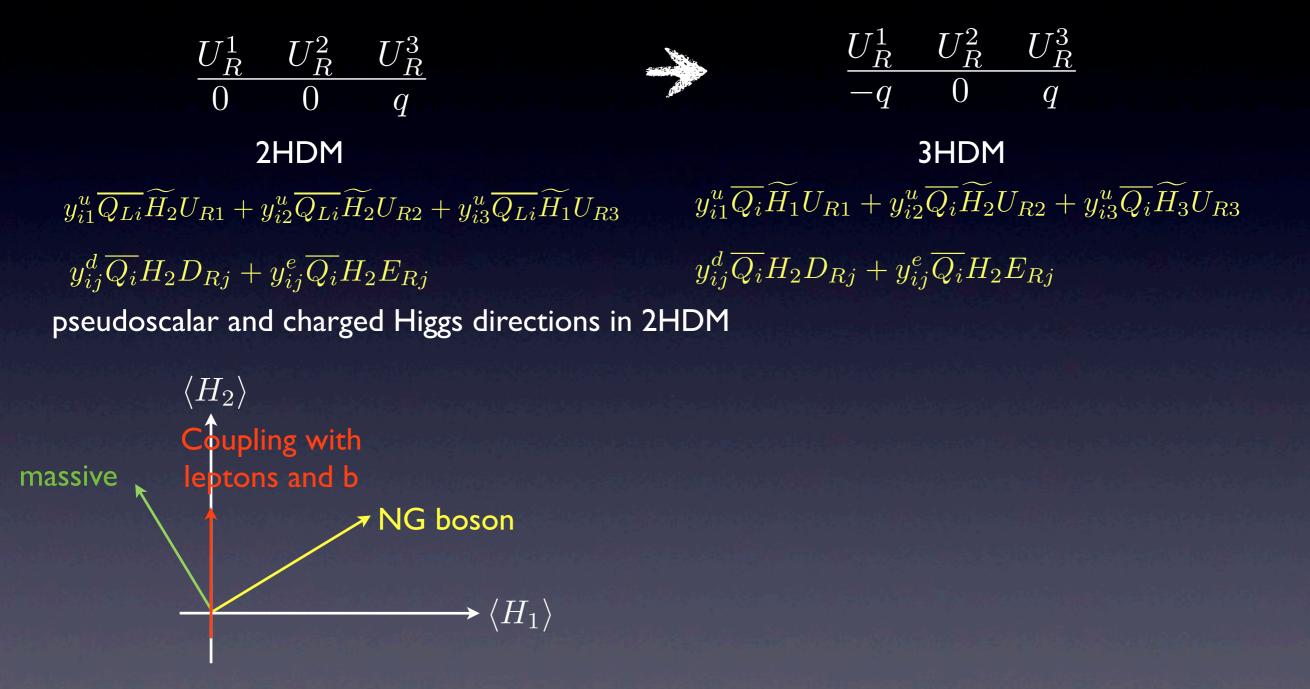

$$m_{h^+}^2 = m_a^2 - \widetilde{\lambda}_{12} \frac{v^2}{2}$$

where $V(H) = \cdots + \widetilde{\lambda}_{12}(H_1^{\dagger}H_2)(H_2^{\dagger}H_1).$ mass difference at most weak scale

 $O(100) \leq m_{h+}/\tan\beta \longrightarrow$ can be $|Y_{tu}^{au}| \sim 1.$ (pseudo scalar may be heavy.)

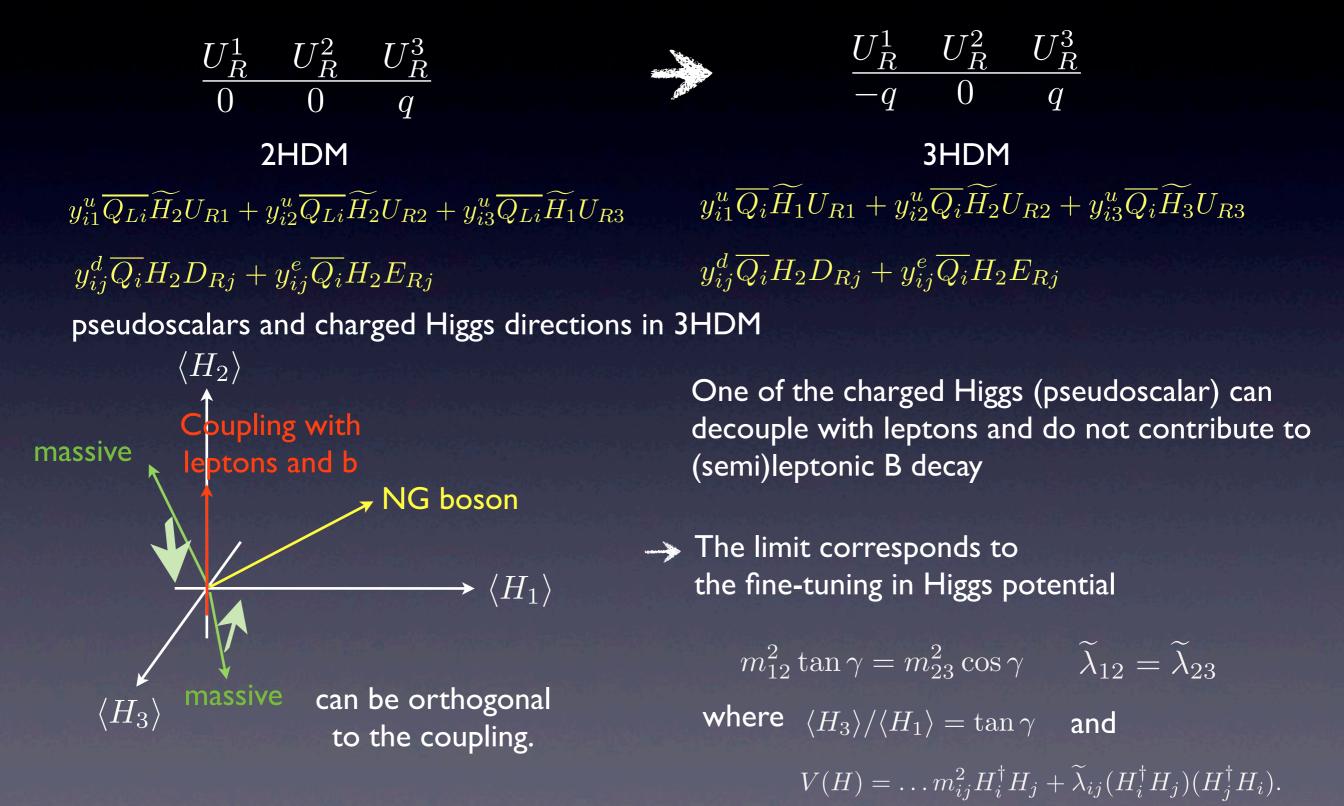
Constraints from $B \rightarrow D(*) \tau v$ and $B \rightarrow \tau v$ in 2HDM

parameter region within I σ of B->D(*) τv at BaBar and B-> τv .


The BaBar discrepancies require large charged Higgs contribution,

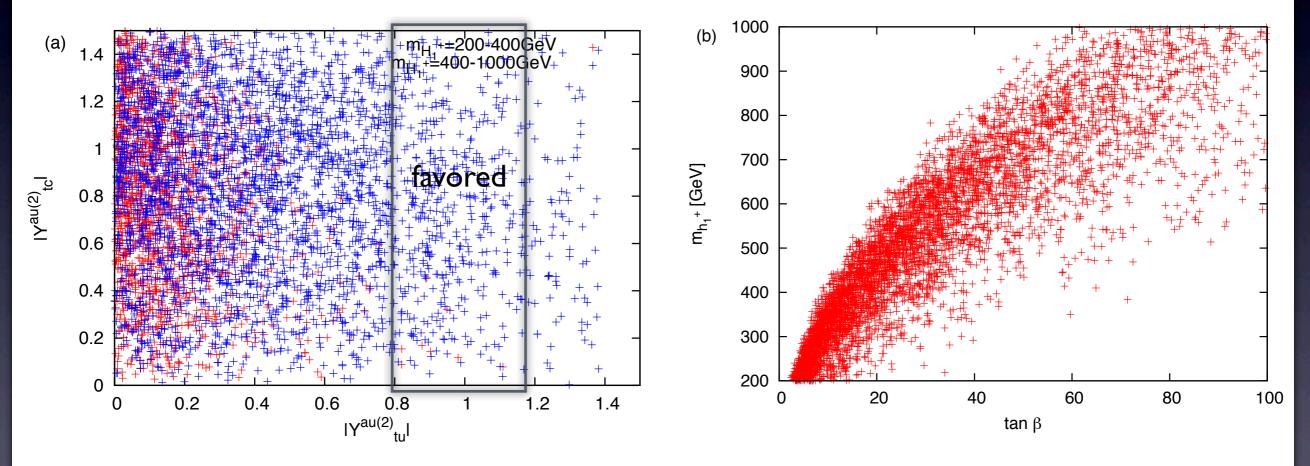
 $0.2 \lesssim |Y_{tc}^{au}|, \ \overline{m_{h+}/\tan\beta} \lesssim O(10).$

B->TV requires small (t,u) coupling, $|Y_{tu}^{au}| \lesssim 0.03$. cannot achieve enhancement AFB.


If the deviation is relaxed, (t,u) can be large. (pseudo scalar should be heavy for B-> $\tau\nu$ in 2HDM.) To enhance AFB and be consistent with the semi-leptonic and leptonic B decays, 3HDM is favored.

difference between 2HDM and 3HDM.

To enhance AFB and be consistent with the semi-leptonic and leptonic B decays, 3HDM is favored.


difference between 2HDM and 3HDM.

Concrete analysis for other cases in 3HDM P.Ko, YO, C.Yu, 1212.4607

parameter spaces are large, so we could expect some allowed region without the fine-tuning but not so large, because of the bound from $D_0 - \overline{D_0}$ mixing.

ex) degenerate case $m_{h_1^+} = m_{h_2^+}$

 $\begin{array}{l} + \ \dots \ 200 {\rm GeV} \leq m_{h_1^+} \leq 400 {\rm GeV} \\ + \ \dots \ 400 {\rm GeV} \leq m_{h_1^+} \leq 1000 {\rm GeV} \end{array}$

4. Summary

- I introduced 2HDM and 3HDM, where gauged U(I) controls the FCNC.
- <u>There are tree-level FCNCs</u>:especially (t,q) in neutral and (b,q) in charged Higgs are large because of top mass.
- <u>Large (t,u) enhance AFB</u> and can be consistent with LHC results according to destructive interference between CP-even scalar and CP-odd scalar. One good point is CP-even (-odd) mass ~200GeV and the Yukawa coupling ~1.
- We discussed whether the enhancement of AFB is compatible with the (semi)leptonic B decay at the BaBar and Belle experiments.
- AFB and B->D(*)TV requires large new physics effects, but B->TV requires the small effect.
 It is difficult to achieve all.
- Requirement of 2HDM to achieve $B \rightarrow D(*)TV$ at BaBar and $B \rightarrow TV$:

 $|Y_{tu}^{au}| \lesssim 0.03$. $0.2 \lesssim |Y_{tc}^{au}|$, $m_{h+}/\tan\beta \lesssim O(10)$. \rightarrow difficult to enhance Afb.

 In <u>3HDM</u>, we can describe the scenario that one of charged Higgs decouples with the (semi)leptonic B decays. It is possible to achieve AFB, the BaBar discrepancies, and B->TV.

Thank you