2HD/S (Two Higgs doublet models)

PRESENTATION

Koji TSUMUTA (Nagoya U.)

Higgs as a Probe of New Physics 2013 Toyama, Japan

13-16/2/2013

2HD/S Towards ILC (Two Higgs doublet models)

Koji TSUMUTA (Nagoya U.)

Higgs as a Probe of New Physics 2013 Toyama, Japan

13-16/2/2013

- Extended Higgs sector
 - ρ parameter and FCNC
- 2HDM (two-Higgs-doublet model)

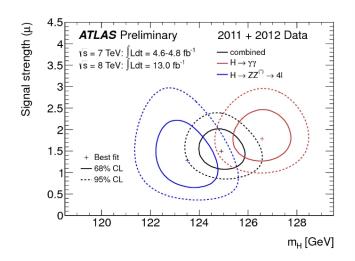
Model & experimental status

- Leptophilic 2HDM
- ∗ tanβ measurement
- Summary

Introduction

Whether

"the" Higgs boson in the SM,


or "a" Higgs boson?

Introduction

Whether

"the" Higgs boson in the SM,

or "a" Higgs boson, or Higgs bosons, or dilaton, etc...

Guideline for Ext. Higgs sector

- * Electroweak ρ parameter: $\rho = \frac{\sum_{\alpha} (I_{\alpha}(I_{\alpha}+1) Y_{\alpha}^{2})v_{\alpha}^{2}}{\sum_{\beta} 2Y_{\beta}^{2}v_{\beta}^{2}}$

Veltman (1977)

- Precision data suggests [ρ ~ 1]
- * SM predicts [ρ = 1] @ tree level

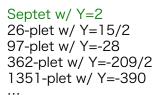
- FCNC (Flavor Changing Neutral Current)
 - * No FCNC @ tree level
 - GIM suppression @ 1-loop

Guideline for Ext. Higgs sector

* Electroweak ρ parameter: $\rho = \frac{\sum_{\alpha} (I_{\alpha}(I_{\alpha}+1) - Y_{\alpha}^{2})v_{\alpha}^{2}}{\sum_{\beta} 2Y_{\beta}^{2}v_{\beta}^{2}}$

$$\rho = \frac{\sum_{\alpha} (I_{\alpha}(I_{\alpha} + 1) - Y_{\alpha}^{2})v_{\alpha}^{2}}{\sum_{\beta} 2Y_{\beta}^{2}v_{\beta}^{2}}$$

Singlet/Doublet w/ Y=1/2 VEV (or Inert multiplets) preserves ρ=1



- Minimal extension
- Mix w/ Higgs
- No contrib. to EWSB

- Not Higgs, but scalar
 DM candidate
 No cont "

 - No contrib. to EWSB

- (Main) contrib. to EWSB
- Yukawa int.
- (SUSY extension)

* higher rep. $(d \ge 3)$ cannot give large contributions to EWSB Triplet, Quadruplet, ...

See next presentation by Dr. Yagyu

No direct interaction w/ SM fermions

Guideline for Ext. Higgs sector

* Electroweak ρ parameter: $\rho = \frac{\sum_{\alpha} (I_{\alpha}(I_{\alpha}+1) - Y_{\alpha}^2) v_{\alpha}^2}{\sum_{\beta} 2Y_{\beta}^2 v_{\beta}^2}$

* Singlet/Doublet w/ Y=1/2 VEV (or Inert multiplets) preserves $\rho=1$

- (Main) contrib. to EWSB
- Yukawa int.
- (SUSY extension)

2HDM can give viable description of the low energy effective theory

2HDM (two-Higgs-doublet model)

2HDM is an effective theory

$$\Phi_1 = \begin{pmatrix} \omega_1^+ \\ \frac{v_1 + h_1 + i z_1}{\sqrt{2}} \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \omega_2^+ \\ \frac{v_2 + h_2 + i z_2}{\sqrt{2}} \end{pmatrix}$$

Softly Z₂ broken 2HDM

$$V_{2\text{HDM}} = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 - \left(m_3^2 \Phi_1^{\dagger} \Phi_2 + \text{H.c.} \right) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + \text{H.c.} \right]$$

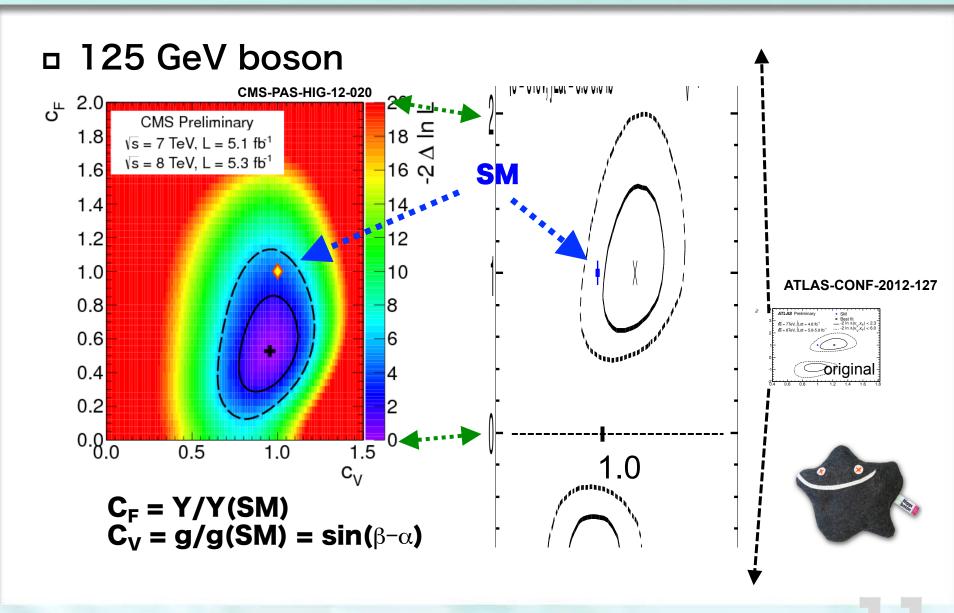
□ 5 Physical Higgs bosons (assume CP inv.)

$$m_3^2, \lambda_5$$
 real

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \mathbf{R}(\alpha) \begin{pmatrix} H \\ h \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \mathbf{R}(\beta) \begin{pmatrix} z \\ A \end{pmatrix}, \begin{pmatrix} \omega_1^+ \\ \omega_2^+ \end{pmatrix} = \mathbf{R}(\beta) \begin{pmatrix} \omega^+ \\ H^+ \end{pmatrix}, \mathbf{R}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

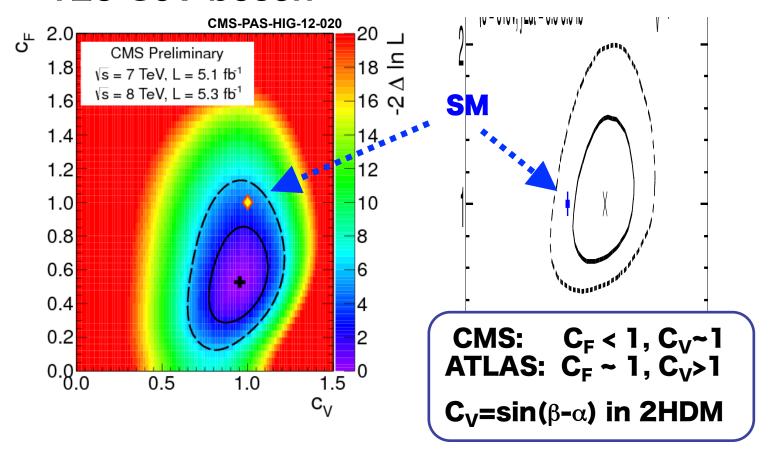
2HDM

■ Mass spectrum (in the nearly SM-like limit)


$$m_h^2 \sim 2\lambda v^2$$
 ~ 125 GeV M² characterizes non-decoupling effects (Only important for scalar interactions, eg., hH+H- coupling in h $ightarrow$ reg., hH+H- coupling in h $ightarrow$ $m_{H,A,H^\pm}^2 \sim M^2 + rac{\lambda v^2}{2}$ ~Not yet observed

 \square gauge-gauge-Higgs coupling: $\sin(\beta - \alpha)$

$$h=\sum_{V_{
u}}^{N_{
u}}ig_{V_{
u}}M_{V}\sin(eta-lpha)g_{\mu
u}$$


 \Box tan β (= v_2/v_1) is a free parameter

Is it SM-like?

Is it SM-like?

□ 125 GeV boson

 $sin(\beta-\alpha)$ can be different from unity

SUSY Higgs search

SUSY Higgs sector is the most popular 2HDM

 $\begin{cases} \Phi_u : u, \\ \Phi_d : d, \ell \end{cases}$

□ Type-II Yukawa interaction w/ SUSY relation sin(

$$\sin(\beta - \alpha) \simeq 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta}$$

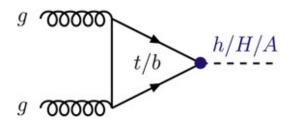
$$\frac{g_{htt}}{g_{htt}^{\rm SM}} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha) \simeq 1 - \frac{2m_Z^2}{m_A^2 \tan^2\beta}$$

$$\frac{g_{hbb}}{g_{hbb}^{\rm SM}} = \frac{g_{h\tau\tau}}{g_{h\tau\tau}^{\rm SM}} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha) \simeq 1 + \frac{2m_Z^2}{m_A^2}$$

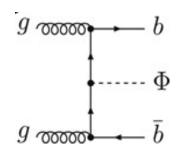
$$\frac{g_{Htt}}{g_{htt}^{\rm SM}} = \cos(\beta - \alpha) - \cot\beta \sin(\beta - \alpha) \simeq -\frac{1}{\tan\beta}$$

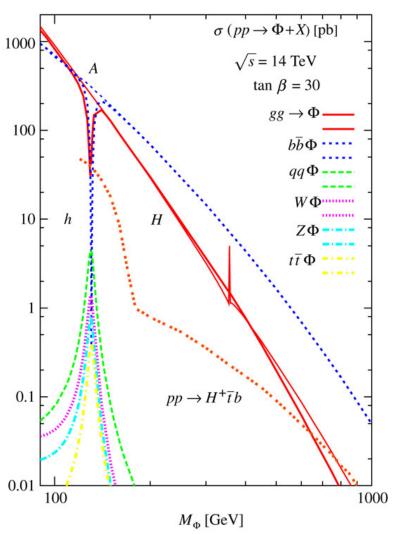
$$\frac{g_{Hbb}}{g_{hbb}^{\rm SM}} = \frac{g_{H\tau\tau}}{g_{h\tau\tau}^{\rm SM}} = \cos(\beta - \alpha) + \tan\beta\sin(\beta - \alpha) \simeq \tan\beta$$

u d , ℓ


Yukawa int. for H, A, H⁺ is suppressed/enhanced for large tanβ

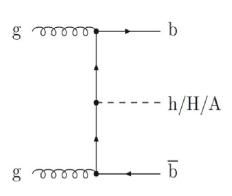
SUSY Higgs production @ LHC

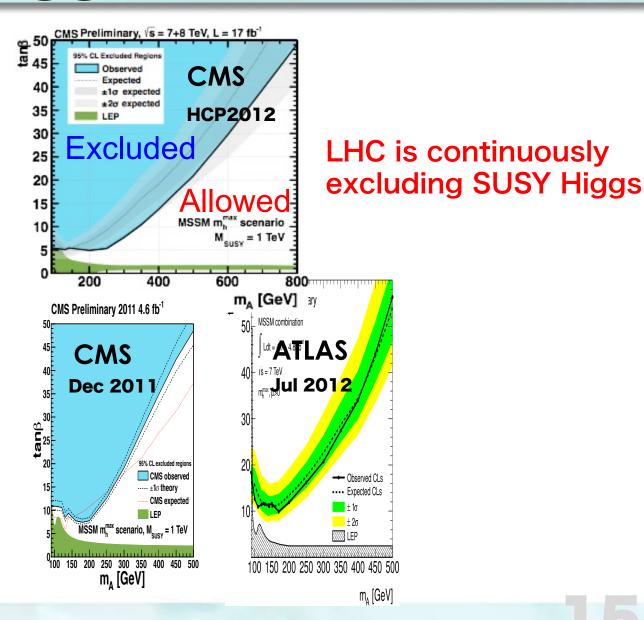

Djouadi (2008)


$$\frac{g_{Hbb}}{g_{hbb}^{\rm SM}} = \frac{g_{H\tau\tau}}{g_{h\tau\tau}^{\rm SM}} \simeq \tan\beta$$

❖ gg→h/H/A wtith h/H/A \rightarrow ττ

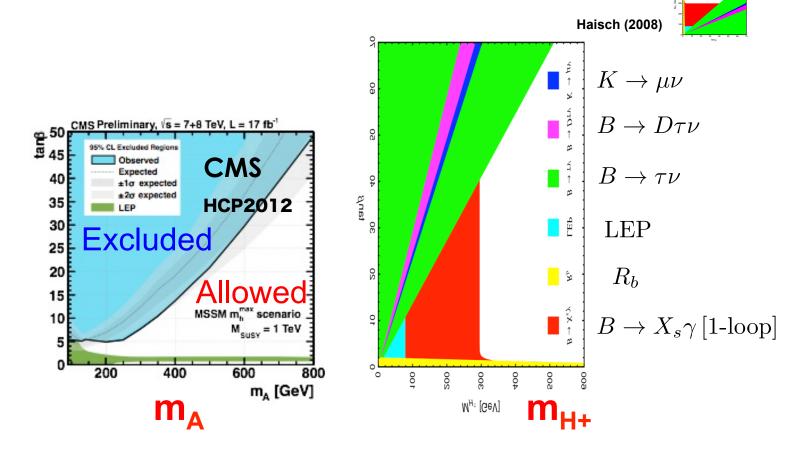
♦ bbh/H/A with h/H/A→ττ

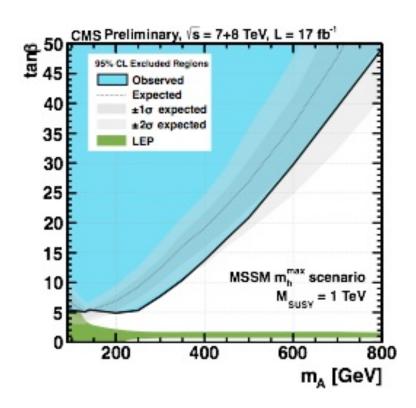




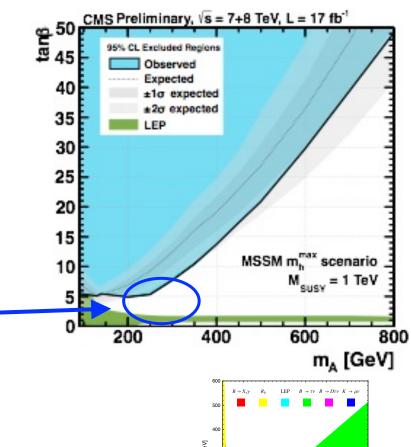
SUSY Higgs search @ LHC

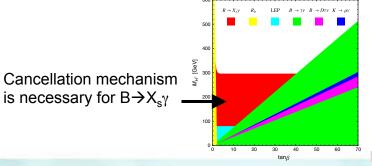
LHC results


 $(H/A \rightarrow \tau\tau)$


Other constrains on 2HDM-II

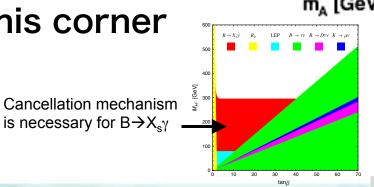
□ 2HDM confronts FLAVOR DATA

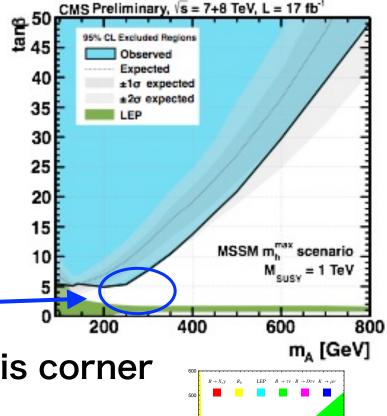

Direct search exceeds FLAVOR DATA


What's Next?

What's Next?

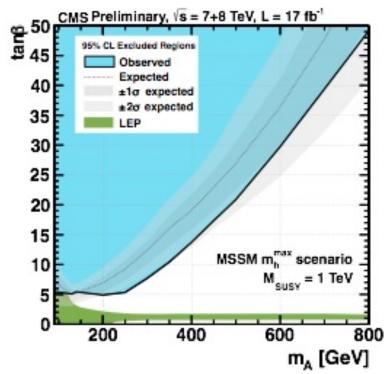
❖ Small m_A w/ small tanβ

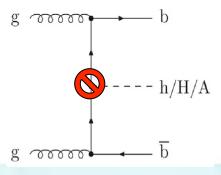




❖ Small m_A w/ small tanβ

LHC upgrade will answer this corner





What's Next?

Leptophilic Higgs bosons

Beat quark interaction !! (Less LHC & B phys. Constraints)

Leptophilic 2HDM

Recall

* Electroweak ρ parameter: $\rho = \frac{\sum_{\alpha} (I_{\alpha}(I_{\alpha}+1) - Y_{\alpha}^2)v_{\alpha}^2}{\sum_{\beta} 2Y_{\beta}^2v_{\beta}^2}$

$$\rho = \frac{\sum_{\alpha} (I_{\alpha}(I_{\alpha} + 1) - Y_{\alpha}^2) v_{\alpha}^2}{\sum_{\beta} 2Y_{\beta}^2 v_{\beta}^2}$$

- Precision data suggests [ρ ~ 1]
- * SM predicts [ρ = 1] @ tree level

- FCNC (Flavor Changing Neutral Current)
 - * No FCNC @ tree level
 - GIM suppression @ 1-loop

Veltman (1977)

FCNC problem of 2HDM

■ Flavor changing neutral current (FCNC)

$$\mathcal{L} = \overline{L} \left(Y_{\ell 1} \Phi_1 + Y_{\ell 2} \Phi_2 \right) \ell_R + \text{H.c.}$$

Yukawa int. is not simultaneously diagonalized with mass matrix.

- → Generate tree level FCNC(, highly constrained by data)
- Adding extra Z2 sym. to avoid FCNC

$$\begin{array}{|c|c|c|}\hline \Phi_1 \to +\Phi_1, & L \to +L \\ \hline \Phi_2 \to -\Phi_2, & \ell_R \to -\ell_R \end{array}$$

$$\mathcal{L} = \overline{L} \left(+Y_{\ell 2} \Phi_2 \right) \ell_R + \text{H.c.}$$

4 types of Yukawa int.

4 independent combinations of Z2 charges

	Φ_1	Φ_2	$\mid u_R \mid$	$\mid d_R \mid$	ℓ_R	Q, L
Type-I	+	-	_	_	_	+
Type-II	+	-	-	+	+	+
Type-X	+	-	-	-	+	+
Type-Y	\parallel +	_	_	+	_	+

□ Type-II: 2HDM structure in SUSY

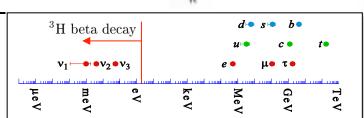
$$\mathcal{L} = +\overline{Q}Y_u u_R \mathbf{H}_u + \overline{Q}Y_d d_R \mathbf{H}_d + \overline{L}Y_\ell \ell_R \mathbf{H}_d + \text{H.c.}$$

4 types of Yukawa int.

4 independent combinations of Z2 charges

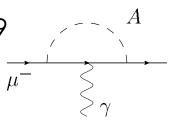
	Φ_1	Φ_2	u_R	d_R	ℓ_R	Q, L
Type-I	+	ı	ı	1	ı	+
Type-II	+	-	-	+	+	+
Type-X	+	ı	ı	ı	+	+
Type-Y	+	-	-	+	-	+

Type-X: Leptophilic 2HDM for tanβ>1


$$\left(\mathcal{L} = +\overline{Q}Y_u u_R \mathbf{H}_q + \overline{Q}Y_d d_R \mathbf{H}_q + \overline{L}Y_\ell \ell_R \mathbf{H}_\ell + \text{H.c.} \right)$$

Higgs doublets distinguish quarks and leptons!!

Leptophilic Higgs in 2HDM


Tiny neutrino mass

ex. 3-loop radiative seesaw w/ light H+/by Aoki et al. PRL102:051805,2009

u magnetic moment

light A(CP odd) w/ large tanB by Cao et al. PRD80:071701,2009

-285±51

JN 09 (e*e*)
-299±65

Davier et al. 09/1 (τ-based)
-157±52

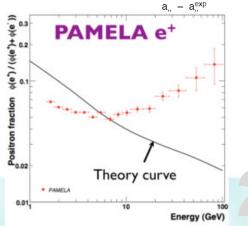
Davier et al. 09/1 (e*e*)
-312±51

Davier et al. 09/2 (e*e* w/ BABAR)
-255±49

BNL-E821 (world average)
0±63

-700 -600 -500 -400 -300 -200 -100 0 100

a_1 - a_e^exp


□ C+ CXCCSS @ PAMELA, FERMI

scalars as a messenger to DM by Goh et al. JHEP 0905:097,2009

DM DM $\rightarrow \Phi' \Phi' \rightarrow \tau \tau \tau \tau$

HPNP2013

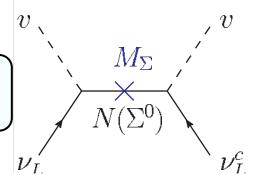
Koji TSUMURA (Nagoya U.)

26

A model for tiny neutrino masses

Anomaly cancellation requires 2HDM-X

Charge assignment:


$$(u,d)_L \sim (3,2,1/6;n_1), \quad u_R \sim (3,1,2/3;n_2), \quad d_R \sim (3,1,-1/3;n_3),$$

 $(\nu,e)_L \sim (1,2,-1/2;n_4), \quad e_R \sim (1,1,-1;n_5), \quad \Sigma_R \sim (1,3,0;n_6).$

U(1)x scalar:
$$\chi^0 \sim (1, 1, 0; -2n_6)$$

A model for tiny neutrino masses

■ Gauged Type-III seesaw

$$\mathcal{L} = +\overline{Q}Y_uu_R\widetilde{H}_q + \overline{Q}Y_dd_RH_q + \overline{L}Y_\ell\ell_RH_\ell + \mathrm{H.c.}$$
[B-L like] U(1) extension [in Type-I seesaw]

Anomaly cancellation requires 2HDM-X

Axial-vector anomaly:

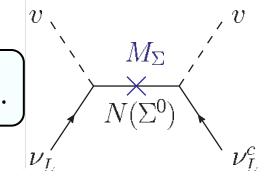
$$[SU(3)]^{2}U(1)_{X}: +2n_{1}-n_{2}-n_{3}=0$$

$$[SU(2)]^{2}U(1)_{X}: +3(\frac{1}{2})n_{1}+(\frac{1}{2})n_{4}-(2)n_{6}=0$$

$$[U(1)_{Y}]^{2}U(1)_{X}: +6(\frac{1}{6})^{2}n_{1}-3(\frac{2}{3})^{2}n_{2}-3(-\frac{1}{3})^{2}n_{3}+2(-\frac{1}{2})^{2}n_{4}-(-1)^{2}n_{5}=0$$

$$U(1)_{Y}[U(1)_{X}]^{2}: +6(\frac{1}{6})n_{1}^{2}-3(\frac{2}{3})n_{2}^{2}-3(-\frac{1}{3})n_{3}^{2}+2(-\frac{1}{2})n_{4}^{2}-(-1)n_{5}^{2}=0$$

$$[U(1)_{X}]^{3}: +6n_{1}^{3}-3n_{2}^{3}-3n_{3}^{3}+2n_{4}^{3}-n_{5}^{3}-3n_{6}^{3}=0$$


gravitational anomaly:

$$+6n_1 - 3n_2 - 3n_3 + 2n_4 - n_5 - 3n_6 = 0$$

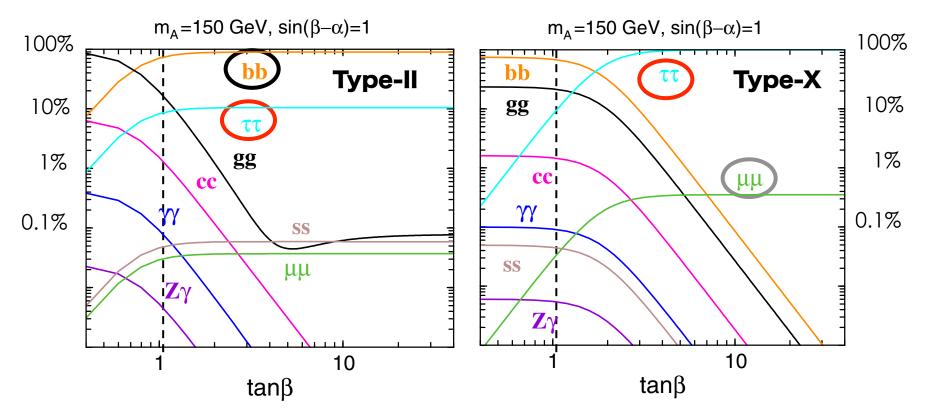
Unique solution exists!!

28

A model for tiny neutrino masses

Anomaly cancellation requires 2HDM-X

possible Yukawa int:

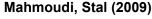

$$n_1 - n_3 = n_2 - n_1 = n_6 - n_4 = \frac{3}{4}(n_1 - n_4), \quad n_4 - n_5 = \frac{1}{4}(9n_1 - n_4),$$

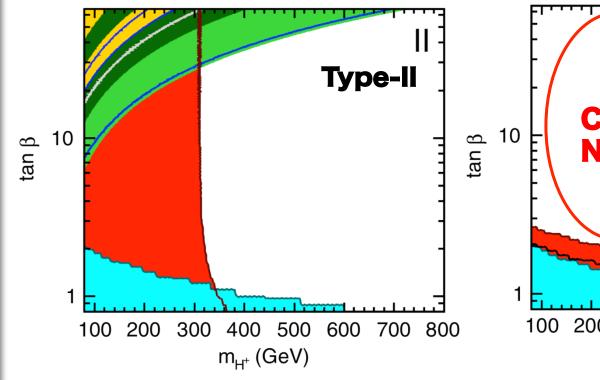
$$H_q \qquad \qquad H_\ell$$

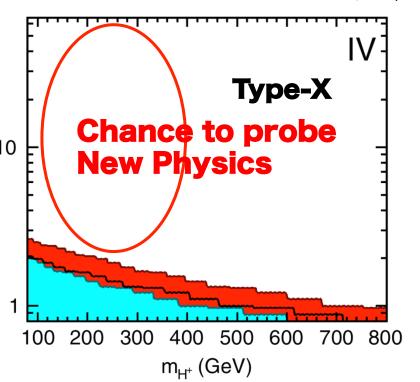
2HDM-X can also be a low energy effective theory

Higgs decays in 2HDMs

Aoki, Kanemura, KT, Yagyu (2009)

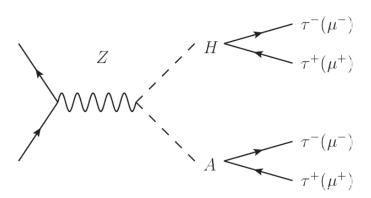



2HDM-X: Enhance leptonic Yukawa int. by $tan\beta$


- More than 99% of H/A decay into ττ
- * Sizable $\mu\mu$ [$(m_{\mu}/m_{\tau})^2=1/300$] mode

Flavor constraint on 2HDM-X

No LHC results, and weaker flavor constraints

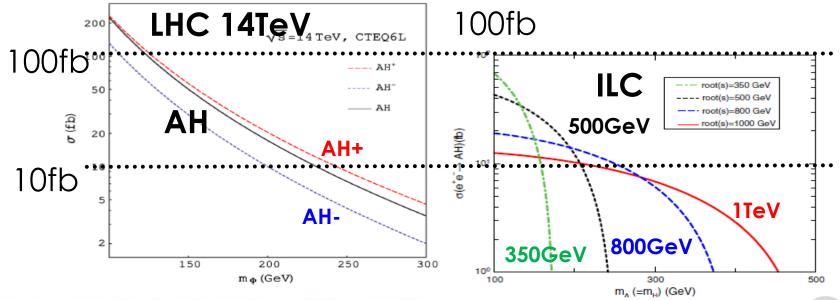


small m_{H+} and very large tanβ are allowed

2HDM-X @ colliders

Kanemura, KT, Yokoya (2012)

DY production with leptonic decay modes

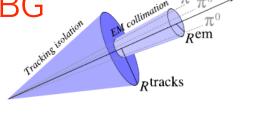


Multi-tau signature

 4τ : more than 99%

2μ2τ: $\sigma(4\tau) \times 1/300 \times 2!$

Cross sections are O(10-100)fb


32

2HDM-X@LHC

High multiplicity of tau jet reduces BG

 τ ID is important (1 or 3 prong, narrow cone, less QCD activity)

$4\tau_h$ event analysis	HA	$\phi^0 H^\pm$	VV	$tar{t}$	$V + \mathrm{jets}$	s/b	\boldsymbol{S}	$(100 \; {\rm fb^-})$	$^{1})$
Pre-selection	324.	52.8	147.	797.	5105.	0.1		4.7	
$p_T^{\tau_h} > 40 \text{ GeV}$	67.2	4.9	2.0	14.7	21.7	1.9		9.4	
' .I	I	l 1	1	l .	10.4	2.8		9.3	
$H_T^{\rm jet} < 50 { m ~GeV}$	I		I	l .		3.9		8.7	
$H_T^{\text{lep}} > 350 \text{ GeV}$	27.6	2.7	0.4	0.5	3.1	7.5		9.3	

Simulation results:

An example for $4\tau \rightarrow 4\tau_h$ m_A=130GeV, m_H=170GeV

→ The excess can be seen!!

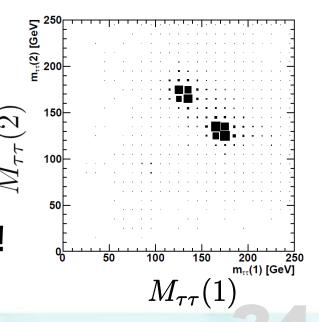
But, mass reconstruction is difficult due to missing v's

→"HA \rightarrow 2 μ 2 τ " is reconstructable (w/ collinear approx.)

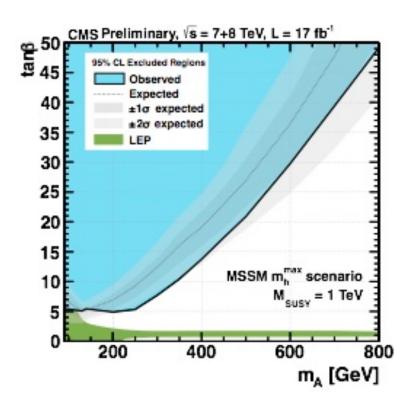
Huge lumi. is necessary due to $~\mathcal{B}^{\mu\mu}/\mathcal{B}^{ au au} imes 2! \simeq 0.7\%$

2HDM-X@LC

4τ momentum are fully reconstructable from taujets & missing v's [We know initial 4 momenta @ LC (only p_T @ LHC)]

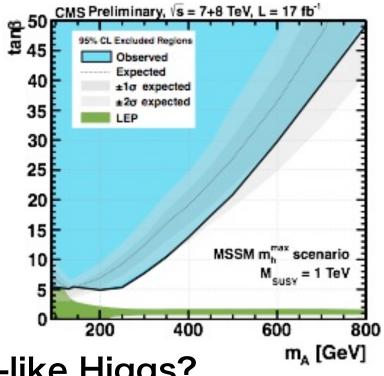

$4\tau_h$ event analysis	HA	VV	t ar t	$S(100 \text{ fb}^{-1})$
Pre-selection	300.	10.6	1.2	38.
$0 \le z_{1-4} \le 1$	251.	6.2	0.1	38.
$(m_Z)_{\tau\tau} \pm 20 \text{ GeV}$	238.	1.8	0.	43.

Simulation result:

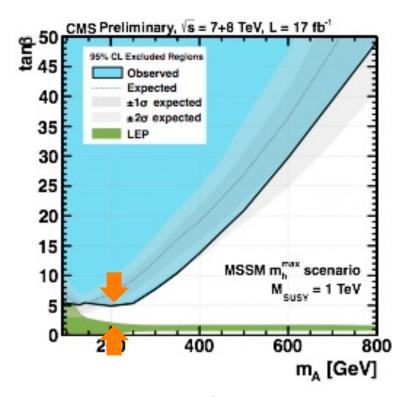

An example for $4\tau \rightarrow 4\tau_h$ m_A=130GeV, m_H=170GeV

for $5\sigma \sim 2/\text{fb}$ @ LC

Not only mass reconstruction, but also direct probe of pair production!!


What Else?

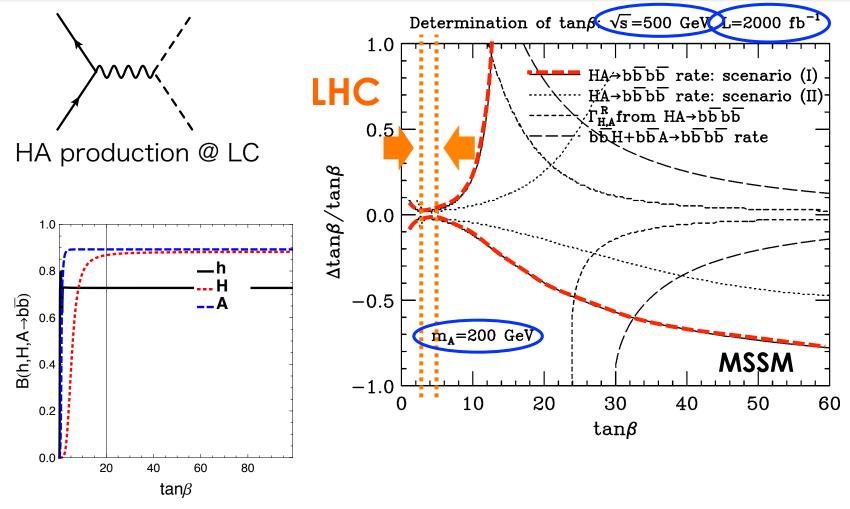
What Else?


Precision SM-like Higgs study

Can we probe 2HDM via SM-like Higgs?

tanß @ LHC

Once Extra Higgs is discovered, then...

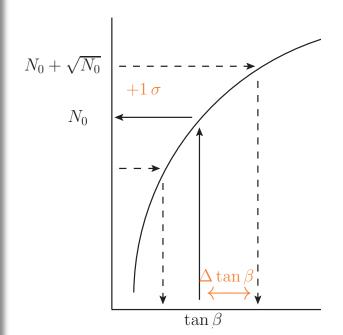

For example,

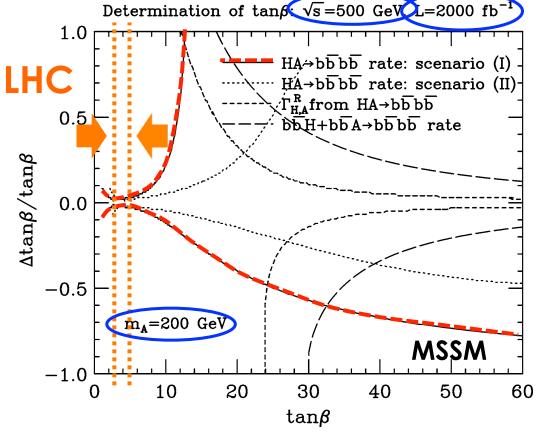
$$m_A$$
=200GeV \rightarrow 3 < tan β < 5

by assuming MSSM(2HDM-II)

tanß measurement

tanß in MSSM @ LC



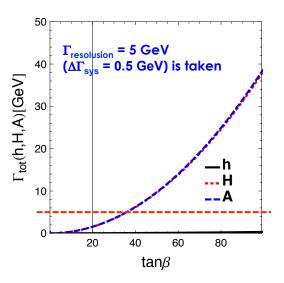

B_Hbb rapidly depends on tanβ

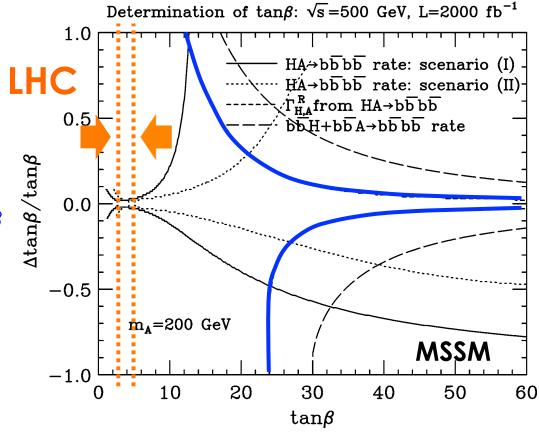
 \rightarrow BR measurement can probe tan β very precisely

tanβ in MSSM @ LC

Definition of 1σ sensitivity

B_Hbb rapidly depends on tanβ

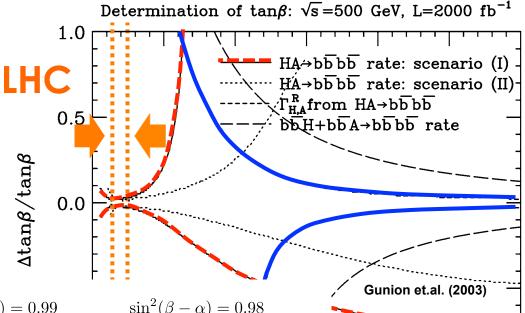

 \rightarrow BR measurement can probe tan β very precisely

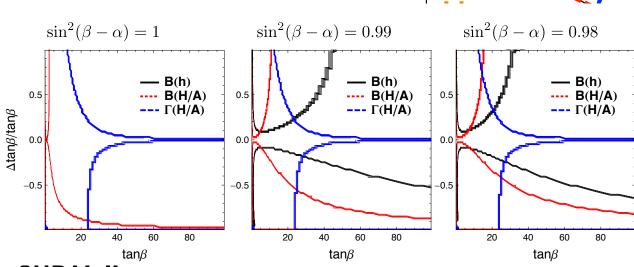

tanβ @ LC

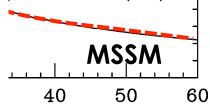
Although, LHC already excluded

Width measurement

$$\Gamma_{
m tot}^{H,A} \simeq N_C \frac{G_F m_{H,A} m_b^2}{4\sqrt{2}\pi} an^2 eta$$

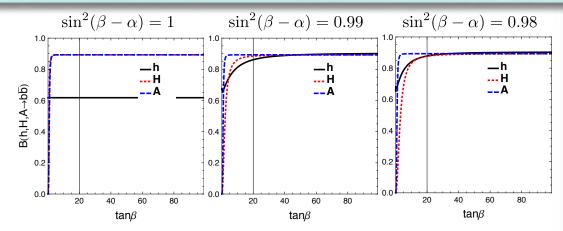



Width measurement is sensitive for high tanß


tanβ in 2HDM-II @ LC

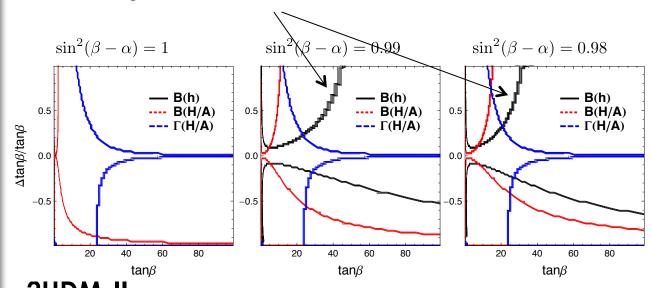
Without SUSY relation

$$\sin(\beta - \alpha) \not\simeq 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta}$$
 LHC


2HDM-II

Kanemura, KT, Yokoya, Yagyu

tanβ in 2HDM-II @ LC


Without SUSY relation

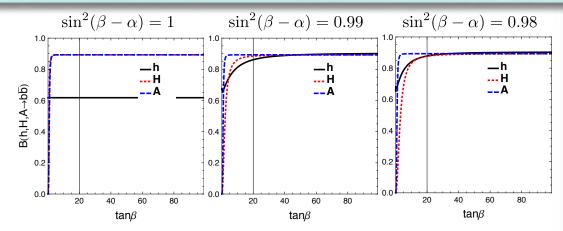
$$\sin(\beta - \alpha) \not\simeq 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta}$$

SM-like Higgs decay BRs strongly depend on tanβ

You may notice new BLACK curves

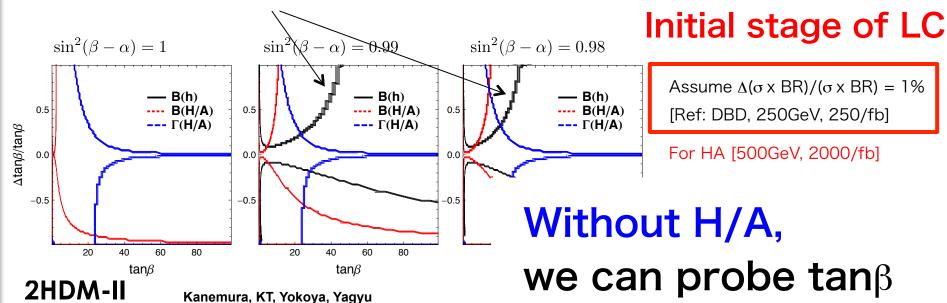
Assume $\Delta(\sigma \times BR)/(\sigma \times BR) = 1\%$ [Ref: DBD, 250GeV, 250/fb]

For HA [500GeV, 2000/fb]


2HDM-II

Kanemura, KT, Yokoya, Yagyu

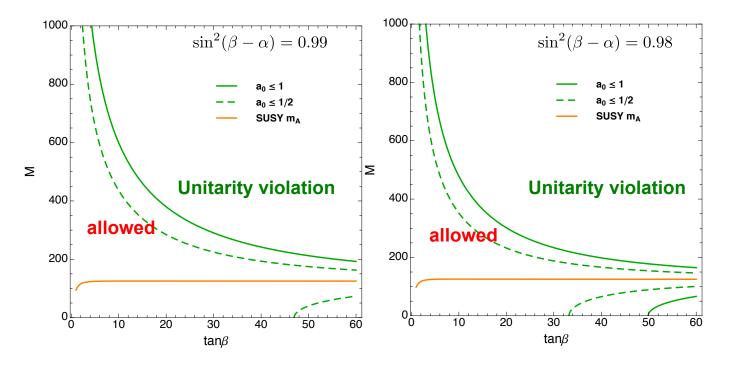
tanβ in 2HDM-II @ LC


Without SUSY relation

$$\sin(\beta - \alpha) \approx 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta}$$

SM-like Higgs decay BRs strongly depend on tanβ

You may notice new BLACK curves

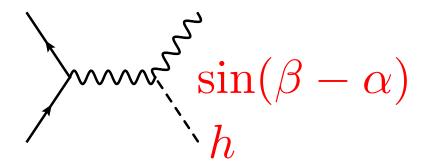


Unitarity bound

Potential largest eigenvalue:

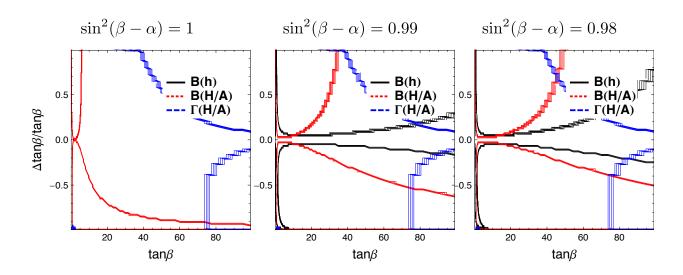
Kanemura et,al, (1993)

$$a^{\pm} = -\frac{1}{32\pi} \left[3(\lambda_1 + \lambda_2) \pm \sqrt{9(\lambda_1 - \lambda_2)^2 + 4(2\lambda_3 + \lambda_4)^2} \right]$$

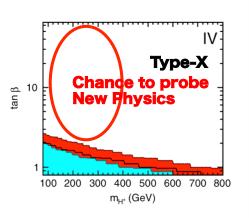

There are implicit upper mass bounds (new no lose theorem?)

[a deviation of $sin(\beta - \alpha)$ requires large quartic coupling (non-decoupling)]

tanß @ LC

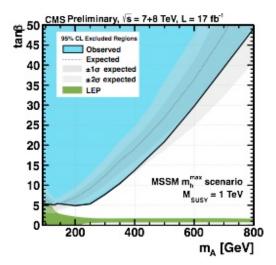

Precise measurement of sin(β-α) makes BR prediction better in 2HDMs

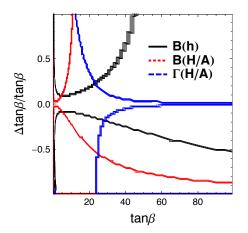
 \rightarrow Key observable for determining tan β



tanβ in 2HDM-X

- SM-like Higgs decay into ττ
- BR measurement w/ 4τ final states
- Width measurement of H/A→ττ




Wider parameter regions should be examined by LC

Summary

- 2HDM can describe low energy effective theory
 - > Direct search:
 - ❖ SUSY/2HDM-II Higgs has been searched
 - Leptophilic Higgs
 (4τ signature @ LHC)
 (4τ signature & tanβ @ LC)
 - tanβ measurement:
 - ❖ HA production, width measurement
 - ❖ Precision SM-like Higgs study (tanβ from h→bb/ττ @ LC) (discriminate types of Yukawa in 2HDMs)

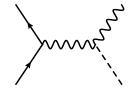
Conclusion

 $V(\Phi)$

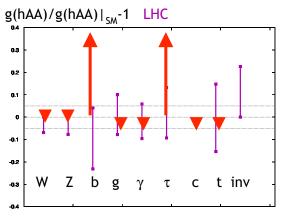
Conclusion

Thank you for your attentions

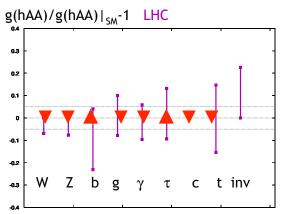
Back up slides


SM-like Higgs in SUSY

SUSY Higgs sector is the most popular 2HDM


Type-II Yukawa interaction w/ SUSY relation

$$\begin{cases} \Phi_u : u, \\ \Phi_d : d, \ell \end{cases}$$


$$\sin(\beta - \alpha) \simeq 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta} \approx 1$$

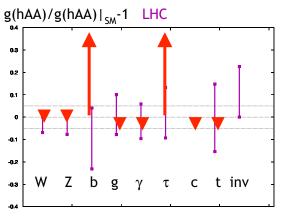
$$\frac{g_{hbb}}{g_{hbb}^{\rm SM}} = \frac{g_{h\tau\tau}}{g_{h\tau\tau}^{\rm SM}} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha) \simeq 1 + \frac{2m_Z^2}{m_A^2}$$
$$\frac{g_{htt}}{g_{htt}^{\rm SM}} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha) \simeq 1 - \frac{2m_Z^2}{m_A^2 \tan^2\beta}$$

 m_A =200GeV w/ $\tan \beta$ =5

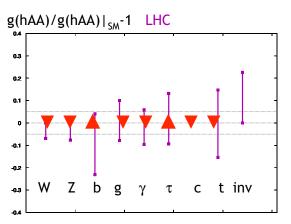
 $m_A >> m_Z$ w/ tan $\beta = 5$

BG figure is taken from 1207.2516 by Peskin

SM-like Higgs in SUSY


SUSY Higgs sector is the most popular 2HDM

Type-II Yukawa interaction w/ SUSY relation


$$\begin{cases} \Phi_u : u, \\ \Phi_d : d, \ell \end{cases}$$

$$\frac{g_{hbb}}{g_{hbb}^{\rm SM}} = \frac{g_{h\tau\tau}}{g_{h\tau\tau}^{\rm SM}} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha) \simeq 1 + \frac{2m_Z^2}{m_A^2}$$

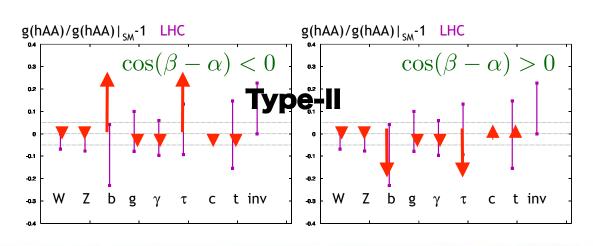
hbb deviation can probe ma scale

 m_A =200GeV w/ $\tan \beta$ =5

 $m_A >> m_Z$ w/ tan $\beta = 5$

SM-like Higgs in 2HDMs

□ 2HDM-II


$$\sin(\beta - \alpha) \not\simeq 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta}$$

Type-II Yukawa interaction w/o SUSY relation

$$\begin{cases} \Phi_u : u, \\ \Phi_d : d, \ell \end{cases}$$

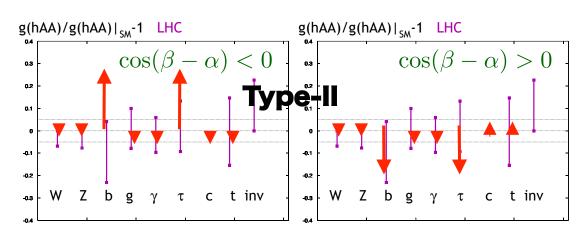
$$egin{aligned} rac{g_{hbb}}{g_{hbb}^{ ext{SM}}} &= rac{g_{h au au}}{g_{h au au}^{ ext{SM}}} = \sin(eta - lpha) - aneta\cos(eta - lpha) \ &rac{g_{htt}}{g_{htt}^{ ext{SM}}} = \sin(eta - lpha) + \coteta\cos(eta - lpha) \end{aligned}$$

- No m_A dependence $[\sin(\beta \alpha)]$ is determined by $(\beta \alpha)$
- \star cos(β - α) can be sizable and positive

SM-like Higgs in 2HDMs

□ 2HDM-II

$$\sin(\beta - \alpha) \not\simeq 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta}$$


Type-II Yukawa interaction w/o SUSY relation

$$\begin{cases} \Phi_u : u, \\ \Phi_d : d, \ell \end{cases}$$

$$\frac{g_{hbb}}{g_{hbb}^{\rm SM}} = \frac{g_{h\tau\tau}}{g_{h\tau\tau}^{\rm SM}} = \sin(\beta - \alpha) - \tan\beta \cos(\beta - \alpha)$$
$$\frac{g_{htt}}{g_{htt}^{\rm SM}} = \sin(\beta - \alpha) + \cot\beta \cos(\beta - \alpha)$$

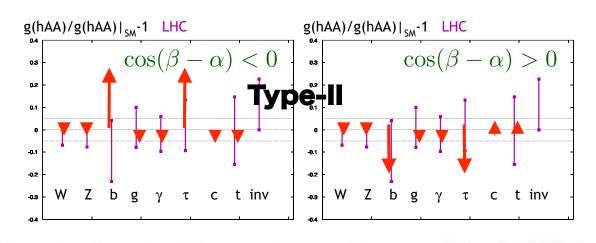
$sin(\beta-\alpha)$ + hff deviations (w/o m_A)

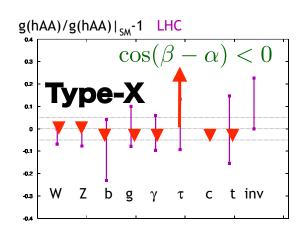
→ detemination of tanβ

SM-like Higgs in 2HDMs

□ 2HDM-II

$$\sin(\beta - \alpha) \not\simeq 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta}$$


Type-II Yukawa interaction w/o SUSY relation


$$egin{cases} \Phi_u : u, \ \Phi_d : d, \ell \end{cases}$$

$$\frac{g_{hbb}}{g_{hbb}^{\rm SM}} = \frac{g_{h\tau\tau}}{g_{h\tau\tau}^{\rm SM}} = \sin(\beta - \alpha) - \tan\beta \cos(\beta - \alpha)$$
$$\frac{g_{htt}}{g_{htt}^{\rm SM}} = \sin(\beta - \alpha) + \cot\beta \cos(\beta - \alpha)$$

$sin(\beta-\alpha)$ + hff deviations (w/o m_A)

→ discrimination of types of Yukawa

Observable	Expected Error (experimen	$t \oplus theory)$
LHC at 14 TeV with 300 fb^{-1}		
$\sigma(gg) \cdot BR(\gamma\gamma)$	$0.06 \oplus 0.13$	
$\sigma(WW) \cdot BR(\gamma\gamma)$	$0.15 \oplus 0.10$	
$\sigma(gg) \cdot BR(ZZ)$	$0.08 \oplus 0.08$	"(- A A) / "(- A A)
$\sigma(gg) \cdot BR(WW)$	$0.09 \oplus 0.11$	g(hAA)/g(hAA) _{SM} -1 LHC
$\sigma(WW) \cdot BR(WW)$	$0.27 \oplus 0.10$	0.3 -
$\sigma(gg) \cdot BR(\tau^+\tau^-)$	$0.11 \oplus 0.13$	02
$\sigma(WW) \cdot BR(\tau^+\tau^-)$	$0.15 \oplus 0.10$	0
$\sigma(Wh) \cdot BR(b\overline{b})$	$0.25 \oplus 0.20$	-0.1
$\sigma(Wh) \cdot BR(\gamma\gamma)$	$0.24 \oplus 0.10$	-02 W Z b g γ τ c t inv
$\sigma(Zh) \cdot BR(b\overline{b})$	$0.25 \oplus 0.20$	-0.4
$\sigma(Zh) \cdot BR(\gamma\gamma)$	$0.24 \oplus 0.10$	
$\sigma(t \bar{t} h) \cdot BR(b \bar{b})$	$0.25 \oplus 0.20$	
$\sigma(t\bar{t}h)\cdot BR(\gamma\gamma)$	$0.42 \oplus 0.10$	
$\sigma(WW) \cdot BR(\text{invisible})$	$0.2\oplus0.24$	

Table 1: Input data for the fits to Higgs couplings from LHC measurements.

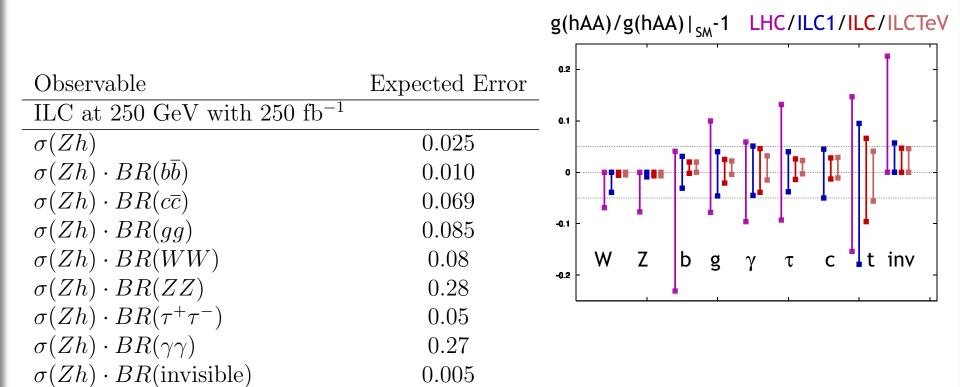


Table 2: Input data for the fits to Higgs couplings from ILC measurements.

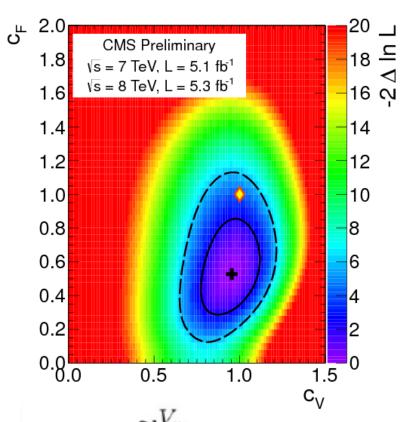
SUSY Higgs sector

CP even sector

$$\mathcal{M}^2 = \mathcal{M}_{\text{tree}}^2 + \begin{pmatrix} 0 & 0 \\ 0 & \epsilon \end{pmatrix}$$

Quantum corrections

$$\epsilon \simeq \frac{3\bar{m}_t^4}{2\pi^2 v^2 \sin^2 \beta} \left[\ln \frac{M_S^2}{\bar{m}_t^2} + \frac{X_t^2}{2M_S^2} \left(1 - \frac{X_t^2}{6M_S^2} \right) \right]$$

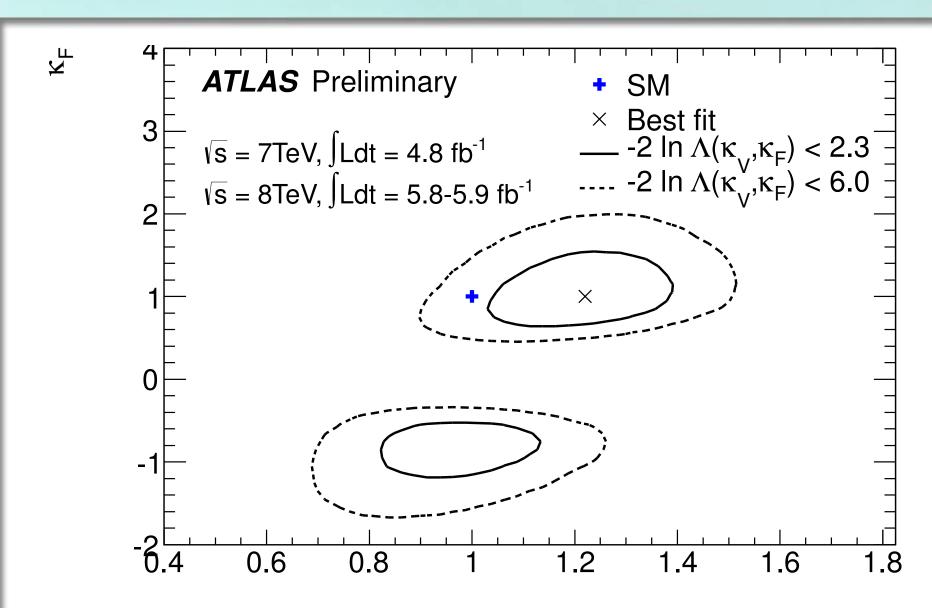

Mass engenvalues & mixing angle

$$m_{h,H}^2 = \frac{1}{2}(m_A^2 + m_Z^2 + \epsilon) \left[1 \mp \sqrt{1 - 4 \frac{m_Z^2 m_A^2 \cos^2 2\beta + \epsilon (m_A^2 \sin^2 \beta + m_Z^2 \cos^\beta)}{(m_A^2 + m_Z^2 + \epsilon)^2}} \right]$$

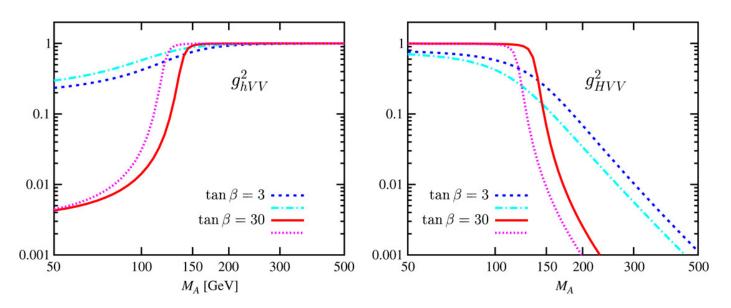
$$\tan 2\alpha = \tan 2\beta \frac{m_A^2 + m_Z^2}{m_A^2 - m_Z^2 + \epsilon/\cos 2\beta}$$

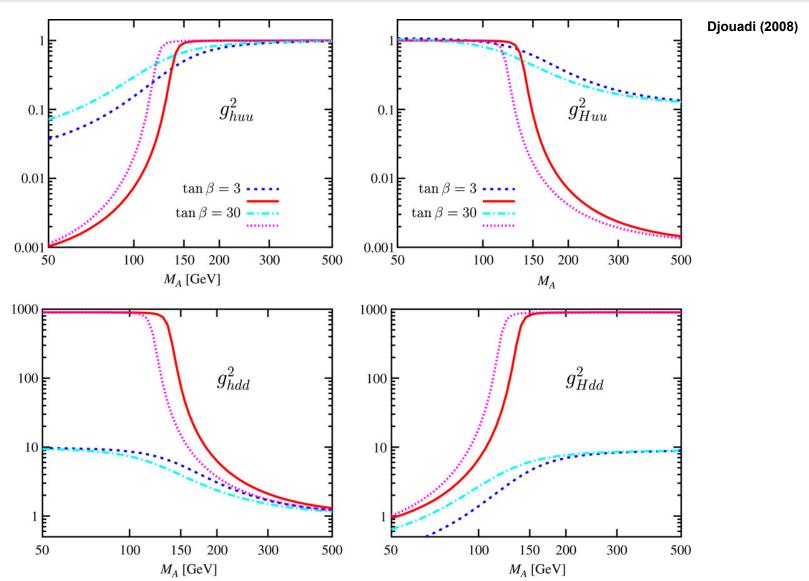
SM-like?

SM-like gauge-gauge-Higgs coupling is favored


Production	Decay	LO SM	
VH	$H \rightarrow bb$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$
${ m tt}{ m H}$	$H \to bb$	$\sim rac{C_F^2 imes C_F^2}{C_F^2}$	$\sim C_F^2$
VBF/VH	$H \to \tau \tau$	$\sim rac{C_V^2 imes C_F^2}{C_F^2}$	$\sim C_V^2$
ggH	$H \to \tau\tau$	$\sim rac{C_F^2 \hat{ imes} C_F^2}{C_F^2}$	$\sim C_F^2$
ggH	$H \to ZZ$	$\sim rac{C_F^2 imes C_V^2}{C_F^2}$	$\sim C_V^2$
ggH	$H \to WW$	$\sim rac{C_F^2 imes C_V^2}{C_F^2}$	$\sim C_V^2$
VBF/VH	$H \to WW$	$\sim rac{C_V^2 imes C_V^2}{C_F^2}$	$\sim C_V^4/C_F^2$
ggH	$H \to \gamma \gamma$	$\sim \frac{C_F^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^2$
VBF	$H \to \gamma \gamma$	$\sim \frac{C_V^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^4/C_F^2$

 $W_{\mu}^+W_{\nu}^+h:ig_WM_W\sin(\beta-\alpha)g_{\mu\nu}$

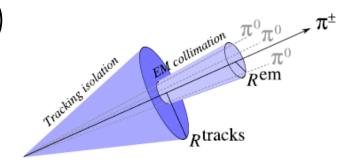

 $sin(\beta-\alpha)$ can be different from unity



Gauge coupling in MSSM

Djouadi (2008)

Yukawa coupling in MSSM



Event analysis details

-MadGraph5: event generation, calculate (diff.) σ

-PYTHIA: hadronization (quark, $\tau \rightarrow$ hadron) w/ TAUOLA (tau polarization)

-FastJet: (construct jets from hadrons) jet is defined by anti-kT w/ R<0.4

→ Detector simulation (construct kinematical variables such as invariant mass, etc...)

Unitarity bound

tanβ enhancement in λ couplings

$$\lambda_{1} = \frac{1}{v^{2} \cos^{2} \beta} \left(-M^{2} \sin^{2} \beta + m_{H}^{2} \cos^{2} \alpha + m_{h}^{2} \sin^{2} \alpha \right)$$

$$\lambda_{2} = \frac{1}{v^{2} \sin^{2} \beta} \left(-M^{2} \cos^{2} \beta + m_{H}^{2} \sin^{2} \alpha + m_{h}^{2} \cos^{2} \alpha \right)$$

$$\lambda_{3} = \frac{1}{v^{2}} \left[-M^{2} + (m_{H}^{2} - m_{h}^{2}) \frac{\sin 2\alpha}{\sin 2\beta} + 2m_{H^{+}}^{2} \right]$$

nearly SM-like (β - α = $\pi/2$ - δ), and M=M_H=M_{H+}

$$\lambda_{1} \rightarrow + \frac{m_{h}^{2}}{v^{2}} - \frac{2(M^{2} - m_{h}^{2})t_{\beta}}{v^{2}} \delta - \frac{(M^{2} - m_{h}^{2})t_{\beta}^{2}}{v^{2}} \delta^{2} \qquad \text{Only } \lambda_{1} \text{ diver}$$

$$\lambda_{2} \rightarrow + \frac{m_{h}^{2}}{v^{2}} + \frac{2(M^{2} - m_{h}^{2})/t_{\beta}}{v^{2}} \delta + \frac{(M^{2} - m_{h}^{2})/t_{\beta}^{2}}{v^{2}} \delta^{2}$$

$$\lambda_{3} \rightarrow + \frac{m_{h}^{2}}{v^{2}} + \frac{2(M^{2} - m_{h}^{2})}{v^{2}} \delta + \frac{(M^{2} - m_{h}^{2})}{v^{2}} \delta^{2}$$

Only λ_1 diverges