CP phase from Higgs's boundary condition

KORE Yukihiro Fujimoto (Kobe Univ.)

Collaborator :[†]Kenji Nishiwaki, [‡]Makoto Sakamoto ([†]Harish-Chandra Research Inst.,[‡]Kobe university) **arXiv : 1301.7253 [hep-ph]**

Outline

We propose a new mechanism for generating CP phase via Higgs's twisted boundary condition in the context of higher dimensional gauge theories. With this mechanism, we construct a phenomenological model on S^1 with point interactions which can explain the origin of fermion generation, quark mass hierarchy and the structure of Cabibbo-Kobayashi-Maskawa matrix with CP phase.

• Mysteries of the Standard Model

- 1. The origin of CP phase : Where does the CP phase come from !?
- 2. Generations : Who ordered the three same things in this world !?
- 3. Mass Hierarchy: Why so different the masses of the fermions are !?
- 4. Flavor Mixing : What is the origin of CKM structure !?

We want to clarify these mysteries of the Standard Model in the context of **5d gauge theories on a circle.**

<u>Difficulty</u>

◆ CP phase VS Generations

Generations from one fermion does not allow us to introduce non-trivial phases in Yukawa couplings.

CP phase ?

H(x, y)

u(x,y)

d(x,y)

 $\Phi(x,y)$

, u'(x,y), d'(x,y)

• <u>Setting</u>

• 5d gauge theories on a circle. $W_M^a(x,y)$, $B_M(x,y)$

with • 5d doublet Higgs field

- 5d fermions (one generation)
- 5d singlet scalar
- Put point interactions on a circle
 - Gauge fields do not feel them.
 - Higgs and singlet scalar feel one point interaction.
 - · Fermions feel several point interactions.

◆ Impose Boundary Conditions

Gauge fields	 Higgs & singlet scalar 	• Fermions
$\left\{ \begin{array}{l} W^a_M(0)=W^a_M(L)\\ \\ \partial_y W^a_M(0)=\partial_y W^a_M(L) \end{array} \right.$	$H(y+L)=e^{i\theta}H(y)$	$\left(egin{array}{c} u(y) \\ d(y) \end{array} ight)_R = 0$
$\left\{ egin{array}{l} B_M(0) = B_M(L) \ \partial_y B_M(0) = \partial_y B_M(L) \end{array} ight.$	$\left\{ egin{array}{l} \Phi(0)+L_+\partial_y\Phi(0)=0 \ \\ \Phi(L)-L\partial_y\Phi(L)=0 \end{array} ight.$	$u'(y)_L = 0$ $d'(y)_L = 0$ @ Point Interactions

• <u>Results</u>

• <u>CP phase</u>

• The key element for CP phase is a non-trivial y-dependent phase which appears in Higgs VEV through the Boundary condition. (y-independent phase does not help us.)

$$\langle H(y)
angle = rac{v}{\sqrt{2}} e^{irac{ heta}{L}y} \left(egin{array}{c} 0 \ 1 \end{array}
ight)$$

• Localized fermions pick up different phases in their masses from overlap integrals.

• Our Model CP

• Generation comes from the boundary conditions for fermions.

♦ Mass hierarchy appears due to the y-dependent singlet scalar VEV.

• Flavor mixing appears from off-diagonal overlap integrals. The form of mass matrices are restricted via the geometry.

<u>Numerical Results</u>

• We found a parameter set which reproduces experimental values within 20%.

$egin{aligned} n_{ m up} &= 2.06 { m MeV} \ n_{ m down} &= 4.91 { m MeV} \end{aligned}$	$m_{ m charm} = 1.25{ m GeV} \ m_{ m strange} = 102{ m MeV}$	$m_{ m top} = 174{ m GeV}$ $m_{ m bottom} = 4.18{ m GeV}$
$ V_{ m CKM} = egin{pmatrix} 0.971 \ 0.238 \ 0.00829 \end{bmatrix}$	$\left(\begin{array}{ccc} 0.238 & 0.00318 \\ 0.970 & 0.0372 \\ 0.0364 & 0.999 \end{array}\right)$	

 $J = \text{Im}[(V_{\text{CKM}})_{11}(V_{\text{CKM}})_{22}(V_{\text{CKM}}^*)_{12}(V_{\text{CKM}}^*)_{21}] = 2.56 \times 10^{-5}$