Vacuum Stability of supersymmetric extended Higgs sector with a discrete symmetry Naoki Machida(U. of Toyama)

Collaborators: Shinya Kanemura(U. of Toyama), Tetsuo Shindou(Kogakuin U.)

• Introducion

The Higgs boson has discovered at LHC for $m_h=126$ GeV!

 \rightarrow The Higgs sector is undetermined, minimal?, two higgs doulet model?, ...

Inert Higgs model resolves dark matter and neutrino mass. MSSM resolves hierarchy problem.

Extended Higgs sector \Leftrightarrow The solution of New Physics

We consider strongly coupled ($\lambda \sim O(1)$) supersymmetric extended Higgs sector with a discrete symmetry. This model can solve dark matter, electroweak baryogenesis, neutrino mass at once below multi TeV scale(see(1)) (unbroken Z_2 , Inert scalars).

But the discrete Z_2 symmetry may be spontaneously broken.

We discuss the vacuum stability of this model (When Z_2 symmetry is spontaneously broken?).

Conclusion

Unbroken Z_2 symmetry resolves dark matter, neutrino mass and m_h=126GeV.

Work in progress

When A-trems(scalar three point terms) are small and mass parameters are big, the Higgs potential is stabilize.

(1) Supersymmetric extended Higgs sector

$MSSM \cdot D+D$	D: Doublet
	S (Ω): (Charged)Singlet
NNSSN: D+D+S	D'(S'):Z2-odd doublet (singlet)

4HDM : D+D+D'+D' Aoki, Kanemura, Shindou, Yagyu (2011) 4HDMS : D+D+D'+D'+S' Aoki, Kubo, Okawa, Takano (2011) 4HDMΩ : D+D+D'+D'+Ω'+Ω' Kanemura, Shindou, Yagyu (2010) Kanemura, Senaha, Shindou(2011)

Supersymmetric Inert Model (SIM)

•Dark Matter and Neutrino Mass

Z₂ symmetry can explain stability of dark matter and neutrino mass.

$V_{\rm eff}(\varphi;T) \simeq D(T^2 - T_0^2)\varphi - ET\varphi^3 + \frac{\lambda_T}{4}\varphi$ $\lambda_{T_C} = \frac{m_h^2}{2v^2} + \text{correction} \quad E = \frac{1}{12\pi v^3} (6m_W^3 + 3m_Z^3)$ To explain electorweak baryogenesis in the SM,

The Higgs boson mass must be lighter than 50GeV.

• Electroweak Baryogenesis

•Hierarchy Problem

Supersymmetry can solve hierarchy problem.

Red Region : Realistic vacuum is tachyonic. Blue Region : Realistic vacuum is not global minimum.

When A-term is small and mass parameters are big, the potential is stabilize.

 $W = -\mu H_d \cdot H_u + \lambda_d H_d \cdot \Phi_u S + \lambda_u H_u \cdot \Phi_d S$ **(4)**Vacuum Stability of 4HDMS

