Classically conformal B-L extended Standard Model and phenomenology

Yuta Orikasa (Osaka U.)

Collaboration with Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada (University of Alabama)

Coleman-Weinberg mechanism in SM

We consider classically conformal Standard Model.

Tree level potential

There is no electroweak symmetry breaking at the classical level. We need to consider origin of the symmetry breaking.

Coleman-Weinberg Mechanism

(radiative symmetry breaking)

1 loop effective potential

In the classically conformal SM, due to the large top mass the effective potential is rendered unstable, and CW mechanism does not work.

 $V(H) = \frac{\lambda_H}{\Delta} \left(H^{\dagger} H \right)^2$

Classically conformal B-L extended model

Gauge symmetry

 $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$

Particle contents

	$SU(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$ \mathrm{U}(1)_{B-L} $	Z_2
$\overline{q_L^i}$	3	2	+1/6	+1/3	+
u^i_R	3	1	+2/3	+1/3	+
$d_R^{\overline{i}}$	3	1	-1/3	+1/3	+
$-\ell_L^i$	1	2	-1/2	-1	+
$ u_R^i$	1	1	0	-1	+
$ u_R^3$	1	1	0	-1	—
e_R^i	1	1	-1	-1	+
H	1	2	+1/2	0	+
Φ	1	1	0	+2	+

New particles

right-handed neutrino ν_R

Three generations of right-handed neutrinos are necessarily introduced to make the model free from all the gauge and gravitational anomalies.

singlet scalar ϕ

The SM singlet scalar works to break the U(1)B-L gauge symmetry by its VEV.

Lagrangian

Yukawa sector See-Saw mechanism associates with B-L $\mathcal{L} \supset -Y_D^{ij} \overline{\nu_R^i} H^{\dagger} l_L^j - \frac{1}{2} Y_N^i \Phi \overline{\nu_R^{ic}} \nu_R^i + h.c. \text{ symmetry breaking.}$ Potential The mass terms are forbidden $V(H,\phi) = \lambda_H \left(H^{\dagger} H \right)^2 + \lambda \left(\phi^{\dagger} \phi \right)^2 + \lambda' \left(\phi^{\dagger} \phi \right) \left(H^{\dagger} H \right)$ by classical conformal invariance. **Assumption**(Flat Potential) $\lambda_H = \lambda' = 0 \longrightarrow \lambda'$ is very small and negative $g_1 \sim g_{B-L}$ $(\sim O(10^{-3}))$ at planck scale

We can consider the standard model sector and the B-L sector separately, because the scalar mixing term is very small.

Symmetry Breakings

•The B-L symmetry is broken by the CW mechanism.

The Electroweak symmetry is broken by VEV of B-L Higgs.

Once the B-L symmetry is broken, the SM Higgs doublet mass is generated through the mixing term between H and Φ in the scalar potential.

$$V(h) \sim \frac{\lambda_H}{4}h^4 + \frac{\lambda'}{4}M^2h^2$$

Effective tree-level mass squared is induced, and if λ ' is negative, EW symmetry breaking occurs as usual in the SM.

$$M = \sqrt{\frac{m_h^2}{|\lambda'|}} \sim {\rm few~TeV}$$

Prediction of our model

quantum correction

 $\alpha_{B-L} < 0.015$