A Resolution of the Flavor Problem of Two Higgs Doublet Models wit h an Extra U(1)_H Symmetry for Higgs Flavor

Chaehyun Yu, KIAS (Korea Institute for Advanced Study)

In collaboration with P. Ko (KIAS) and Yuji Omura (TUM), Phys. Lett. B 717 (2012) 202

Motivation

Discovery of the scalar boson at the LHC

SM Higgs or not?

- eliggs sector: the least understood part of the SM.
- - does there exist extra Higgs boson?
- @ Multi-Higgs scenario may be motivated by SUSY or GU Τ.♪
 - **Two Higgs Doublet Model**
- \bigcirc One of the simplest extension of the SM Higgs sector.

 $\{(V_L^{d\dagger}y_1^dV_R^d)_{ij}\cos\alpha + (V_L^{d\dagger}y_2^dV_R^d)_{ij}\sin\alpha\}H_1\overline{D}_L^iD_R^j$

 \bigcirc One sector must couple with one Higgs.

2HDMs

Z_2 symmetry)

Q A simple way to avoid FCNC problems is to assign an a d hoc Z₂ symmetry (called Natural Flavor Conservation).

 $Z_2: (H_1, H_2) \to (+H_1, -H_2).$

Assignment of Z_2 parities to the SM fermions and Higgs doublets.

Туре	<i>H</i> ₁	H ₂	U_R	D_R	E_R	N _R	Q_L, L
Ι	+	_	+	+	+	+	+
II	+	_	+	_	_	+	+

Potential in typical 2HDMs

 $V(H_1, H_2) = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 + \frac{\lambda_1}{2} (H_1^{\dagger} H_1)^2 + \frac{\lambda_2}{2} (H_2^{\dagger} H_2)^2 + \lambda_3 H_1^{\dagger} H_1 H_2^{\dagger} H_2 + \lambda_4 H_1^{\dagger} H_2 H_2^{\dagger} H_1$ $+BH_{1}^{\dagger}H_{2}+\lambda_{5}(H_{1}^{\dagger}H_{2})^{2}+h.c.$

 \Rightarrow Z₂ odd and source of pseudoscalar mass.

Gauged U(1)_H

Ш

Generic problems of 2HDMs

- It is well known that discrete symmetry could generate a domain well problem when it is spontaneously broken.
- \bigcirc Usually the Z₂ symmetry is assumed to be broken softly by a dim-2 operator, $H_1^{\dagger}H_2$, term.
- The origin of such a discrete symmetry is not clear at all

@ propose to replace the Z_2 symmetry by a new U(1)_H symmetry a ssociated with Higgs flavors $(h_1 \times h_2)$.

 $V(H_1, H_2) = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 + \frac{\lambda_1}{2} (H_1^{\dagger} H_1)^2 + \frac{\lambda_2}{2} (H_2^{\dagger} H_2)^2 + \lambda_3 H_1^{\dagger} H_1 H_2^{\dagger} H_2 + \lambda_4 H_1^{\dagger} H_2 H_2^{\dagger} H_1$

- Q The massless mode is eaten by the U(1)_H gauge boson. \triangleright
- @ include a singlet scalar Φ (h_b=h₁−h₂). \blacktriangleright

 $\Delta V = m_{\Phi}^2 \Phi^{\dagger} \Phi + \frac{\lambda_{\Phi}}{2} (\Phi^{\dagger} \Phi)^2 + (\mu H_1^{\dagger} H_2 + h.c.) + \mu_1 H_1^{\dagger} H_1 \Phi^{\dagger} \Phi + \mu_2 H_2^{\dagger} H_2 \Phi^{\dagger} \Phi$ Source of pseudoscalar mass \downarrow

Models

Type-I 2HDM

Charge assignments of an anomaly-free $U(1)_H$ in the Type-I 2HDM.

Type	U_R	D_R	Q_L	L	E_{R}	N_R	H_1
$U(1)_H$ charge	u	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$
$h_2 \neq 0$	0	0	0	0	0	0	0
$U(1)_{B-L}$	1/3	1/3	1/3	-1	-1	-1	0
$U(1)_R$	1	-1	0	0	-1	1	1
$U(1)_Y$	2/3	-1/3	1/6	-1/2	-1	0	1/2

Type-II 2HDM

 $V_{v} = y_{ij}^{U} \overline{Q}_{Li} H_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{2} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{2} E_{Rj} + y_{ij}^{N} \overline{L}_{i} H_{1} N_{Rj} + h.c.$ $U_R \quad D_R \quad Q_L \quad L \quad E_R \quad N_R \quad H_1 \quad H_2$ $u \quad 0 \quad 0 \quad 0 \quad 0 \quad u \quad u \quad 0$

Requires extra chiral fermions for cancellation of gauge anomaly

Conclusions

• We proposed a new resolution of th e Higgs mediated FCNC problem in 2 HDM with gauged $U(1)_{H}$.

easily realize "Natural Flavor Con-se rvation" for proper U(1)_H assignment. \triangleright

@ (u,d)=(0,0): ♪

- $-Z_{H}$ is fermiophobic and Higgsphilic.
- $-H^{\pm}W^{m}Z_{H}$ is the main source of production of Z_{H} .

@ (u,d)=(1/3,1/3): ♪

 $- U(1)_{H} = U(1)_{B-1}$, but Z_{H} gets mass from H_{2} and Φ .

 \bigcirc The mass term of extra fermions are given by \triangleright

 $V_m = y_{ij}^q \overline{q_{Li}} q_{Rj} \Phi + y_{ij}^n \overline{n_{Li}} n_{Rj} \Phi + y_1^l \overline{l'_{L1}} l'_{R1} \Phi + y_2^l \overline{l'_{L2}} l'_{R2} \Phi^{\dagger} + \text{h.c.}$

@ (u,d)=(1,-1): ♪

 $- U(1)_{H} = U(1)_{R}$, and Z_{H} couples only with the RH fermions e forbid mixting terms which may cause FCNC such as $m_{ij}\bar{q}_{Li}U_{Rj}$ or $\lambda_{ij}\Phi\bar{q}_{Li}U_{Rj}$

@ (u,d)=(2/3,-1/3): ♪

 $- U(1)_{H} = U(1)_{Y}$

- If $h_2 \neq h_1$, h_2 does not couple with the SM fermions at tr ee level, but eventually interacts with the SM fermions thr ough a Z_H loop.♪

assignment.	harge	(1) _H c	ate U(propri	for ap
	$U(1)_H$	$U(1)_Y$	$SU(2)_L$	$SU(3)_c$	
M fermions.	Q_L	-1/2	2	1	l_{L1}
	Q_R	-1/2	2	1	l_{R1}
e neutral fer	$-Q_L$	-1/2	2	1	l_{L2}
didate for C	$-Q_R$	-1/2	2	1	l_{R2}

 $U(1)_{H}$ forbids mixing with the S A fermions. ♪

neutral fermion could be a can didate for CDM.♪

Q Type-I cases which do not require e xtra fermions.

@ must add extra chiral fermions for a nomaly free in most of cases.

- CDM can be realized.♪

easy to extend to Type-III and IV ca ses.

Optimize Optimize Optimized Details of phenomenology would be

type-dependent.