Higgs Portal Dark Matter for GeV gamma-ray Excess

Yong Tang(汤勇) KIAS

Workshop on "Higgs as a Probe of New Physics" Feb. 11-15, 2015, Toyama

P.Ko,W-I.Park,YT, 1404.5257(JCAP)
P. Ko,YT, 1407.5492(JCAP)

Outline

Introduction

Galactic Center GeV Gamma-ray Excess

Higgs Portal DM models

Summary

Fermi GeV γ-ray Excess

Goodenough & Hooper 2009

Hooper & Goodenough 2011

Hooper & Linden 2011

Boyarsky+ 2011

Abazajian & Kaplinghat 2012

Gordon & Macias 2013

Macias & Gordon 2014

Abazajian+ 2014

Daylan+2014

Weniger+2014

The Gamma-Ray Sky

Fermi GeV γ-ray Excess

Evidences for DM

- Rotation Curves of Galaxies
- Gravitational Lensing
- Large Scale Structure
- CMB anisotropies

•

These evidences all come from gravitational interaction CDM: velocity dispersion is negligible for structure formation, a popular candidate, WIMP,

$$M \sim 100 \; {\rm GeV}, \; \langle \sigma v \rangle_{ann} \sim 3 \times 10^{-26} cm^3/s$$

DM-Induced Gamma Rays

$$\frac{d^2\Phi_{\gamma}}{dE_{\gamma}d\Omega} = \sum_{i} \frac{dN_{\gamma}^{i}}{dE_{\gamma}} \frac{\langle \sigma v \rangle_{i}}{8\pi M_{DM}^{2}} \int_{l.o.s} \rho^{2} \left(r(r',\theta) \right) dr'$$

prompt

Particle Physics Spectral Information Astrophysics DM distribution $\rho(r) = \rho_{\odot} \left[\frac{r_{\odot}}{r} \right]^{\gamma} \left[\frac{1 + r_{\odot}/r_{c}}{1 + r/r_{c}} \right]^{3-\gamma}$ Spatial information

Fermi GeV γ-ray Excess

Channels

- heavy quark channel are favored,
- Naturally higgs-like couplings?

Higgs Portal DM

$$\begin{split} \Delta \mathcal{L}_S &= -\frac{1}{2} m_S^2 S^2 - \frac{1}{4} \lambda_S S^4 - \frac{1}{4} \lambda_{hSS} H^\dagger H S^2 \;, \\ \Delta \mathcal{L}_V &= \frac{1}{2} m_V^2 V_\mu V^\mu + \frac{1}{4} \lambda_V (V_\mu V^\mu)^2 + \frac{1}{4} \lambda_{hVV} H^\dagger H V_\mu V^\mu , \\ \Delta \mathcal{L}_f &= -\frac{1}{2} m_f \bar{\chi} \chi - \frac{1}{4} \frac{\lambda_{hff}}{\Lambda} H^\dagger H \bar{\chi} \chi . \end{split}$$

Direct Detection Bounds

Highly constrained, GeV favored region excluded.

$U(1)_X$ Vector DM

P.Ko, W-I.Park, YT,1404.5257(JCAP)

U(1) dark gauge symmetry,

$$\mathcal{L} = -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} + (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) - \lambda_{\Phi} \left(\Phi^{\dagger}\Phi - \frac{v_{\Phi}^{2}}{2}\right)^{2}$$
$$-\lambda_{H\Phi} \left(H^{\dagger}H - \frac{v_{H}^{2}}{2}\right) \left(\Phi^{\dagger}\Phi - \frac{v_{\Phi}^{2}}{2}\right) - \lambda_{H} \left(H^{\dagger}H - \frac{v_{H}^{2}}{2}\right)^{2} + \mathcal{L}_{SM}.$$

dark Higgs field

$$D_{\mu}\Phi = (\partial_{\mu} + ig_X Q_{\Phi} X_{\mu})\Phi,$$

symmetry breaking

$$\Phi(x) = \frac{1}{\sqrt{2}} \left(v_{\Phi} + \varphi(x) \right),\,$$

Particle spectrum

- Massive gauge boson X is the Dark Matter
- Mixed two scalars

$$\begin{pmatrix} h \\ \varphi \end{pmatrix} = \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \end{pmatrix} \equiv O \begin{pmatrix} H_{1} \\ H_{2} \end{pmatrix}$$

• mixing angle $s_{\alpha}(c_{\alpha}) \equiv \sin \alpha (\cos \alpha)$

$$\mathcal{M} \equiv \left(\begin{array}{cc} 2\lambda_{H}v_{H}^{2} & \lambda_{H\Phi}v_{H}v_{\Phi} \\ \lambda_{H\Phi}v_{H}v_{\Phi} & 2\lambda_{\Phi}v_{\Phi}^{2} \end{array} \right) = \left(\begin{array}{cc} M_{H_{1}}^{2}c_{\alpha}^{2} + M_{H_{2}}^{2}s_{\alpha}^{2} & \left(M_{H_{2}}^{2} - M_{H_{1}}^{2} \right)s_{\alpha}c_{\alpha} \\ \left(M_{H_{2}}^{2} - M_{H_{1}}^{2} \right)s_{\alpha}c_{\alpha} & M_{H_{1}}^{2}s_{\alpha}^{2} + M_{H_{2}}^{2}c_{\alpha}^{2} \end{array} \right).$$

$$\tan 2\alpha = \frac{2\mathcal{M}_{12}}{\mathcal{M}_{22} - \mathcal{M}_{11}}, \text{ or } \sin 2\alpha = \frac{2\lambda_{H\Phi}v_{H}v_{\Phi}}{M_{H_{2}}^{2} - M_{H_{1}}^{2}}.$$

Direct Detection

Yong Tang(KIAS)

Higgs Portal DM for Gamma-ray excess

Annihilation

- These are the dominant annihilating processes,
- The on-shell final particles decay into standard model fermions,
- mostly bb for 35GeV dark Higgs

Gamma-Ray spectrum

P.Ko, W-I.Park, YT,1404.5257(JCAP)

Extensions: Hidden sector DM

- hidden sector for DM with gauge symmetry
- residual symmetry, dark Higgs, new massive gauge boson(s),
- new particles decay into SM fermions through Higgs portal, kinetic mixing
- Example: Z_3

P. Ko, YT, 1407.5492(JCAP)

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4}\tilde{X}_{\mu\nu}\tilde{X}^{\mu\nu} - \frac{1}{2}\sin\epsilon\tilde{X}_{\mu\nu}\tilde{B}^{\mu\nu} + D_{\mu}\phi_{X}^{\dagger}D^{\mu}\phi_{X} + D_{\mu}X^{\dagger}D^{\mu}X - V,$$

$$V = -\mu_{H}^{2}H^{\dagger}H + \lambda_{H}\left(H^{\dagger}H\right)^{2} - \mu_{\phi}^{2}\phi_{X}^{\dagger}\phi_{X} + \lambda_{\phi}\left(\phi_{X}^{\dagger}\phi_{X}\right)^{2} + \mu_{X}^{2}X^{\dagger}X + \lambda_{X}\left(X^{\dagger}X\right)^{2} + \lambda_{\phi H}\phi_{X}^{\dagger}\phi_{X}H^{\dagger}H + \lambda_{\phi X}X^{\dagger}X\phi_{X}^{\dagger}\phi_{X} + \lambda_{HX}X^{\dagger}XH^{\dagger}H + \left(\lambda_{3}X^{3}\phi_{X}^{\dagger} + H.c.\right),$$

Annihilation Channels

Standard

Semi-Annihilation

γ -ray spectra

Uncertainties

Empirical model uncertainties (yellow) and theoretical model uncertainties (blue lines) are significantly larger than the statistical error over the entire energy range.

Summary

- We have briefly introduced the GeV gammaray excess from galactic center.
- The very simple Higgs portal DM models are not able to explain such an excess,
- Simple DM models with gauge symmetries are fully capable of providing the needed signal.
- We have specifically discussed a vector dark matter model, and a scalar dark matter with Z₃ symmetry.

THANK YOU.