Could the Higgs be composite?

Toyama Univ. Feb. 12, 2015 P. Cámara/C. Grojean

Christophe Grojean

HPNP 2015

DESY (Hamburg) ICREA@IFAE (Barcelona)

(christophe.grojean@cern.ch)

Remember Hinchliffe's rule...

IS HINCHLIFFE'S RULE TRUE?

Boris Peon

Abstract

Hinchliffe has asserted that whenever the title of a paper is a question with a yes/no answer, the answer is always no. This paper demonstrates that Hinchliffe's assertion is false, but only if it is true.

However, as physicists, we want to base our answers on experimental data and to keep challenging theoretical prejudices...

^{*}Accepted for publication in Annals of Gnosis.

We all have a PhD

We all have a PhD

For the first time in the history of physics, we have a *consistent* description of the fundamental constituents of matter and their interactions and this description can be extrapolated to very high energy (up M_{Planck} ?)

We all have a Post higgs Depression

For the first time in the history of physics, we have a *consistent* description of the fundamental constituents of matter and their interactions and this description can be extrapolated to very high energy (up M_{Planck}?)

My key message MLM@Aspen'14

- The days of "guaranteed" discoveries or of no-lose theorems in particle physics are over, at least for the time being
- but the big questions of our field remain wild open (hierarchy problem, flavour, neutrinos, DM, BAU,)
- This simply implies that, more than for the past 30 years, future HEP's progress is to be driven by experimental exploration, possibly renouncing/reviewing deeply rooted theoretical bias

We all have a Post higgs Depression

For the first time in the history of physics, we have a *consistent* description of the fundamental constituents of matter and their interactions and this description can be extrapolated to very high energy (up M_{Planck}?)

My key message MLM@Aspen'14

- The days of "guaranteed" discoveries or of no-lose theorems in particle physics are over, at least for the time being
- but the big questions of our field remain wild open (hierarchy problem, flavour, neutrinos, DM, BAU,)
- This simply implies that, more than for the past 30 years, future HEP's progress is to be driven by experimental exploration, possibly renouncing/reviewing deeply rooted theoretical bias

Where and how does the SM break down? Which machine(s) will reveal this breakdown?

Higgs compositeness means new fundamental interactions

Christophe Grojean

Higgs compositeness means new fundamental interactions

Pospelov's 38 years rule...

38 years rule = new forces of nature are discovered every 38 years for the last 150 yrs

- 1. 1860s first papers of Maxwell on EM. Light is EM excitation. E & M unification.
- 2. 1897 Becquerel discovers radioactivity first evidence of weak charged currents (in retrospect).
- 3. 1935 Chadwick gets NP for his discovery of neutron with subsequent checks that there exists strong n-p interaction. Strong force is established.
- 4. 1973 Gargamelle experiment sees the evidence for weak neutral currents in nu-N scattering
- 5. 2011/2012 Discovery of the Higgs, i.e. new Yukawa force.
- 6. Prediction: Discovery of a new dark force 2050?

(+/- 2 years or so).

M. Pospelov, SHiP collab. meeting, Naples '15

All SM shortcomings are intimately linked to the Higgs elementary nature

$$\mathcal{L}_{\text{Higgs}} = V_0 - \mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)^2 + \left(y_{ij} \bar{\psi}_{Li} \psi_{Rj} H + h.c. \right)$$

All SM shortcomings are intimately linked to the Higgs elementary nature

$$\mathcal{L}_{\text{Higgs}} = V_0 - \mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)^2 + \left(y_{ij} \bar{\psi}_{Li} \psi_{Rj} H + h.c. \right)$$

vacuum energy

cosmological constant

$$V_0 \approx (2 \times 10^{-3} \text{ eV})^4 \ll M_{\rm PL}^4$$

All SM shortcomings are intimately linked to the Higgs elementary nature

$$\mathcal{L}_{\text{Higgs}} = V_0 - \mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)^2 + \left(y_{ij} \bar{\psi}_{Li} \psi_{Rj} H + h.c. \right)$$

vacuum energy cosmological constant $V_0 pprox (2 imes 10^{-3} {
m eV})^4 \ll M_{
m PL}^4$

hierarchy problem $m_H \approx 100 \; \mathrm{GeV} \ll M_{\mathrm{Pl}}$

All SM shortcomings are intimately linked to the Higgs elementary nature

$$\mathcal{L}_{\text{Higgs}} = V_0 - \mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)^2 + \left(y_{ij} \bar{\psi}_{Li} \psi_{Rj} H + h.c. \right)$$

vacuum energy $cosmological\ constant$ $V_0 pprox (2 imes 10^{-3}\ {
m eV})^4 \ll M_{
m PL}^4$

hierarchy problem $m_H \approx 100 \; {\rm GeV} \ll M_{\rm Pl}$

triviality/stability
of EW vacuum

All SM shortcomings are intimately linked to the Higgs elementary nature

$$\mathcal{L}_{\text{Higgs}} = V_0 - \mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)^2 + \left(y_{ij} \bar{\psi}_{Li} \psi_{Rj} H + h.c. \right)$$

vacuum energy cosmological constant $V_0 \approx (2 \times 10^{-3} \; {
m eV})^4 \ll M_{\rm PL}^4$

hierarchy problem $m_H \approx 100 \; \mathrm{GeV} \ll M_{\mathrm{Pl}}$

triviality/stability
of EW vacuum

nass and mix

mass and mixing hierarchy

All SM shortcomings are intimately linked to the Higgs elementary nature

$$\mathcal{L}_{\mathrm{Higgs}} = V_0 - \mu^2 H^\dagger H + \lambda \left(H^\dagger H \right)^2 + \left(y_{ij} ar{\psi}_{Li} \psi_{Rj} H + h.c.
ight)$$
 vacuum energy cosmological constant $V_0 pprox (2 imes 10^{-3} \mathrm{\,eV})^4 \ll M_{\mathrm{PL}}^4$ hierarchy problem $m_H pprox 100 \mathrm{\,GeV} \ll M_{\mathrm{Pl}}$ triviality/stability of EW vacuum

flavour & CP: no FCNC, small Ci

mass and mixing

hierarchy

All SM shortcomings are intimately linked to the Higgs elementary nature

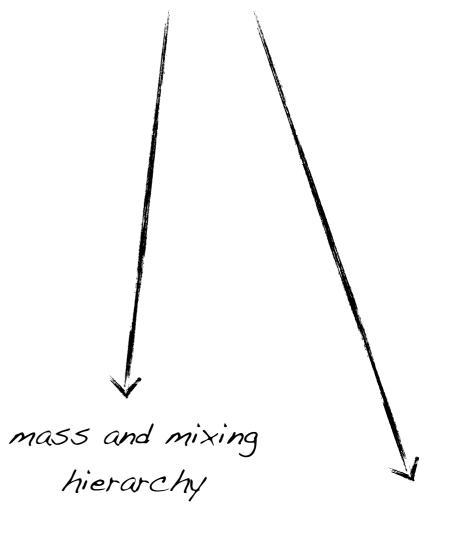
$$\mathcal{L}_{\text{Higgs}} = V_0 - \mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)^2 + \left(y_{ij} \bar{\psi}_{Li} \psi_{Rj} H + h.c. \right)$$

vacuum energy cosmological constant $V_0 \approx (2 \times 10^{-3} \; \mathrm{eV})^4 \ll M_{\mathrm{PL}}^4$

SUSY?

TeV New Physics?

hierarchy problem


 $m_H \approx 100 \text{ GeV} \ll M_{\rm Pl}$

String?

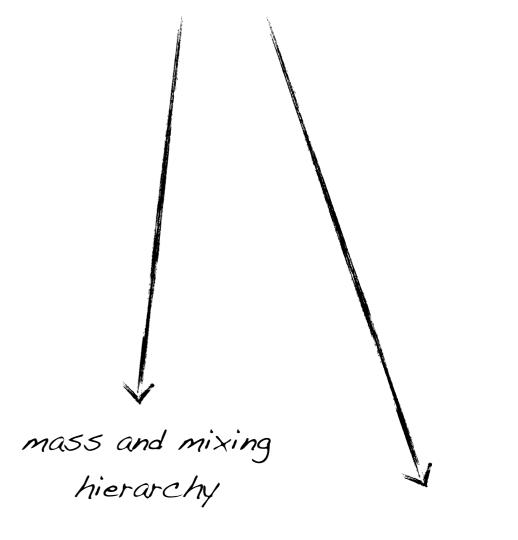
triviality/stability
of EW vacuum

well described experimentally by CKM

(up to a few exceptions: A_{FB}^{tt} , $\Delta A_{CP...}^{c}$)

flavour & CP: no FCNC, small Ci

All SM shortcomings are intimately linked to the Higgs elementary nature


$$\mathcal{L}_{\text{Higgs}} = V_0 - \mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)^2 + \left(y_{ij} \bar{\psi}_{Li} \psi_{Rj} H + h.c. \right)$$

vacuum energy cosmological constant $V_0 \approx (2 \times 10^{-3} \ {
m eV})^4 \ll M_{\rm PL}^4$

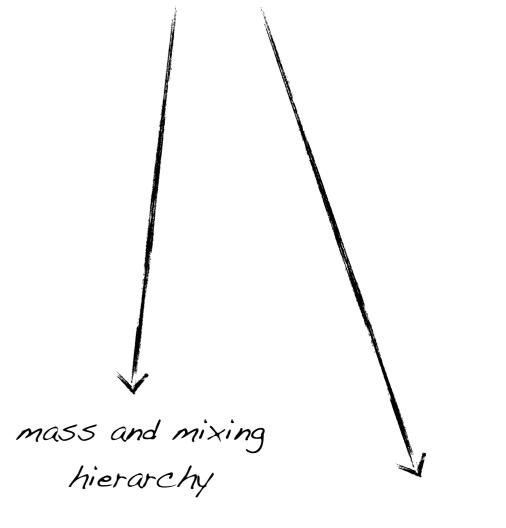
hierarchy problem $m_H \approx 100 \; \mathrm{GeV} \ll M_{\mathrm{Pl}}$

triviality/stability
of EW vacuum

All these problems because the Higgs boson would be the first elementary particle whose interactions are not endowed with a gauge structure

flavour & CP: no FCNC, small Ci

All SM shortcomings are intimately linked to the Higgs elementary nature


$$\mathcal{L}_{\text{Higgs}} = V_0 - \mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)^2 + \left(y_{ij} \bar{\psi}_{Li} \psi_{Rj} H + h.c. \right)$$

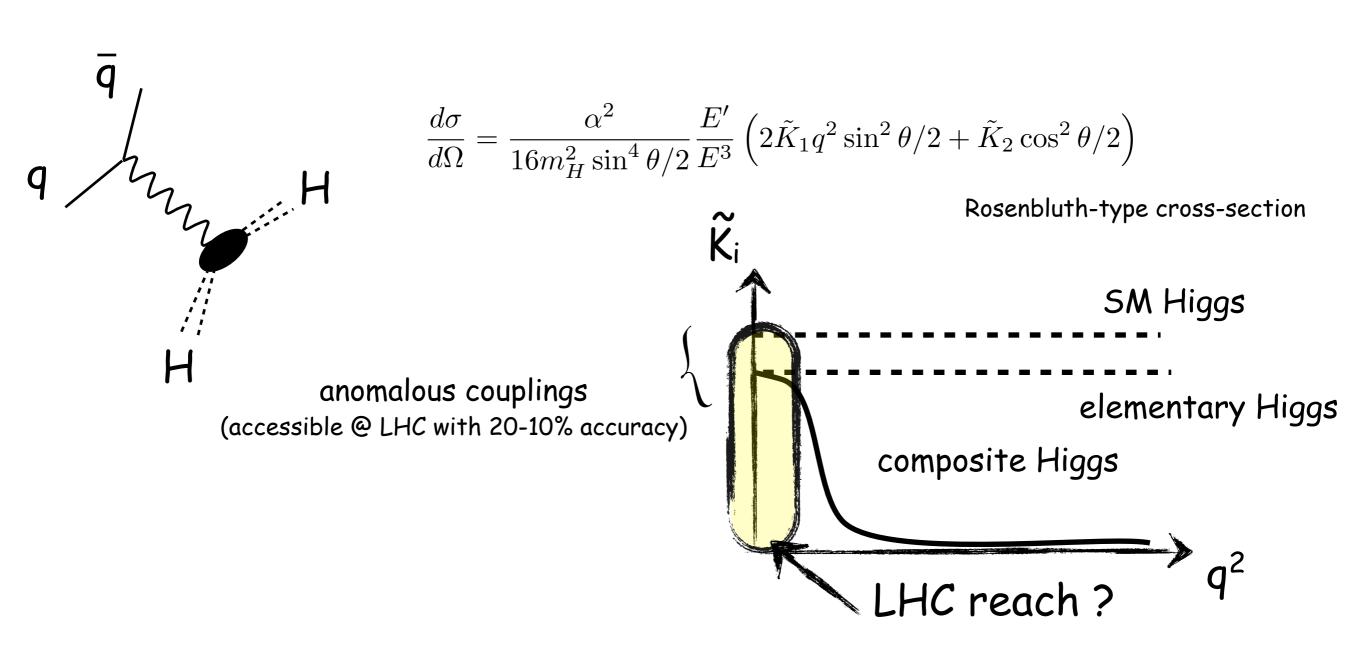
vacuum energy cosmological constant $V_0 \approx (2 \times 10^{-3} \; {\rm eV})^4 \ll M_{\rm PL}^4$

hierarchy problem $m_H \approx 100 \; \mathrm{GeV} \ll M_{\mathrm{Pl}}$

triviality/stability
of EW vacuum

All these problems because the Higgs boson would be the first elementary particle whose interactions are not endowed with a gauge structure

flavour & CP: no FCNC, small Ci

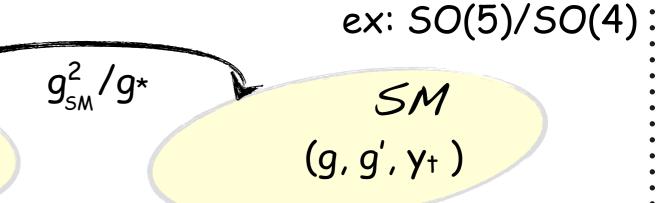

Higgs = Elementary or Composite?

Probing the Higgs compositeness

Unlikely we'll ever see the fundamental constituents of the Higgs But we can infer that it is not an elementary particle by measuring its couplings to SM particles

Probing the Higgs compositeness

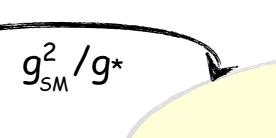
Unlikely we'll ever see the fundamental constituents of the Higgs But we can infer that it is not an elementary particle by measuring its couplings to SM particles



:Minimal Composite Higgs

SILH

$$\xi = \frac{v^2}{f^2} \ll 1$$



:Minimal Composite Higgs

$$\xi = \frac{v^2}{f^2} \ll 1$$

Strong sector (g*, f) PNGB Higgs

ex: SO(5)/SO(4):

SM

$$(g, g', y_{t})$$

Partly Composite Higgs

$$\xi = \frac{v^2}{f^2} \ll 1$$

Strong Sector (g*, f) EXX

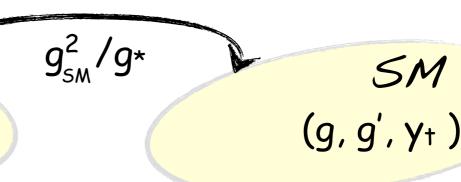
 (g, g', y_{t})

Higgs

:Minimal Composite Higgs

ex: SO(5)/SO(4):

$$\xi = \frac{v^2}{f^2} \ll 1$$

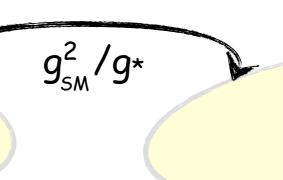

Strong sector (g*, f)

$$g_{SM}^2/g^*$$
 SM (g, g', y_t)

Partly Composite Higgs

$$\xi = \frac{v^2}{f^2} \ll 1$$

Strong Sector (g*, f) EXX



Higgs

Bosonic Technicolor

$$\varepsilon = \frac{f}{v} \ll 1$$

Induced EWSB Strong Sector (g*,f)< EW>~f

SM (g, g', y_{t})

Higgs

:Minimal Composite Higgs

SILH

$$\xi = \frac{v^2}{f^2} \ll 1$$

$$\frac{1}{f^2} \left(\partial_{\mu} |H|^2 \right)^2$$

$$\kappa_V \equiv \frac{g_{hVV}}{g_{hVV}^{\rm SM}} = 1 + \xi$$

$$\frac{\lambda_4}{f^2}|H|^6$$

$$\kappa_3 \equiv \frac{g_{hhh}}{g_{hhh}^{\rm SM}} = 1 + \xi$$

Partly Composite Higgs

$$\xi = \frac{v^2}{f^2} \ll 1$$

$$\frac{\varepsilon^4}{f^2} \left(\partial_{\mu} |H|^2 \right)^2$$

$$\kappa_V \equiv \frac{g_{hVV}}{g_{hVV}^{\rm SM}} = 1 + \varepsilon^4 \xi$$

$$\frac{\varepsilon^6}{f^2}|H|^6$$

$$\kappa_3 \equiv \frac{g_{hhh}}{g_{hhh}^{SM}} = 1 + \varepsilon^2 \frac{g_*^2 v^2}{m_h^2} \varepsilon^4 \xi$$

Bosonic Technicolor

Induced EWSB

$$\varepsilon = \frac{f}{v} \ll 1$$

$$\frac{\varepsilon^4}{f^2} \left(\partial_{\mu} |H|^2 \right)^2$$

$$rac{arepsilon^6}{f^2}|H|^6$$

$$\kappa_V \equiv \frac{g_{hVV}}{g_{hVV}^{\rm SM}} = 1 + \varepsilon^2$$

$$\kappa_3 \equiv \frac{g_{hhh}}{g_{hhh}^{\rm SM}} = 1 + \mathcal{O}(1)$$

Patterns of Higgs coupling deviations

expected largest relative deviations

	hff	hVV	hγγ	hγZ	hGG	h
MSSM	√		√	√	V	
NMSSM	√	√	√	√	√	
PGB Composite	√	√		√		√
SUSY Composite	√	V	√	√	V	√
SUSY partly-composite			V	√	√	√
"Bosonic TC"						√
Higgs as a dilaton			V	V	√	√

Muehleitner's talk

A. Pomarol, Naturalness '15

The SM Higgs couplings are fixed to restore unitarity with mass

$$\Sigma = e^{i\sigma^a\pi^a/v} \qquad \text{Goldstone of SU(2)}_{\rm L} \times {\rm SU(2)}_{\rm R}/{\rm SU(2)}_{\rm V} \qquad D_\mu \Sigma = gV_\mu$$

$$\mathcal{L}_{\text{\tiny EWSB}} = \frac{v^2}{4} \text{Tr} \left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma \right) \left(1 + 2 a \frac{h}{v} + b \frac{h^2}{v^2} \right) - \lambda \bar{\psi}_L \Sigma \psi_R \left(1 + c \frac{h}{v} \right)$$
 'a', 'b' and 'c' are arbitrary free couplings

For a=1: perturbative unitarity in elastic channels $WW \rightarrow WW$

For $b=a^2$: perturbative unitarity in inelastic channels WW \rightarrow hh

For ac=1: perturbative unitarity in inelastic WW $ightarrow \psi \; \psi$

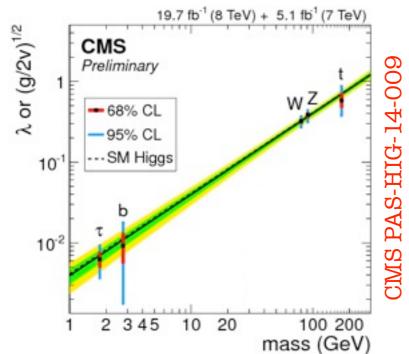
Cornwall, Levin, Tiktopoulos '73

Contino, Grojean, Moretti, Piccinini, Rattazzi '10

The SM Higgs couplings are fixed to restore unitarity with mass

$$\Sigma = e^{i\sigma^a\pi^a/v} \qquad \text{Goldstone of SU(2)}_{\rm L} \times {\rm SU(2)}_{\rm R}/{\rm SU(2)}_{\rm V} \qquad D_\mu \Sigma = gV_\mu$$

$$\mathcal{L}_{\text{\tiny EWSB}} = \frac{v^2}{4} \text{Tr} \left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma \right) \left(1 + 2 a \frac{h}{v} + b \frac{h^2}{v^2} \right) - \lambda \bar{\psi}_L \Sigma \psi_R \left(1 + c \frac{h}{v} \right)$$
 'a', 'b' and 'c' are arbitrary free couplings

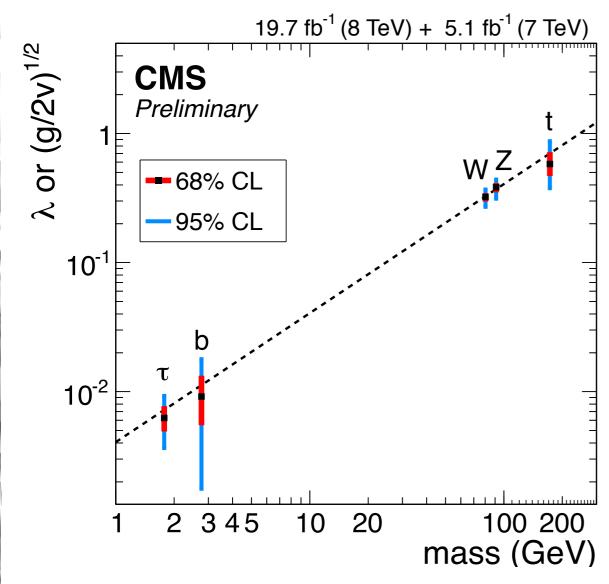

For a=1: perturbative unitarity in elastic channels $WW \rightarrow WW$

For $b=a^2$: perturbative unitarity in inelastic channels WW \rightarrow hh

For ac=1: perturbative unitarity in inelastic WW $ightarrow \psi \; \psi$

Cornwall, Levin, Tiktopoulos '73

Contino, Grojean, Moretti, Piccinini, Rattazzi '10


Higgs couplings
are proportional
to the masses of the particles

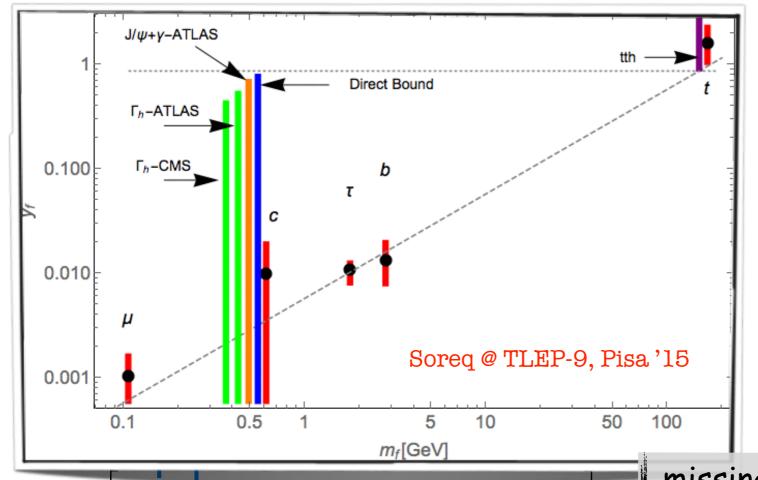
$$\lambda_{\psi} \propto \frac{m_{\psi}}{v} \,, \qquad \lambda_{V}^{2} \equiv \frac{g_{VVh}}{2v} \propto \frac{m_{V}^{2}}{v^{2}}$$

Composite Higgs

Toyama, Feb. 12, 2015

The SM Higgs couplings are fixed to restore unitarity with mass

~ Is this fit theoretically consistent? ~


can you generate a 500% deviations

in the bottom coupling without generating other coupling structures not taken into account in the fit?

Higgs group @ Snowmass '13

Facility	LHC	HL-LHC
$\sqrt{s} \; (\mathrm{GeV})$	14,000	14,000
$\int \mathcal{L}dt \ (\mathrm{fb}^{-1})$	300/expt	3000/expt
κ_{γ}	5-7%	2-5%
κ_g	6-8%	3-5%
κ_W	4-6%	2-5%
κ_Z	4-6%	2-4%
κ_ℓ	6-8%	2-5%
$\kappa_d = \kappa_b$	10 - 13%	4-7%
$\kappa_u = \kappa_t$	14 - 15%	7 - 10%

The SM Higgs couplings are fixed to restore unitarity with mass

Higgs group @ Snowmass '13

Facility	LHC	HL-LHC		
$\sqrt{s} \; (\mathrm{GeV})$	14,000	14,000		
$\int \mathcal{L}dt \ (\mathrm{fb}^{-1})$	300/expt	3000/expt		
κ_{γ}	5-7%	2 - 5%		
κ_g	6-8%	3-5%		
κ_W	4-6%	2-5%		
κ_Z	4-6%	2-4%		
κ_ℓ	6-8%	2-5%		
$\kappa_d = \kappa_b$	10 - 13%	4-7%		
$\kappa_u = \kappa_t$	14 - 15%	7 - 10%		

missing information to complete the picture

° width measurement?

° couplings to light particles? inclusive (e.g. c-tagging) or exclusive (h \rightarrow J/ Ψ + γ)

° coupling to top?

known indirectly $(gg \rightarrow h)$ or via difficult tth channel

mass (GeV) ~ Is this fit theoretically consistent? ~ can you generate a 500% deviations

20

100 200

10

2 3 4 5

in the bottom coupling without generating other coupling

structures not taken into account in the fit?

Precision program in single Higgs processes

(assuming a mass gap between weak scale and new physics scale)

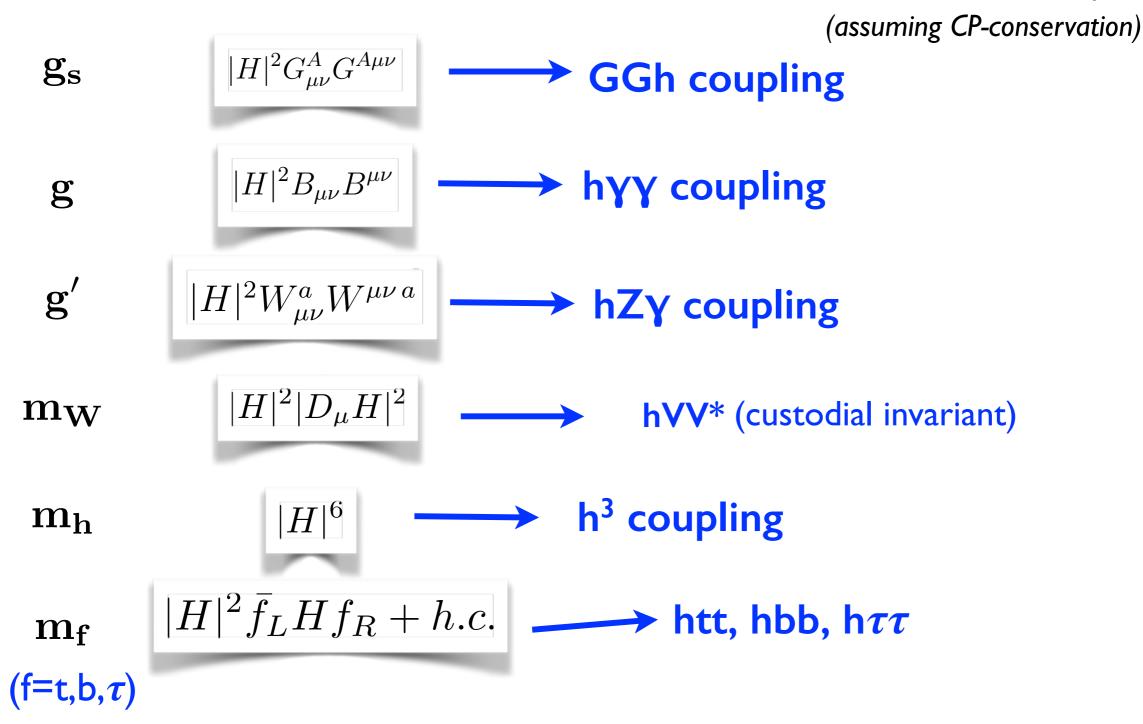
Higgs/BSM Primaries

Several deformations away from the SM are harmless in the vacuum and need a Higgs field to be probed

e.g.
$$\frac{1}{g_s^2}G_{\mu\nu}^2 + \frac{|H|^2}{\Lambda^2}G_{\mu\nu}^2 \to \left(\frac{1}{g_s^2} + \frac{v^2}{\Lambda^2}\right)G_{\mu\nu}^2 \quad \text{is not visible in} \quad \text{the vacuum} \quad \text{(redefinition of input parameter)} \quad \mathbf{G} \quad$$

But can affect h physics:

Higgs/BSM Primaries How many of these effects can we have?


Pomarol, Riva'13

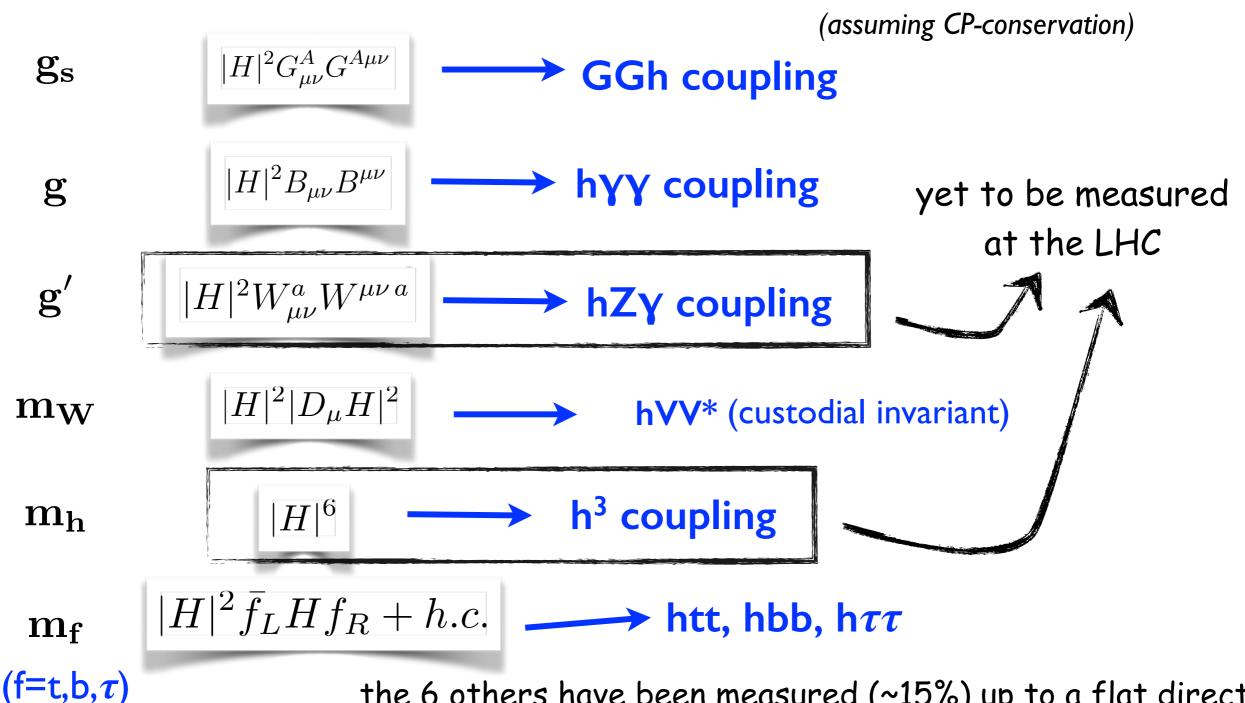
Elias-Miro et al '13

Gupta, Pomarol, Riva '14

As many as parameters in the SM: 8

for one family

Higgs/BSM Primaries How many of these effects can we have?


Pomarol, Riva'13

Elias-Miro et al '13

Gupta, Pomarol, Riva '14

As many as parameters in the SM: 8

for one family

the 6 others have been measured (~15%) up to a flat direction between between the top/gluon/photon couplings

Higgs/BSM Primaries How many of these effects can we have?

Pomarol, Riva '13 Elias-Miro et al '13

Gupta, Pomarol, Riva '14

Almost a 1-to-1 correspondence with the 8 κ 's in the Higgs fit

Coupling		300 fb ⁻¹			3000 fb ⁻¹		
	T	Theory unc.:			Theory unc.:		
	All	Half	None	All	Half	None	
κ _Z	8.1%	7.9%	7.9%	4.4%	4.0%	3.8%	
κ_W	9.0%	8.7%	8.6%	5.1%	4.5%	4.2%	
κ_t	22%	21%	20%	11%	8.5%	7.6%	
κ_b	23%	22%	22%	12%	11%	10%	
$\kappa_{ au}$	14%	14%	13%	9.7%	9.0%	8.8%	
κ_{μ}	21%	21%	21%	7.5%	7.2%	7.1%	
κ_g	14%	12%	11%	9.1%	6.5%	5.3%	
κ_{γ}	9.3%	9.0%	8.9%	4.9%	4.3%	4.1%	
$\kappa_{Z\gamma}$	24%	24%	24%	14%	14%	14%	

Atlas projection

With some important differences:

- 1) width approximation built-in
 - 2) κ_W/κ_Z is not a primary (constrained by $\Delta \rho$ and TGC)
- 3) κ_{g} , κ_{γ} , $\kappa_{Z\gamma}$ do not separate UV and IR contributions

for one family (assuming CP-conservation)

GGh coupling

hyy coupling

yet to be measured at the LHC

hZγ coupling

hVV* (custodial invariant)

13

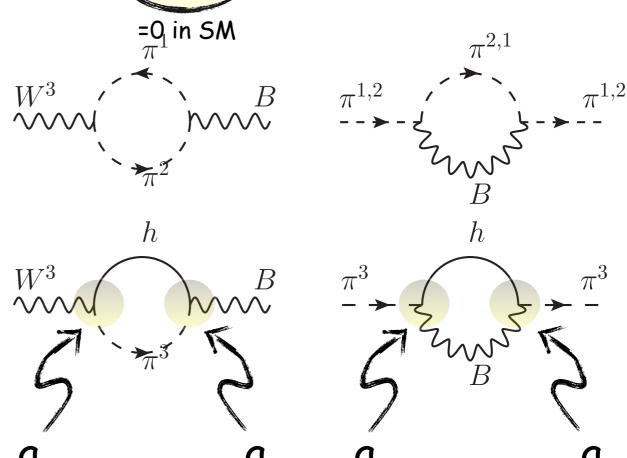
h³ coupling

htt, hbb, hau au

Don't forget LEP!

The parameter 'a' controls the size of the one-loop IR contribution to the LEP precision observables

$$\mathcal{L} \supset \frac{1}{f^2} |H|^2 |D_\mu H|^2$$


$$\Rightarrow a = \kappa_V = 1 + \frac{v^2}{2f^2}$$

$$\epsilon_{1,3} = c_{1,3} \log(m_Z^2/\mu^2) - c_{1,3} a^2 \log(m_h^2/\mu^2) - c_{1,3} (1 - a^2) \log(m_\rho^2/\mu^2) + \text{finite terms}$$

$$c_1 = +\frac{3}{16\pi^2} \frac{\alpha(m_Z)}{\cos^2 \theta_W}$$
 $c_3 = -\frac{1}{12\pi} \frac{\alpha(m_Z)}{4\sin^2 \theta_W}$

$$\Delta \epsilon_{1,3} = -c_{1,3} \left(1 - a^2 \right) \log(m_{\rho}^2 / m_h^2)$$

Barbieri, Bellazzini, Rychkov, Varagnolo '07

Log. div. cancel only for a=1 (SM) $a\neq 1$ log. sensitivity on the scale of new physics

Don't forget LEP!

The parameter 'a' controls the size of the one-loop IR contribution to the LEP precision observables

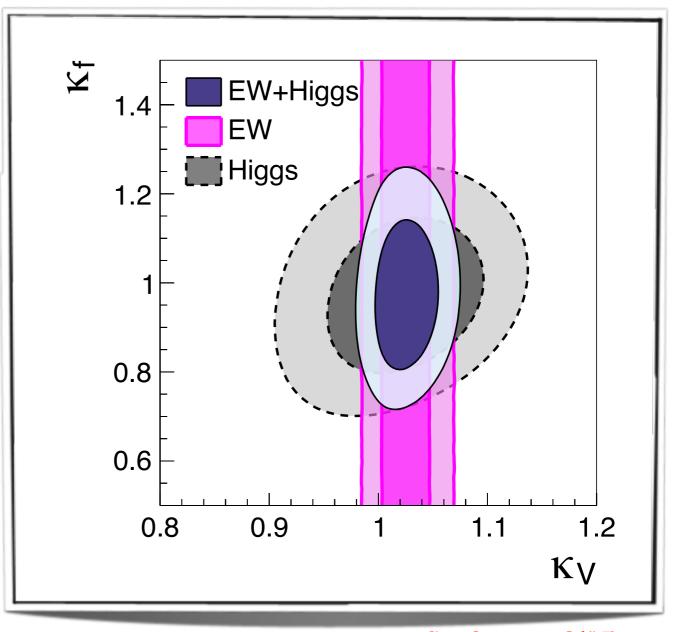
$$\mathcal{L} \supset \frac{1}{f^2} |H|^2 |D_{\mu}H|^2$$

$$\Rightarrow a = \kappa_V = 1 + \frac{v^2}{2f^2}$$

$$\Delta \epsilon_{1,3} = -c_{1,3} \left(1 - a^2 \right) \log(m_{\rho}^2 / m_h^2)$$

Barbieri, Bellazzini, Rychkov, Varagnolo '07

EW fit:


 $0.98 \le a^2 \le 1.12$

Ciuchini et al '13

see also Grojean et al '13

The LEP indirect constraints on the other BSM primaries are not competitive

Elias-Miro et al '13

Ciuchini et al '13

CP violation in Higgs physics?

Is CP a good symmetry of Nature? 2 CP-violating couplings in the SM:

 V_{CKM} (large, O(1)), but screened by small quark masses) and θ_{QCD} (small, O(10⁻¹⁰))

Can the O⁺ SM Higgs boson have CP violating couplings?

Among the 59 irrelevant directions, 6 pt Higgs/BSM primaries
$$\Delta \mathcal{L}_{\rm BSM} = \frac{i\delta \tilde{g}_{hff}}{i\delta \tilde{g}_{hff}} h \bar{f}_L f_R + h.c. \qquad \text{(f=b, τ, t)} \\ + \frac{\tilde{\kappa}_{GG}}{v} \frac{h}{v} G^{\mu\nu} \tilde{G}_{\mu\nu} \qquad \qquad (\tilde{F}_{\mu\nu} \equiv \epsilon_{\mu\nu\rho\sigma} F^{\rho\sigma}) \\ + \frac{\tilde{\kappa}_{\gamma\gamma}}{v} \frac{h}{v} F^{\gamma\;\mu\nu} \tilde{F}^{\gamma}_{\mu\nu} \\ + \frac{\tilde{\kappa}_{\gamma Z}}{v} \frac{h}{v} F^{\gamma\;\mu\nu} \tilde{F}^{Z}_{\mu\nu}$$

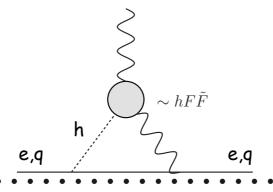
CP violation in Higgs physics?

Among the 59 irrelevant directions, 6 P Higgs/BSM primaries

$$\Delta \mathcal{L}_{\mathrm{BSM}} = \frac{i\delta \tilde{g}_{hff}}{v} h \bar{f}_{L} f_{R} + h.c. \qquad (\text{f=b}, \tau, t)$$

$$+ \frac{\tilde{\kappa}_{GG}}{v} \frac{h}{v} G^{\mu\nu} \tilde{G}_{\mu\nu} \qquad (\tilde{F}_{\mu\nu} \equiv \epsilon_{\mu\nu\rho\sigma} F^{\rho\sigma})$$

$$+ \frac{\tilde{\kappa}_{\gamma\gamma}}{v} \frac{h}{v} F^{\gamma \mu\nu} \tilde{F}^{\gamma}_{\mu\nu}$$

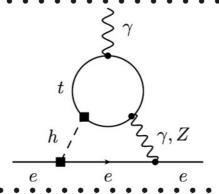

$$+ \frac{\tilde{\kappa}_{\gamma Z}}{v} \frac{h}{v} F^{\gamma \mu\nu} \tilde{F}^{Z}_{\mu\nu}$$

Boudjema's talk

operators with γ :

already severely constrained by e and q EDMs

McKeen, Pospelov, Ritz'12


$$\tilde{\kappa}_{\gamma\gamma} \sim \tilde{\kappa}_{\gamma Z} \le 10^{-4}$$

Λφ > 25 TeV

operators with top:

already severely constrained by e and q EDMs

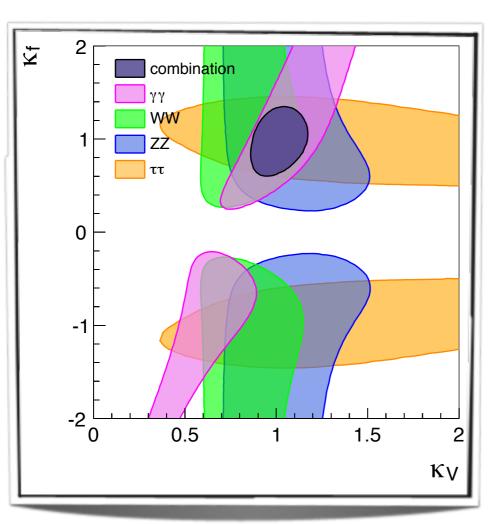
Brod, Haisch, Zupan '13

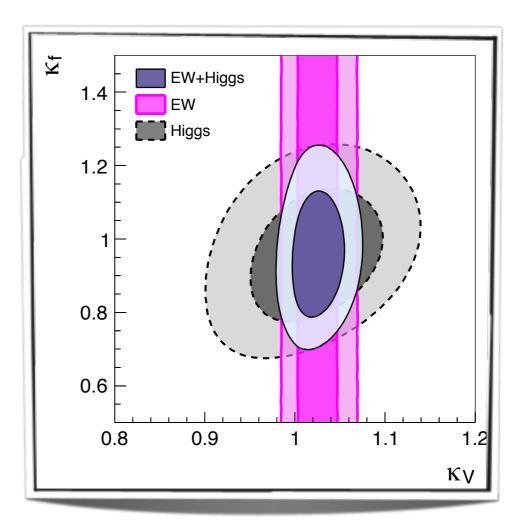
$$\delta \tilde{g}_{htt} \leq 0.01$$

100 > 2.5 TeV

Caveats: h couplings to light particles can be significantly reduced

Boosted and off-shell Higgs channels


Why going beyond inclusive Higgs processes?


So far the LHC has mostly produced Higgses on-shell in processes with a characteristic scale $\mu \approx m_H$

Why going beyond inclusive Higgs processes?

So far the LHC has mostly produced Higgses on-shell in processes with a characteristic scale $\mu \approx m_H$

access to Higgs couplings @ mH

Ciuchini et al '13

Ciuchini et al '13

Why going beyond inclusive Higgs processes?

So far the LHC has mostly produced Higgses on-shell in processes with a characteristic scale $\mu \approx m_H$

access to Higgs couplings @ mH

Producing a Higgs with boosted additional particle(s) probe the Higgs couplings @ large energy (important to check that the Higgs boson ensures perturbative unitarity)

Probing new corrections to the SM Lagrangian?

on-shell Z@LEP1

constraints on S and T oblique corrections off-shell Z @ LEP2 constraints on W and Y oblique corrections

(same order as S and T but cannot be probed @ LEP1):

But... off-shell Higgs data do not probe new corrections that cannot be constrained by on-shell data

inability to resolve the top loops

• the bearable lightness of the Higgs: rich spectroscopy w/ multiple decays channels

O the unbearable lightness: loops saturate and don't reveal the physics @ energy physics (*)

$m_H(\text{GeV})$	$\frac{\sigma_{NLO}(m_t)}{\sigma_{NLO}(m_t \to \infty)}$	$\frac{\sigma_{NLO}(m_t, m_b)}{\sigma_{NLO}(m_t \to \infty)}$
125	1.061	0.988
150	1.093	1.028
200	1.185	1.134

e.g. Grazzini, Sargsyan '13

the inclusive rate doesn't "see" the finite mass of the top

(*) unless it doesn't decouple (e.g. 4th generation)

inability to resolve the top loops

• the bearable lightness of the Higgs: rich spectroscopy w/ multiple decays channels

• the unbearable lightness: loops saturate and don't reveal the physics @ energy physics (*)

$m_H(\text{GeV})$	$\frac{\sigma_{NLO}(m_t)}{\sigma_{NLO}(m_t \to \infty)}$	$\frac{\sigma_{NLO}(m_t, m_b)}{\sigma_{NLO}(m_t \to \infty)}$
125	1.061	0.988
150	1.093	1.028
200	1.185	1.134

e.g. Grazzini, Sargsyan '13

the inclusive rate
doesn't "see" the finite mass of the top

(*) unless it doesn't decouple (e.g. 4th generation)

• long distance physics (modified top coupling) cannot disentangle o short distance physics (new particles running in the loop)

$$\mathcal{L} = \frac{\alpha_s c_g}{12\pi} |H|^2 G_{\mu\nu}^{a\,2} + \frac{\alpha c_{\gamma}}{2\pi} |H|^2 F_{\mu\nu} + y_t c_t \bar{q}_L \tilde{H} t_R |H|^2$$

$$\frac{\sigma(gg \to h)}{\text{SM}} = (1 + (c_g - c_t)v^2)^2 \qquad \frac{\Gamma(h \to \gamma\gamma)}{\text{SM}} = (1 + (c_{\gamma} - 4c_t/9)v^2)^2$$

fermionic top-partners in composite Higgs models exactly lead to $\Delta c_t = \Delta c_g = \frac{9}{4} \Delta c_\gamma$.

inability to resolve the top loops

• the bearable lightness of the Higgs: rich spectroscopy w/ multiple decays channels

• the unbearable lightness: loops saturate and don't reveal the physics @ energy physics (*)

$m_H(\mathrm{GeV})$	$\frac{\sigma_{NLO}(m_t)}{\sigma_{NLO}(m_t o \infty)}$	$\frac{\sigma_{NLO}(m_t, m_b)}{\sigma_{NLO}(m_t \to \infty)}$
125	1.061	0.988
150	1.093	1.028
200	1.185	1.134

e.g. Grazzini, Sargsyan '13

(*) unless it doesn't decouple (e.g. 4th generation)

the inclusive rate doesn't "see" the finite mass of the top

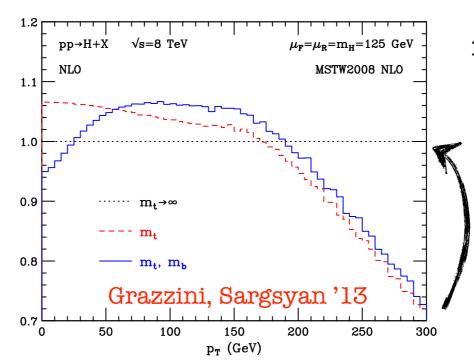
 long distance physics (modified top coupling) => :cannot disentangle

O short distance physics (new particles running in the loop)

$$\mathcal{L} = \frac{\alpha_s c_g}{12\pi} |H|^2 G_{\mu\nu}^{a\,2} + \frac{\alpha c_{\gamma}}{2\pi} |H|^2 F_{\mu\nu} + y_t c_t \bar{q}_L \tilde{H} t_R |H|^2$$
$$\frac{\sigma(gg \to h)}{\text{SM}} = (1 + (c_g - c_t)v^2)^2 \qquad \frac{\Gamma(h \to \gamma\gamma)}{\text{SM}} = (1 + (c_{\gamma} - 4c_t/9)v^2)^2$$

fermionic top-partners in composite Higgs models exactly lead to $\Delta c_t = \Delta c_g = \frac{9}{4} \Delta c_\gamma$.

having access to htt final state will resolve this degeneracy but notoriously difficult channel

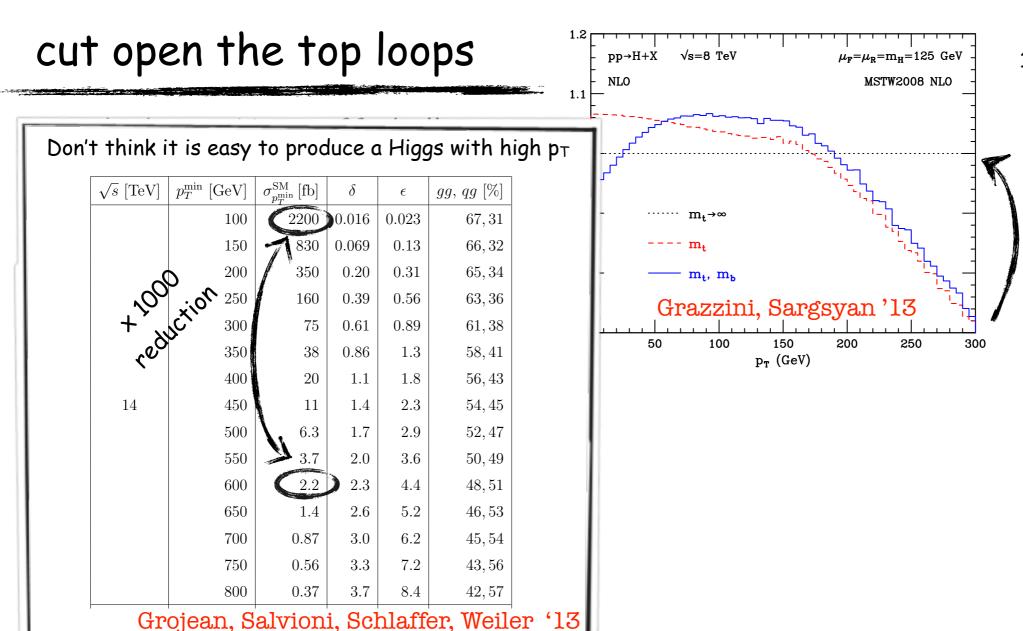

14%-4% @ LH C_{3000}^{14} -LH C_{3000}^{14} vs 10%-4% @ IL C_{500}^{500} -IL C_{1000}^{1000}

Resolving top loop: Boosted Higgs

cut open the top loops

high $p_T \approx Higgs$ off-shell we "see" the details of the particles running inside the loops

Baur, Glover '90 Langenegger, Spira, Starodumov, Trueb '06



Note: LO only $NLO_{mt} \text{ is not known} \\ 1/m_t \text{ corrections known } O(\alpha_s^4) \\ \text{ few % up to p_{T}~150 } \text{ GeV}$

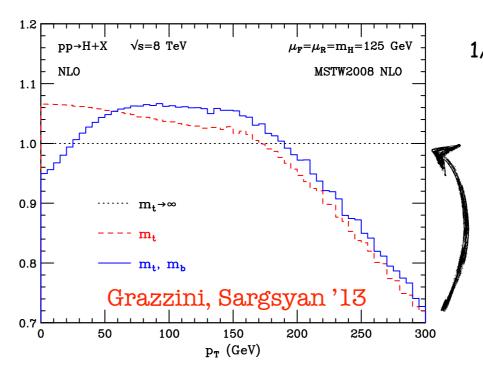
Harlander et al '12

the high p_T tail is tens' % sensitive to the mass of top

Resolving top loop: Boosted Higgs

Note: LO only NLO_{mt} is not known 1/m_t corrections known $O(\alpha_s^4)$ few % up to p_T~150 GeV

Harlander et al '12

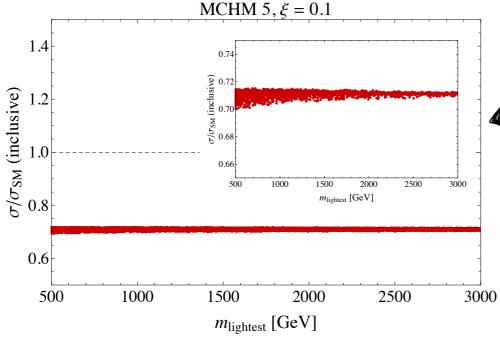

the high p_T tail is tens' % sensitive to the mass of top

Resolving top loop: Boosted Higgs

cut open the top loops

high $p_T \approx Higgs$ off-shell we "see" the details of the particles running inside the loops

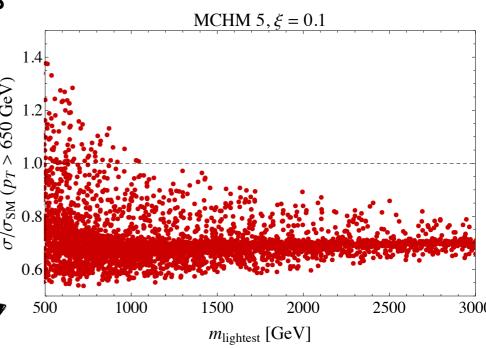
Baur, Glover '90 Langenegger, Spira, Starodumov, Trueb '06


Note: LO only $NLO_{mt} \text{ is not known} \\ 1/m_t \text{ corrections known } O(\alpha_s^4) \\ \text{ few } \% \text{ up to p_$T^2$150 GeV}$

Harlander et al '12

the high p_T tail is tens' % sensitive to the mass of top

Composite Higgs Model


top partners contributions

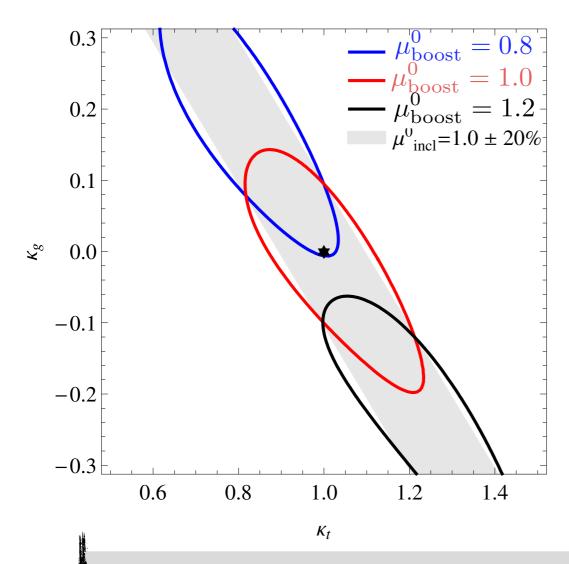
see also Banfi, Martin, Sanz'13

see also Azatov, Paul '13

inclusive rate: O(%)
with high-p_T cut: O(x10'%)

Grojean, Salvioni, Schlaffer, Weiler '13

high-pt tail "sees" the top partners that are missed by the inclusive rate


20

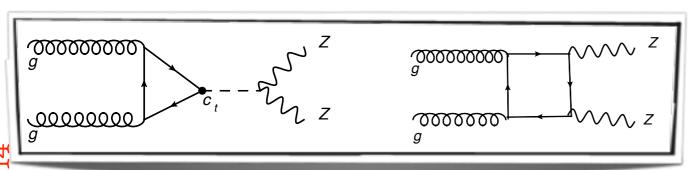
high p_T tail discriminates short and long distance physics contribution to $gg \rightarrow h$

$$\sqrt{s} = 14 \text{ TeV}, \int dt \, \mathcal{L} = 3 \text{ab}^{-1}, p_T > 650 \text{ GeV}$$

(partonic analysis in the boosted "ditau-jets" channel)

see Schlaffer et al '14 for a more complete analysis including WW channel

10-20% precision on $\kappa_{
m t}$

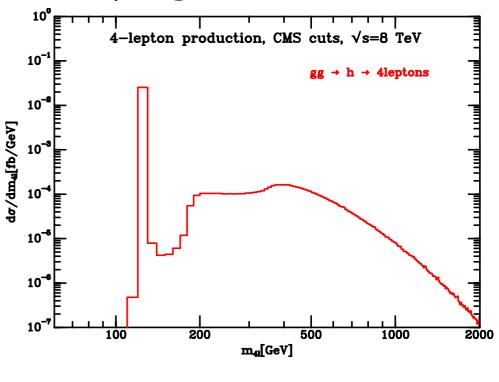

competitive/complementary to htt channel for the measure the top-Higgs coupling

Are the NLO_m QCD corrections (not known) going to destroy all the sensitivity? Frontier priority: N^3LO_∞ for inclusive xs or NLO_{mt} for pT spectrum?

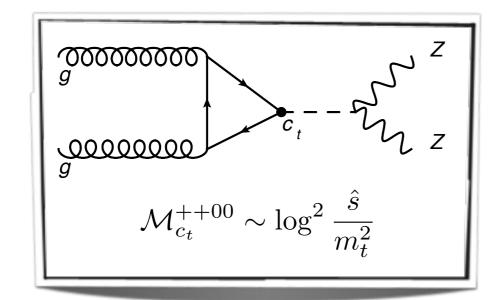
Off-shell Higgs: $qq \rightarrow h^* \rightarrow ZZ \rightarrow 4l$

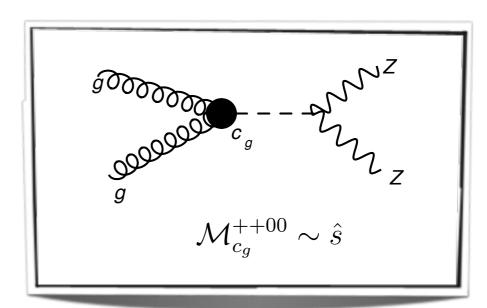
off-shell effects enhanced by the particular couplings of H to VL

Glover, van der Bij '89

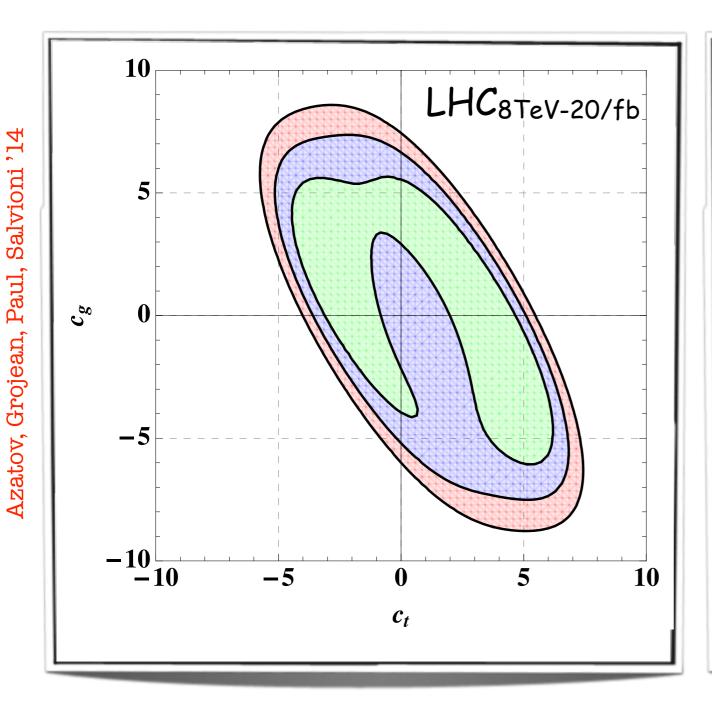


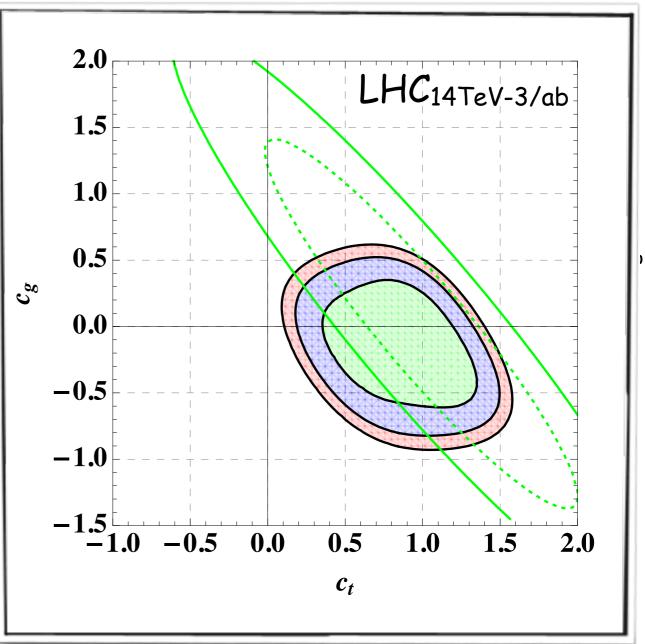
$$\mathcal{M}_{\mathrm{Higgs}}^{++00} \sim \log^2 \frac{\hat{s}}{m_t^2}$$


$$\mathcal{M}_{\text{Higgs}}^{++00} \sim \log^2 \frac{\hat{s}}{m_t^2}$$
 $\mathcal{M}_{\text{box}}^{++00} \sim -\log^2 \frac{\hat{s}}{m_t^2}$


SM: cancelation forced by unitarity

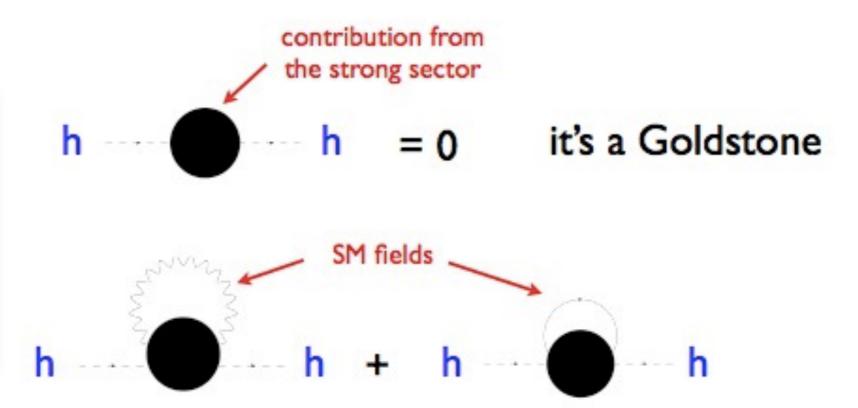
BSM: deviations of Higgs couplings at large s will be amplified


CMS interpretation in terms of bounds of the Higgs width is limited data can be better used to measure the structure of the couplings at high $\int s$



Off-shell Higgs: $gg \rightarrow h^* \rightarrow ZZ \rightarrow 4I$

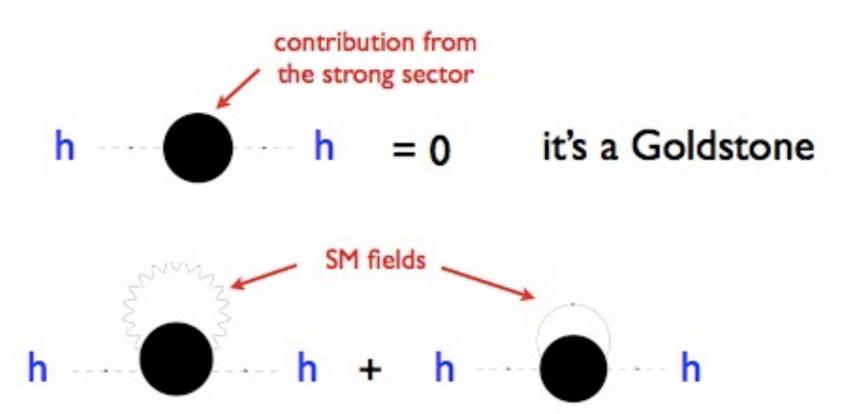
off-shell effects enhanced by the particular couplings of H to V_L



Direct searches of top partners

Christophe Grojean

The interactions
between the strong
sector and the SM
generate a potential
for the Higgs



Impossible to compute the details of the potential from first principles but using general properties on the asymptotic behavior of correlators (saturation of Weinberg sum rules with the first few lightest resonances) it is possible to estimate the Higgs mass

Pomarol, Riva'12

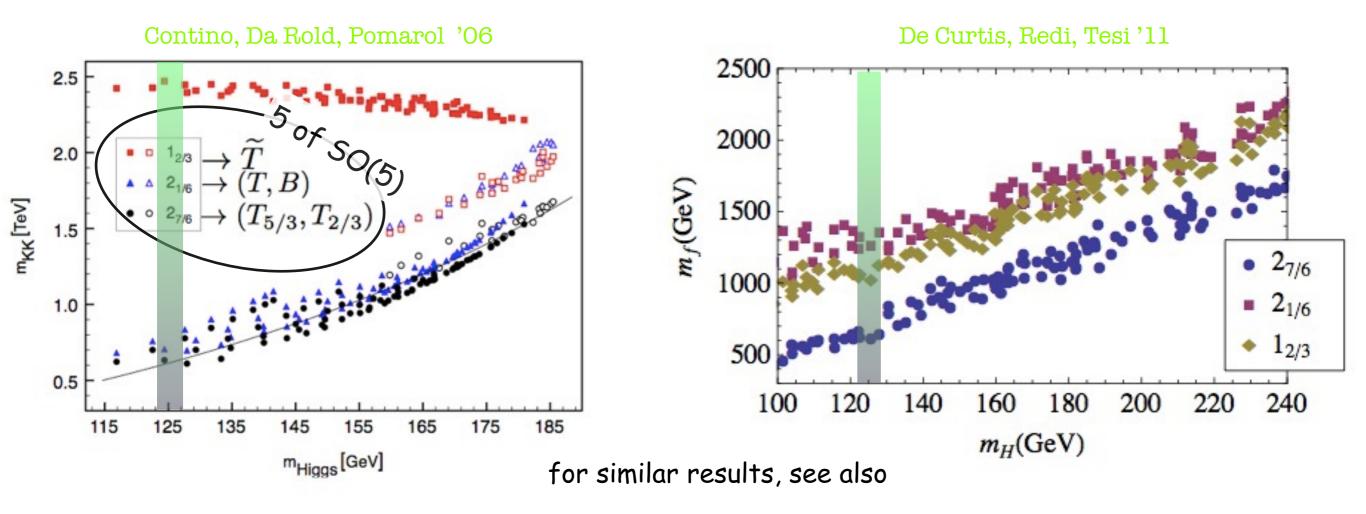
Marzocca, Serone, Shu'12

The interactions
between the strong
sector and the SM
generate a potential
for the Higgs

Impossible to compute the details of the potential from first principles but using general properties on the asymptotic behavior of correlators (saturation of Weinberg sum rules with the first few lightest resonances) it is possible to estimate the Higgs mass

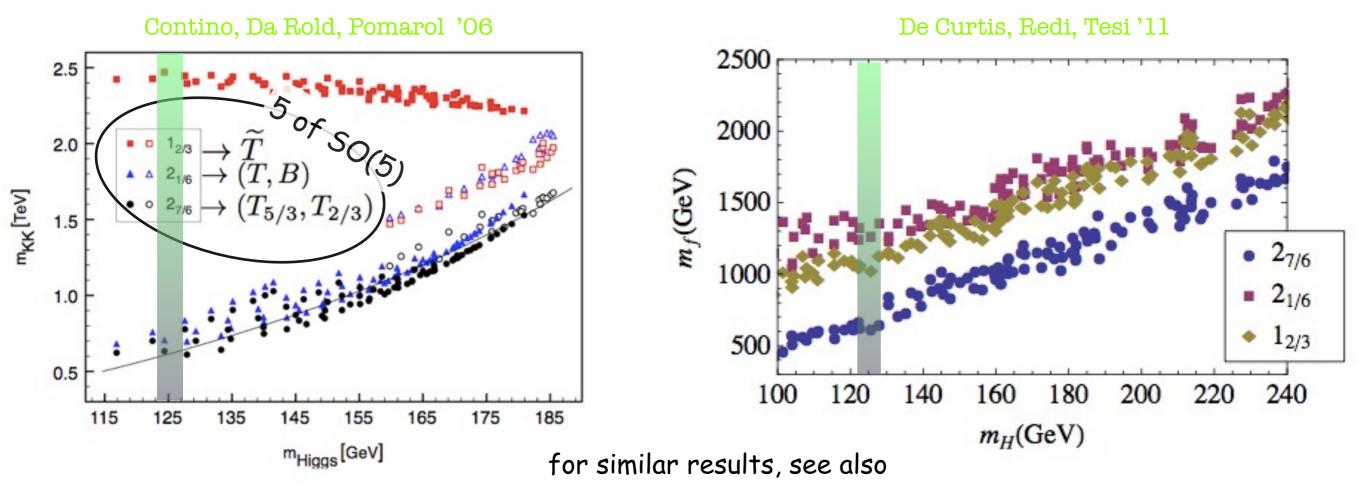
Pomarol, Riva '12

Marzocca, Serone, Shu'12


$$m_h^2 \approx \frac{3}{\pi^2} \frac{m_t^2 m_Q^2}{f_{G/H}^2}$$

$$m_Q \lesssim 700 \text{ GeV} \left(\frac{m_h}{125 \text{ GeV}}\right) \left(\frac{160 \text{ GeV}}{m_t}\right) \left(\frac{f}{500 \text{ GeV}}\right)$$

fermionic resonances below ~ 1 TeV
vector resonances ~ few TeV (EW precision constraints)
~ for a natural (<20% fine-tuning) set-up ~


true spectrum in explicit realizations

Matsedonskyi, Panico, Wulzer '12 & Ma

Marzocca, Serone, Shu'12

true spectrum in explicit realizations

Matsedonskyi, Panico, Wulzer '12

& Marzocca, Serone, Shu '12

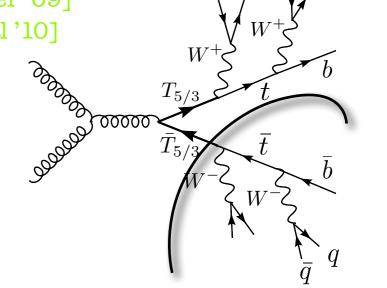
Nice AdS/CFT interpretation

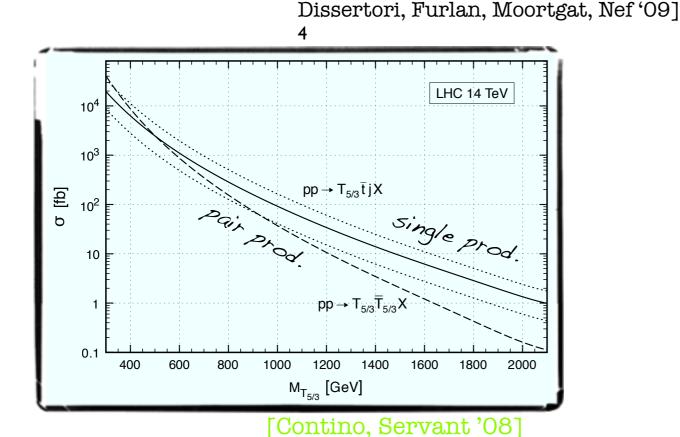
$$\mathrm{Dim}[\mathcal{O}_{\Psi}] = rac{3}{2} + |M_{\Psi} + rac{1}{2}|$$

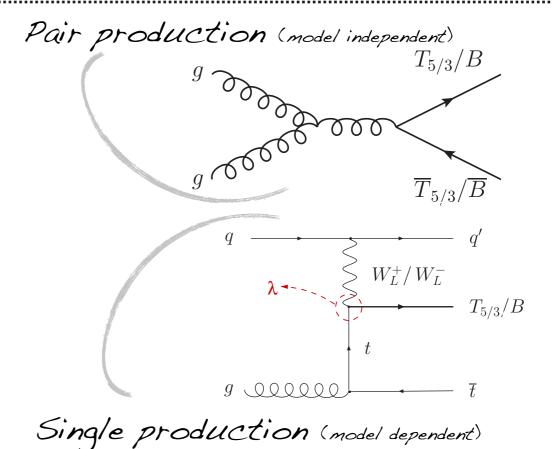
 $M_{\Psi} = 1/2 \leftrightarrow \dim[\mathcal{O}_{\Psi}] = 3/2 \leftrightarrow \text{light free field decoupled from CFT}$

Rich phenomenology of the top partners

Search in same-sign di-lepton events

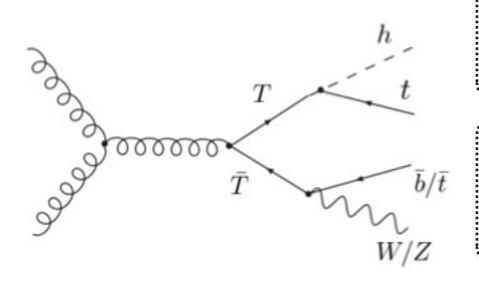

[Contino, Servant '08] [Mrazek, Wulzer '09] [Dissertori et al '10]


- # tt+jets is not a background [except for charge mis-ID and fake e-]
- \blacksquare the resonant ($t\omega$) invariant mass can be reconstructed


discovery potential (LHC_{14TeV})

 $M_{5/3}=500 \text{ GeV } (\sigma \times BR \approx 100/\text{fb}) \rightarrow 56 \text{ pb}^{-1}$

 $M_{5/3}=1 \text{ TeV } (\sigma \times BR \approx 2/\text{fb}) \rightarrow 15 \text{ fb}^{-1}$



Composite Higgs 26

Christophe Grojean

Toyama, Feb. 12, 2015

Rich phenomenology of the top partners

Aguilar-Saavedra '09

$$T\bar{T} \to HtW^-\bar{b} \to HW^+bW^-\bar{b}$$

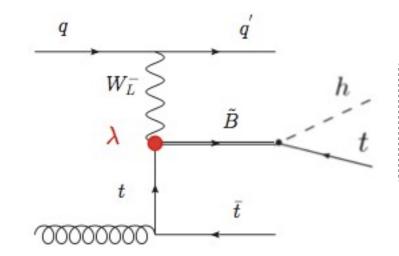
$$H \to b\bar{b}, WW \to \ell\nu q\bar{q}',$$

$$T\bar{T} \to Ht\,V\bar{t} \to HW^+b\,VW^-\bar{b}$$

$$H \to b\bar{b}, WW \to \ell\nu q\bar{q}', V \to q\bar{q}/\nu\bar{\nu}$$

l± + 6b final state

Aguilar-Saavedra '09

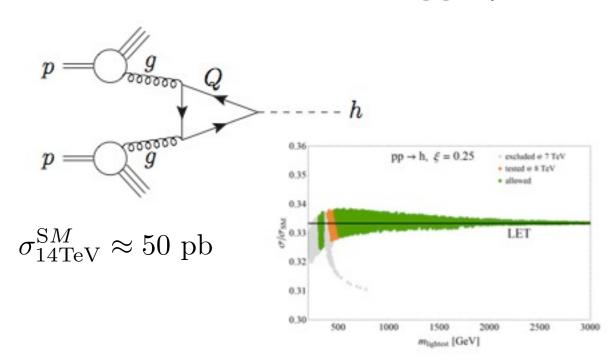

$$T\bar{T} \rightarrow Ht\,H\bar{t} \rightarrow HW^+b\,HW^-\bar{b}$$

$$H \to b\bar{b}, WW \to \ell\nu q\bar{q}'$$

$\gamma\gamma$ final state

Azatov et al '12

 $thbW/thtZ/thth, h \rightarrow \gamma\gamma$

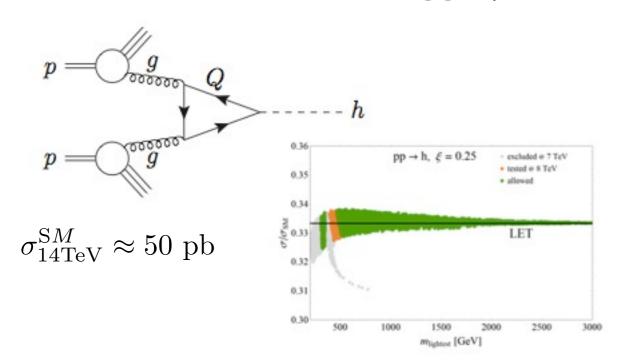


l[±] + 4b final state

Vignaroli '12

$$pp \to (\tilde{B} \to (h \to bb)b)t + X$$

~ current single higgs processes are insensitive to top partners ~

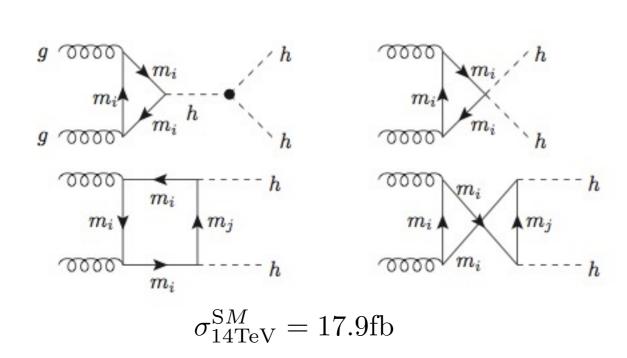


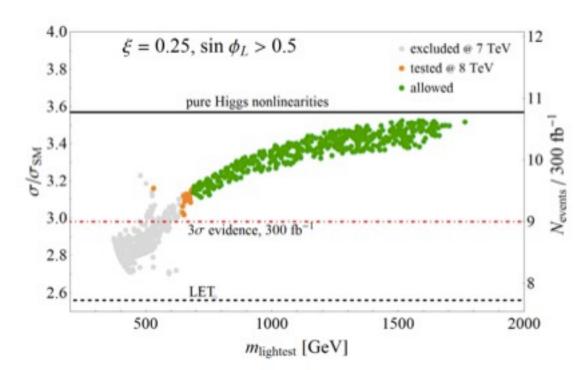
two competing effects that cancel:

- T's run in the loops
- T's modify top Yukawa coupling

Falkowski '07 Azatov, Galloway '11 Delaunay, Grojean, Perez, '13

~ current single higgs processes are insensitive to top partners ~

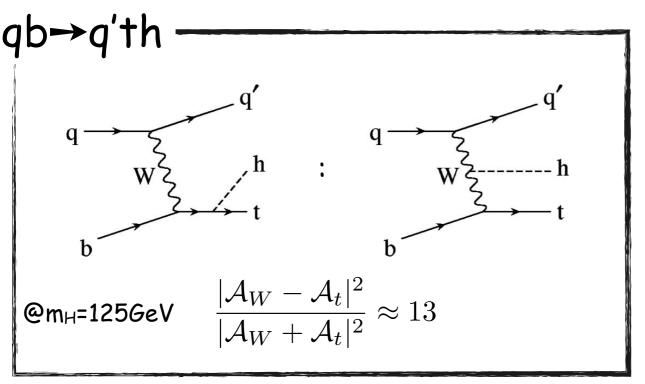

two competing effects that cancel:


- T's run in the loops
- T's modify top Yukawa coupling

Falkowski '07 Azatov, Galloway '11 Delaunay, Grojean, Perez, '13

~ sensitivity in double Higgs production ~

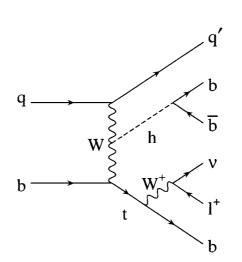
Gillioz, Grober, Grojean, Muhlleitner, Salvioni '12

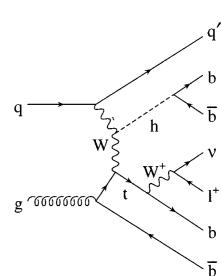


28

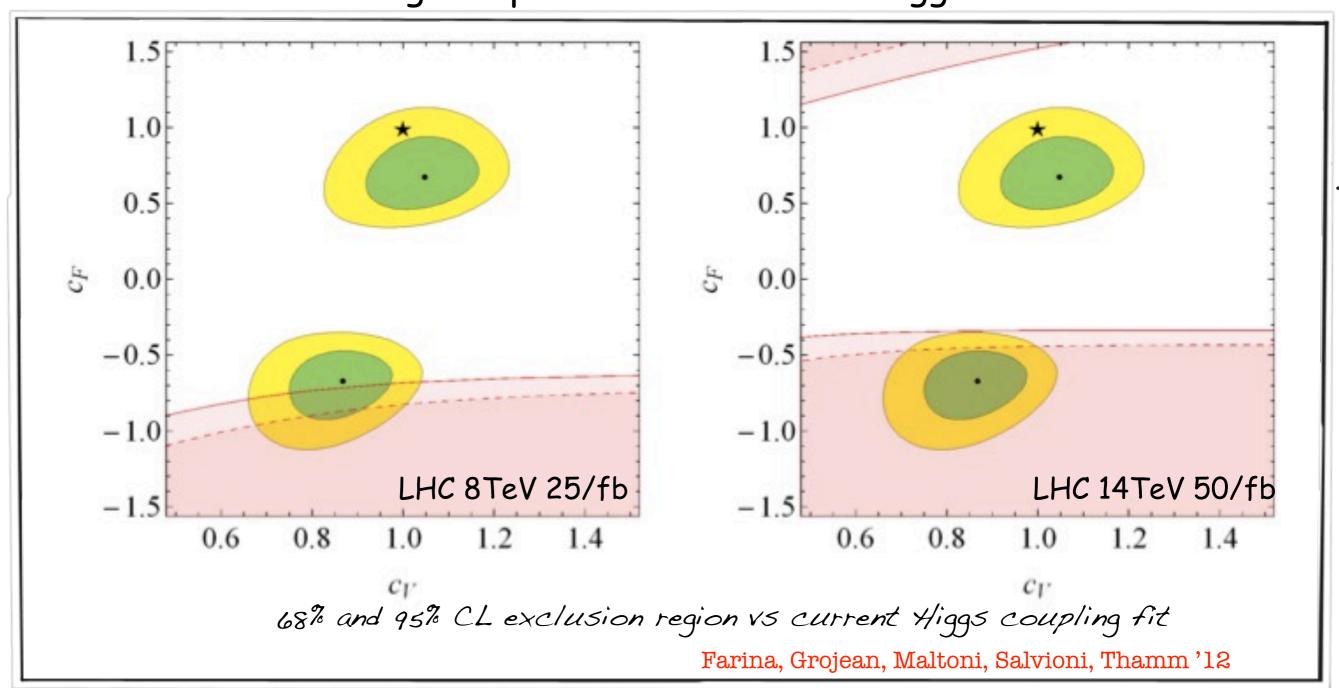
direct measurement of top-higgs coupling

htt is important but challenging channel may be easier channel to look at

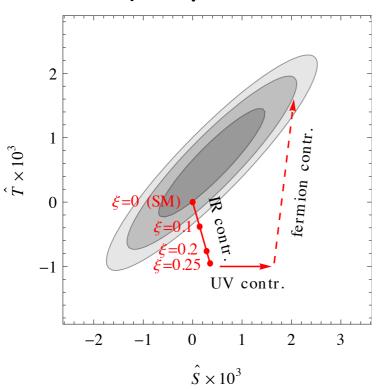



Farina, Grojean, Maltoni, Salvioni, Thamm'12

	$\sigma(pp o tjh)$ [fb]		$\sigma(pp o tjhar{b})$ [fb]	
	$c_F = 1$	$c_F = -1$	$c_F = 1$	$c_F = -1$
8 TeV	17.3	252.7	12.14	181.4
14 TeV	80.6	1042	59.6	828.5


look at final states:

3b + 1 fwd jet $+ l^{\pm} + p^{T}$. 4b + 1 fwd jet $+ l^{\pm} + p^{T}$.


direct measurement of top-higgs coupling single-top in association with Higgs

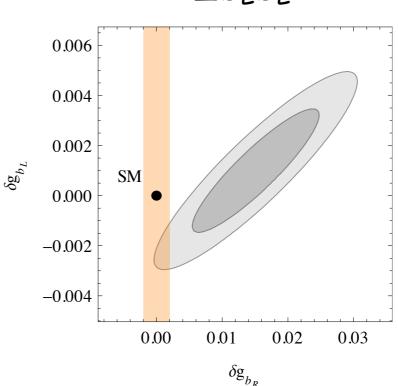
Top partners & EWPT

Grojean, Matsedonskyi, Panico '13

Oblique parameters

tree-level contribution

$$\Delta \widehat{S} \simeq \frac{g^2}{g_*^2} \xi \simeq \frac{m_w^2}{m_*^2}$$


Higgs loop

$$\Delta \widehat{S} = \frac{g^2}{192\pi^2} \xi \log \left(\frac{m_*^2}{m_h^2} \right) \simeq 1.4 \cdot 10^{-3} \, \xi \quad \Delta \widehat{T} = -\frac{3g'^2}{64\pi^2} \xi \log \left(\frac{m_*^2}{m_h^2} \right) \simeq -3.8 \cdot 10^{-3} \, \xi$$

fermion loop

$$\Delta \widehat{S}_{ferm}^{div} = \frac{g^2}{8\pi^2} (1 - 2c^2) \, \xi \log \left(\frac{m_*^2}{m_4^2} \right) \qquad \Delta \widehat{T} \simeq \frac{N_c}{16\pi^2} y_t^2 \, \xi \simeq 2 \cdot 10^{-2} \, \xi$$

ZbLbL

tree-level contribution

$$\frac{\delta g_{b_L}}{g_{b_L}^{SM}} \sim \frac{y_L^2 f^2}{m^2} \frac{m_z^2}{m_*^2} \simeq 8 \cdot 10^{-4} \frac{f}{m} \left(\frac{4\pi}{g_*}\right)^2 \xi$$

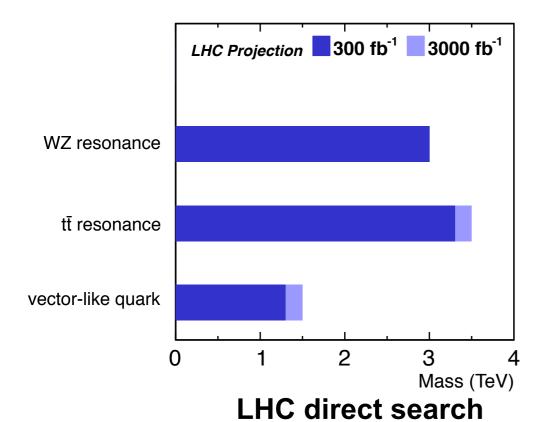
fermion loop

$$\frac{\delta g_{b_L}}{g_{b_L}^{SM}} \simeq \frac{y_t^2}{16\pi^2} \xi \log\left(\frac{m_*^2}{m_4^2}\right) \simeq 2 \cdot 10^{-2} \xi$$

 ξ <0.1 \Rightarrow we might have to wait LHC-HL to see any new physics in Higgs data BSM Higgs precision era

Precision /indirect searches (high lumi.) vs. direct searches (high energy)

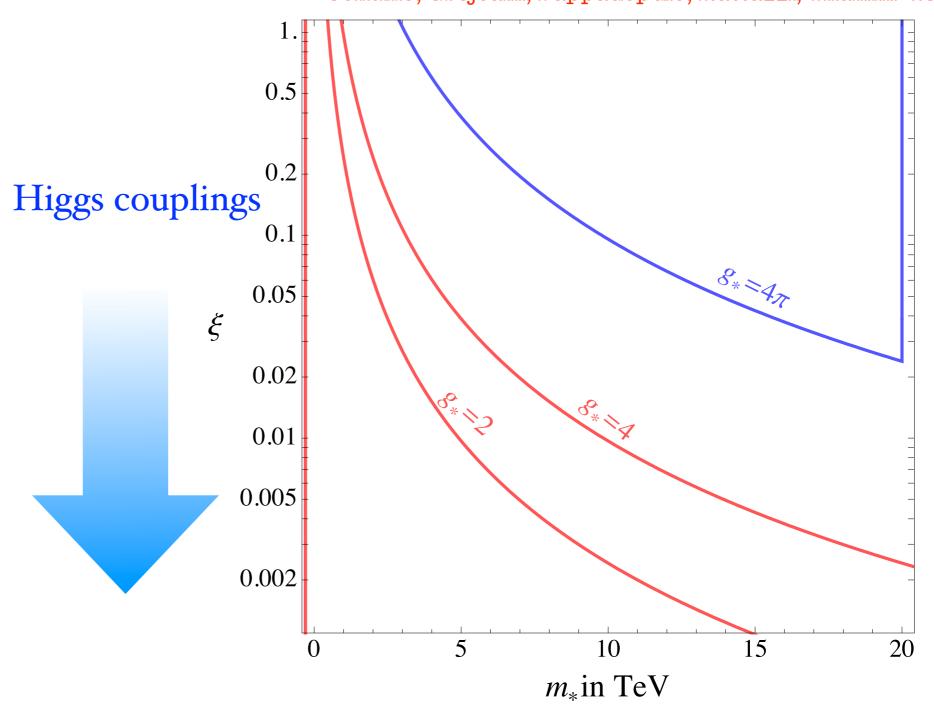
Contino, Grojeam, Pappadopulo, Rattazzi, Thamm'13


typical mass scale

$$M = g * f$$

EW scale v=246GeV

$$g_{\rm sm}^2/g^3$$



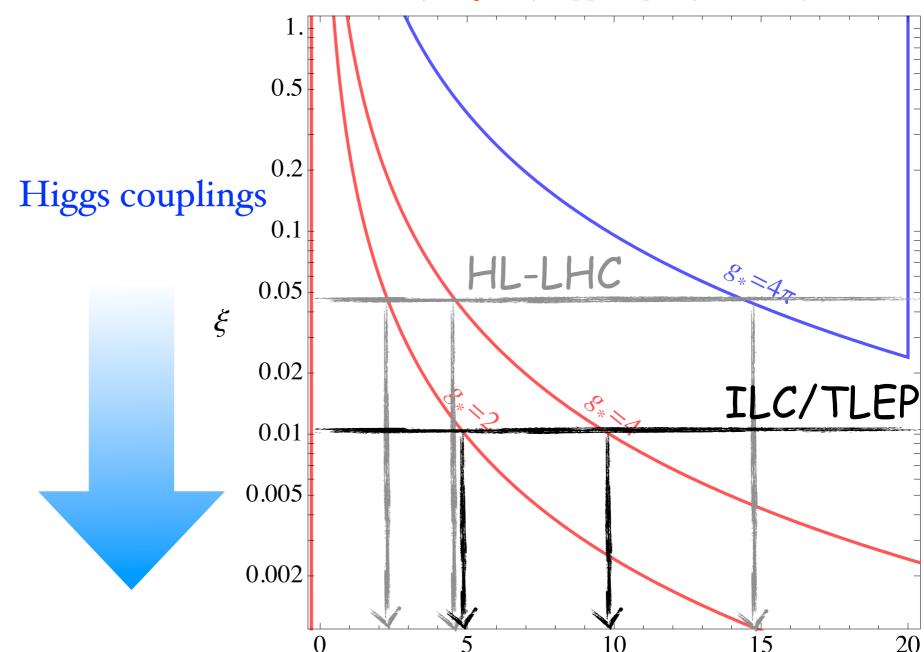
- Precision Higgs study: $\xi \equiv \frac{\delta g}{g} = \frac{v^2}{f^2}$
- \circ Direct searches for resonances: $m_{
 ho} pprox g_* f$

Which one is doing best? it depends on value of g*

Precision /indirect searches (high lumi.) vs. direct searches (high energy)

Contino, Grojeam, Pappadopulo, Rattazzi, Thamm'13

Rattazzi, BSM@100TeV, CERN '14


direct searches

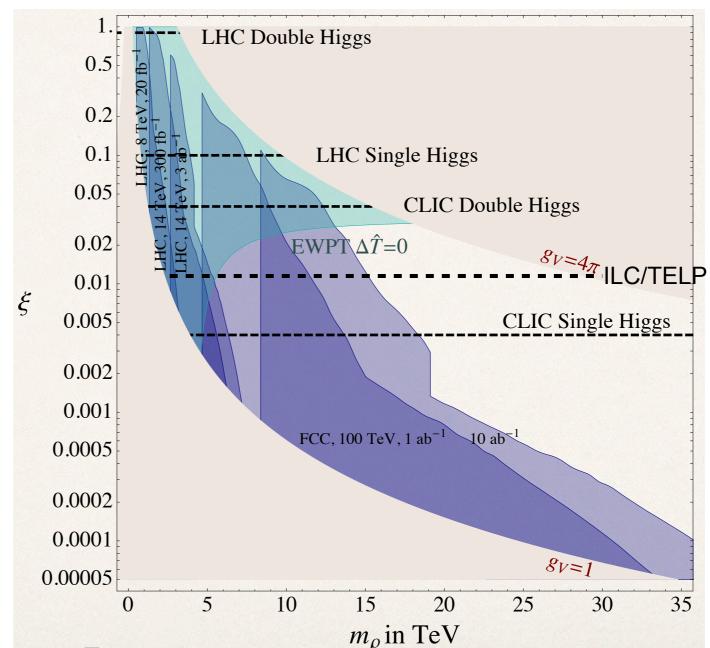
Christophe Grojean Composite Higgs 31 Toyama, Feb. 12, 2015

Precision /indirect searches (high lumi.) vs. direct searches (high energy)

Contino, Grojeam, Pappadopulo, Rattazzi, Thamm'13

 m_* in TeV

▶ nice complementarity between direct searches and precision Higgs physics


Rattazzi, BSM@100TeV, CERN '14

direct searches

Christophe Grojean Composite Higgs 31 Toyama, Feb. 12, 2015

Precision /indirect searches (high lumi.) vs. direct searches (high energy)

- ▶ large region of parameter space already disfavored by EW precision data

Contino, Grojeam, Pappadopulo, Rattazzi, Thamm '13 Torre, Thamm, Wulzer '14

a deviation in Higgs couplings also teaches us on the maximum mass scale to search for! e.g. 10% deviation \Rightarrow m_V < 10TeV i.e. resonance within the reach of FCC-hh