

XMASS

KATSUKI HIRAIDE (KAMIOKA OBSERVATORY, THE UNIVERSITY OF TOKYO)
FEBRUARY 13TH, 2015
HPNP2015

Outline

- Introduction
 - > Introduction of direct detection of dark matter
 - > Current status of direct searches
- The XMASS project
 - Results from XMASS-I commissioning data-taking
 - > Refurbishment of the XMASS-I detector and current status
 - ➤ Next step: XMASS-1.5
- Summary

Direct detection of dark matter (1/2)

Weekly Interacting Massive Particles (WIMPs) elastically scatter off nuclei in target material,

producing nuclear recoils.

Event rate

$$rac{dR}{dE_{R}} = rac{R_{0}F^{2}(E_{R})}{E_{0}r} rac{k_{0}}{k} rac{1}{2\pi v_{0}} \int_{v_{min}}^{v_{max}} rac{1}{v} f(\mathbf{v}, \mathbf{v_{E}}) d^{3}\mathbf{v}$$

$$R_0 = \frac{377}{M_{\chi} M_{\rm N}} \left(\frac{\sigma_0}{1 \text{pb}}\right) \left(\frac{\rho_D}{0.3 \text{GeV} \text{c}^{-2} \text{cm}^{-3}}\right) \left(\frac{\nu_0}{230 \text{km s}^{-1}}\right) \text{kg d}^{-1}$$

Assume Maxwellian distribution for DM velocity

 v_0 : dispersion

v: velocity onto target

v_E: Earth's motion around the Sun

Spin independent case: $\sigma_0 = A^2 \frac{\mu_T^2}{\mu_p^2} \sigma_{\chi-p} \rightarrow \text{Larger A gives higher event rate.}$

Direct detection of dark matter (2/2)

Experimental signature of dark matter

- Energy spectrum (number of events)
- Seasonal modulation of event rate
- Direction of dark matter "wind"

Current status of direct searches

- Results on spin-independentWIMP-nucleon interactions
- The best limit above 6GeV was achieved by the LUX experiment.

Low mass WIMPs

DAMA/LIBRA

- A new result from CRESST-II doesn't confirm their previously reported excess.
 - ➤ G.Angloher et al., Eur. Phys. J. C 74, 3184 (2014).
- The significance of CoGeNT excess becomes $<2\sigma$ level with the maximum likelihood analysis.
 - C.E. Aalseth et al., arXiv:1401.6234
- DAMA/LIBRA and CDMS-II Si allowed regions remain.

The XMASS project

The XMASS experiment

- Proposed as a multi purpose experiment with liquid Xenon
 - Xenon detector for Weakly Interacting MASSive Particles (dark matter)
 - Xenon MASSive detector for solar neutrino (pp/⁷Be solar neutrino)
 - Xenon neutrino MASS detector (double beta decay)

- Low energy threshold
- Sensitive to e/γ events as well as nuclear recoil

WIMPs (by elastic and ¹²⁹Xe inelastic scattering), Solar axions, Bosonic super-WIMPs, Supernova neutrino burst, double electron capture, ...

Large target mass and its scalability

XMASS-2

(total ~24tons)

The XMASS collaboration

Kamioka Observatory, ICRR, the University of Tokyo: K. Abe, K. Hiraide, K. Ichimura, Y. Kishimoto, K. Kobayashi, M. Kobayashi,

S. Moriyama, M. Nakahata, T. Norita, H. Ogawa, H. Sekiya, O. Takachio, A. Takeda, M. Yamashita, B. Yang

Kavli IPMU, the University of Tokyo: J.Liu, K.Martens, Y. Suzuki

Kobe University: R. Fujita, K. Hosokawa, K. Miuchi, Y. Ohnishi, N. Oka, Y. Takeuchi

Tokai University: K. Nishijima

Gifu University: S. Tasaka

Yokohama National University: S. Nakamura

Miyagi University of Education: Y. Fukuda

STEL, Nagoya University: Y. Itow, R. Kegasa, K. Kobayashi, K. Masuda, H. Takiya

Sejong University: N. Y. Kim, Y. D. Kim

KRISS: Y. H. Kim, M. K. Lee, K. B. Lee, J. S. Lee

Tokushima University: K.Fushimi

11 institutes ~40 physicists

The XMASS-1 detector

■ Located in the Kamioka mine in Japan (~2,700m water equivalent)

- A single-phase detector employing ~830kg of liquid xenon
- Equipped with 642 PMTs
- Active water shield

History of XMASS-I

Physics results of XMASS-I

Published

- Light WIMP search, *Phys. Lett. B* 719 (2013) 78
- Solar axion search, *Phys. Lett. B* 724 (2013) 46
- Bosonic Super-WIMPs, *Phys. Rev. Lett.* 113 (2014) 121301
 - → Chosen as Editor's suggestion
- Inelastic scattering on ¹²⁹Xe, *PTEP 2014, 063C01*

Results to come soon

- Double electron capture of ¹²⁴Xe
- Seasonal modulation with full volume of LXe
- Fiducial volume analysis for heavy WIMPs

Search for light WIMPs

- Use full volume of LXe
- 6.7 days x 835 kg
- 0.3 keVee threshold

Published in Phys. Lett. B 719 78 (2013)

Search for solar axions

- Axions can be produced in the sun by bremsstrahlung and Compton effect, and detected by axio-electric effect in XMASS.
- Used the same data set as the light WIMPs search.

Published in Phys. Lett. B 724 46 (2013)

Comparison of background rate

- Background rate in the fiducial volume before separation of nuclear recoils from e/γ
- XMASS achieved O(10⁻⁴) event/day/kg/keVee at a few 10's keV.

Added to D.C.Malling thesis (2014) Fig.1.5

Search for ¹²⁹Xe inelastic scattering by WIMPs

■
$$\chi + {}^{129}\text{Xe} \rightarrow \chi + {}^{129}\text{Xe*}$$

 ${}^{129}\text{Xe*} \rightarrow {}^{129}\text{Xe} + \gamma \text{ (39.6keV)}$

Natural abundance of ¹²⁹Xe: 26.4%

Signal MC for 50GeV WIMP

Observed data (165.9 days)

Published in PTEP 063C01 (2014)

Search for bosonic super-WIMPs (1/2)

- Lighter and more weekly interacting than WIMPs
- Candidate for lukewarm dark matter
- It can be pseudoscaler or vector boson.
- For vector boson, no experimental constraint so far.
- It can be detected by absorption of the particle, which is similar to the photoelectric effect.
- Search for mono-energetic peak at the mass of the particle

Published in Phys. Rev. Lett. 113, 121301 (2014)

Search for bosonic super-WIMPs (2/2)

- For vector boson case
 - □ the first direct search in the 40–120 keV range.
 - ☐ The limit excludes the possibility that such particles constitute all of dark matter.
- For pseudoscaler case
 - ☐ The most stringent direct constraint on gaee.

Search for double electron capture of ¹²⁴Xe

- Double electron capture can be occurred in analogy with double beta decay.
- Natural xenon has ¹²⁴Xe isotope (abundance 0.095%) which is one of candidate nuclei.

¹²⁴Xe (g.s., 0⁺) + 2
$$e^{-}$$
→ ¹²⁴Te (g.s., 0⁺) +2 v + 2.866MeV

- Theoretical calculations predict $T_{1/2} \sim 10^{20} \sim 10^{24}$ years.
- The best experimental limit so far was $T_{1/2}(2v 2K) > 1.66x10^{21}$ years (90%CL) [D.-M. Mei et al., PRC89, 014608(2014)]

Signal MC for double electron capture 103 104 109 100 20 40 60 80 100 Scaled energy (keV)

5 events remain in the signal region, consistent with BG expectation (5.3+/-0.5)

We set a limit on half life w/ BG subtraction $T_{1/2}(2v 2K) > 4.9x10^{21}$ years (90%CL)

Preliminary

Detector refurbishment

- Found RIs (210Pb, 238U) in the Aluminum seal of PMT.
- BG events at the blind corner of PMT are often misidentified as events in the fiducial volume.
- To reduce this background, new structures to cover this Al seal were installed.

Photos of detector inner surface

Before refurbishment

After refurbishment

Data-taking after refurbishment

- Resumed data-taking in Nov. 2013.
- Energy threshold is reduced from 1keV to 0.3 keV.
- Start to use waveform data recorded by flash-ADCs.
- Quick check of energy spectrum indicates one order reduction of BG at 5-20 keV from commissioning run data.
- Already accumulated 277 days data till Dec. 2014.
- Physics analyses using these data are on-going.

Current status: seasonal modulation analysis

- World's largest mass (832 kg after refurbishment):
 - > 1 year data of XMASS (0.8 ton*year) vs. 14 years data of DAMA/LIBRA (1.33 ton*year)
 - → Current statistics is already half of DAMA/LIBRA data.
- Low energy threshold: 0.3 keVee.
- For several physics (DM, axion) without particle ID.
- The results for 1 year data will come soon.

Current status: fiducial volume analysis for heavy WIMPs

Conservative limit is derived assuming all remaining events are WIMPs signal $\sigma_{SI} < 2.7 \times 10^{-43} \text{ cm}^2 \text{ (50GeV WIMPs)}$

Remaining BG sources are identified.
 (Surface events sometimes mis-reconstructed)

Results with BG subtraction being prepared.

Next step: XMASS-1.5

- Total 5 tons of liquid xenon (fiducial mass of 1 ton)
- New PMT with round-shape window
 - No dirty aluminum is used
 - ➤ Identify surface events
- Target sensitivity for σ_{SI} < 10⁻⁴⁶ cm² for 100 GeV WIMPs
- Design of the detector is on-going

High probability to miss catching

the photons from the surface.

Scintillation light from

the surface can be detected.

New PMT for XMASS-1.5

Summary

- XMASS-I is the world largest (~835kg) and low energy-threshold (0.3keVee) detector for direct dark matter search.
- Physics results from commissioning data with the full advantage of
 - \blacksquare Sensitivity to e/ γ events as well as nuclear recoil
 - Low BG at a few 10's keV at a level of 10⁻⁴ /day/kg/keVee
- Current status
 - Detector refurbishment was completed and data-taking resumed in Nov. 2013.
 - One order reduction of BG from commissioning run was achieved.
 - Results from seasonal modulation and fiducial volume analyses will come soon.
- Next step
 - Designing of XMASS-1.5 is ongoing.
 - Aiming to σ_{SI} <10⁻⁴⁶ cm² for 100 GeV WIMPs