Charged Higgs boson in the W[±]H_{obs} channel at the LHC

Shoaib Munir APCTP, Pohang

HPNP 2015, Toyama Feb. 14, 2015

Based on arXiv:1412.5814, with R Enberg, W Klemm, S Moretti and G Wouda

H[±] at the LHC

- Predicted in many models beyond the SM
- $m_{H\pm} > m_t + m_b$: $H^{\pm} \rightarrow tb$ most dominant but difficult, especially for $tan\beta \sim 1 3$ in SUSY
- H[±] → W[±]H_{obs} can have an appreciable BR

$$pp o tH^{\pm} + X$$
 $g_{qH^{\pm}}^2 = m_b^2 \tan^2 \beta + m_t^2 \cot^2 \beta$
 $g_{H_iH^+W^-} = \frac{g_2}{2} (\cos \beta S_{i2} - \sin \beta S_{i1})$
 $g_{H_iH^+W^-}^2 = \frac{g_2}{2} (\cos \beta S_{i2} - \sin \beta S_{i1})$
 $g_{H_i}^2 = \frac{g_2}{2} (\cos \beta S_{i2} - \sin \beta S_{i1})$
 $g_{H_i}^2 = \frac{g_2}{2} (\cos \beta S_{i2} - \sin \beta S_{i1})$
 $g_{H_i}^2 = \frac{g_2}{2} (\cos \beta S_{i2} - \sin \beta S_{i1})$
 $g_{H_i}^2 = \frac{g_2}{2} (\cos \beta S_{i2} - \sin \beta S_{i1})$

Semileptonic channel

- $pp \rightarrow (b)tH^{\pm} \rightarrow (b)W^{\pm}bW^{\pm}H_{obs}$
- One W[±] decays hadronically, the other leptonically
- H_{obs} decays into a pair of b's
- \geq 3 *b*-jets, \geq 2 light jets, 1 charged lepton, missing E_T
- Main selection inefficiencies:
 - o b-tagging ~ ε_b^2
 - 2 BR($W^{\pm} \rightarrow Iv$) BR($W^{\pm} \rightarrow jj$) ≈ 29%
- Overall ~ 1% cross section before cuts

Backgrounds (generated with Madgraph 5)

- t(b)W[±]g overall largest
- t(b)W[±]H smaller but irreducible
- $t(b)W^{\pm}Z$ smallest for heavier H^{\pm}

Event analysis

Signal with MATCHIG/Pythia 6

→ Pythia 8 → Delphes

Reconstruction and cuts:

- $p_T > 20 \text{ GeV}, |\eta| \le 2.5, \Delta R > 0.4$
- Light jets identify hadronic W^{\pm} $(m_{ij} = m_W \pm 30 \text{ GeV})$
- Reconstruct leptonic W^{\pm} using lepton + missing E_T
- Identify $H_{\text{obs}} \rightarrow b.b$ -bar $(m_{bb} = m_H \pm 15 \text{ GeV})$
- Reconstruct the top using the remaining b-jet
- Veto events with additional top

Top veto(es)

Discriminating variable: m_{WH}

- Veto first: before any assignment of b-jets, veto event if two tops can be reconstructed
- Veto second: find $m_{bb} \sim 125$ GeV, veto event if two tops are found using the remaining jets

Background mimics signal

Signal mimics background (light $m_{H^{\pm}}$)

MSSM

- Difficult to obtain $m_h \sim 125$ GeV without large $tan\beta$
- Signal cross section barely reaches 4 fb for the highest allowed tanβ at the 14 TeV LHC

NMSSM

- For H₁ mass ~ 122 GeV 128 GeV, higher BR possible
- Imposing the LHC Higgs boson constraints diminishes the sensitivity reachable

2HDMs

- Z₂-symmetric 2HDMs also greatly affected by the Higgs boson data from the LHC
- A much better sensitivity obtained for the Aligned 2HDM even with an integrated luminosity of 300 fb⁻¹

Conclusions

- The H[±] → W[±]H_{obs} decay channel not as promising for minimal SUSY models as envisaged earlier
- A better sensitivity can be obtained for Z_2 -symmetric 2HDMs at the 14 TeV LHC but marred by the LHC Higgs boson data
- Aligned 2HDM could be testable even with 300 fb⁻¹

Thank you!

Backup slides

Parameter ranges: SUSY

$$m_0 \equiv M_{Q_{1,2,3}} = M_{U_{1,2,3}} = M_{D_{1,2,3}} = M_{L_{1,2,3}} = M_{E_{1,2,3}}$$
, $m_{1/2} \equiv 2M_1 = M_2 = \frac{1}{3}M_3$, $A_0 \equiv A_t = A_b = A_\tau$,

MSSM parameter	Range
$m_0 (\mathrm{GeV})$	500 - 4000
$m_{1/2} (\mathrm{GeV})$	300 - 2000
A_0 (GeV)	-7000 - 7000
$\mu \ ({ m GeV})$	100 - 2000
$m_A ({ m GeV})$	100 - 500
aneta	1 - 6

NMSSM parameter	Range
$m_0 ({ m GeV})$	500 - 3000
$m_{1/2} (\mathrm{GeV})$	300 - 2000
$A_0 (\mathrm{GeV})$	-4000 - 4000
aneta	1 - 6
λ	0.45 - 0.7
κ	0.2-0.5
$\mu_{\mathrm{eff}} (\mathrm{GeV})$	100 - 200
$A_{\lambda} ({ m GeV})$	0 - 500
$A_{\kappa} ({ m GeV})$	-500 - 0

Parameter ranges: Z₂-symmetric 2HDMS

Parameter	2HDM-I		2HDM-II	
ranameter	$H_{\rm obs} = h$	$H_{\rm obs} = H$	$H_{\rm obs} = h$	$H_{\rm obs} = H$
$m_h ({ m GeV})$	123 - 127	80 - 115	123 - 127	80 - 115
$m_H (\mathrm{GeV})$	135 - 500	123 - 127	135 - 500	123 - 127
$m_{H^{\pm}} = m_A (\text{GeV})$	135 - 500		320 -	- 500
$\tan \beta$	1.5 - 6			
$ \sin(\beta - \alpha) $	0-1			
$m_{12}^2(\mathrm{GeV^2})$	$0 - m_A^2 \cos \beta \sin \beta$			

Parameter ranges: Aligned 2HDM

Parameter	$H_{\rm obs} = h$	$H_{\rm obs} = h$
$m_h \; (\mathrm{GeV})$	123 - 127	80 - 115
$m_H \; ({ m GeV})$	135 - 300	123 - 127
$m_{H^{\pm}} = m_A \text{ (GeV)}$	200 - 500	
$ \sin lpha $	0 - 1	
λ_2	$0-4\pi$	
λ_3	$-\sqrt{\lambda_1 \lambda_2} - 4\pi$	
$ \lambda_7 $	$0-4\pi$	
$ eta^{U,D,L} $	0 - 1.57	

Couplings

	2HDM-I	2HDM-II	A2HDM
$g_{qH^{\pm}}^2$	$m_b^2 \cot^2 \beta + m_t^2 \cot^2 \beta$	$m_b^2 \tan^2 \beta + m_t^2 \cot^2 \beta$	$m_b^2 \tan^2 \beta^D + m_t^2 \tan^2 \beta^U$

Top veto(es)

Constraints

- $2.63 \times 10^{-4} \le BR(\overline{B} \to X_s \gamma) \le 4.23 \times 10^{-4}$,
- $0.71 \times 10^{-4} < BR (B_u \to \tau \nu) < 2.57 \times 10^{-4}$,
- $1.3 \times 10^{-9} < BR (B_s \to \mu^+ \mu^-) < 4.5 \times 10^{-9}$.

CMS

$$\mu^{\gamma\gamma}=1.13\pm0.24$$
 and $\mu^{ZZ}=1.0\pm0.29$

ATLAS

$$\mu^{\gamma\gamma} = 1.57^{+0.33}_{-0.28} \text{ and } \mu^{ZZ} = 1.44^{+0.40}_{-0.35}$$