Shifted Focus Point from Minimal Mixed Mediation of SUSY Breaking

: focus point scenario revisited

Bumseok KYAE

(Pusan Nat'l Univ.)

1. arXiv: 1502.02311

2. arXiv: 1403.6527 [PRD 90(2014)035023] collaborated with **Chang Sub Shin** (Rutgers U.)

Feb. 15 (2015) @ HPNP2015 (U. of Toyama)

- The naturalness problem of EW scale and Higgs boson mass has been the most important issue for last four decades.
- The MSSM has been the most promising BSM candidate.
- No evidence of BSM has been observed yet at LHC.
- → Theoretical puzzles raised in the SM still remain unsolved.
- A barometer of the solution to the naturalness problem is the stop mass.
 - The stop mass bound has been already > 700 GeV. The gluino mass bound has exceeded > 1.4 TeV.
- → They start threatening the traditional status of SUSY as a solution to the naturalness problem of the EW phase transition.

- ATLAS and CMS have discovered the SM(-like) Higgs with 125-126 GeV mass.
- According to the recent analysis based on 3-loop calculation,
 3-4 TeV stop mass is necessary for the 126 GeV Higgs mass
 (without a large stop mixing).

- ATLAS and CMS have discovered the SM(-like) Higgs with 125-126 GeV mass.
- According to the recent analysis based on 3-loop calculation,
 3-4 TeV stop mass is necessary for the 126 GeV Higgs mass
 (without a large stop mixing).

A fine-tuning of $10^{-3} - 10^{-4}$

seems to be unavoidable!!??

Can m_{hu}^2 be insensitive to the stop mass??

We need such a model for naturalness of the EW scale.

Focus Point scenario

[Feng, Matchev, Moroi (2000)]

Suppose that

1. Universal soft mass:
$$m_{q3}^2 = m_{u3}^2 = m_{hu}^2 = \dots = m_0^2$$

at the **GUT** scale

2. Small enough gaugino mass: $m_{1/2}^2 \ll m_0^2$, and $A_0 \ll m_0$

Then, the Higgs mass parameter m_{hu}^2 becomes insensitive to m_0^2 or stop mass squared.

Focus Point scenario

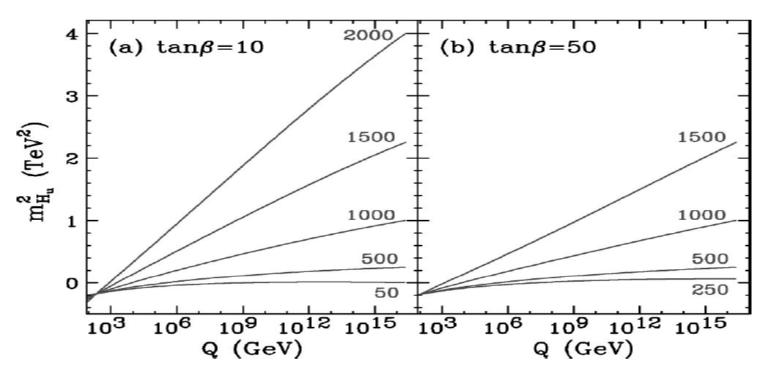
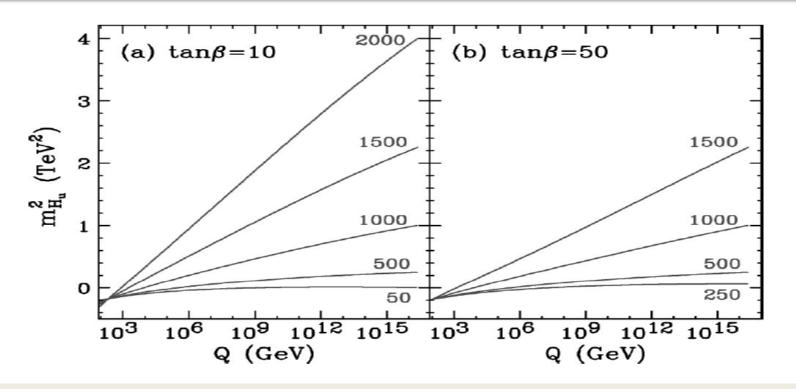



FIG. 1. The RG evolution of $m_{H_u}^2$ for (a) $\tan \beta = 10$ and (b) $\tan \beta = 50$, several values of m_0 (shown, in GeV), $M_{1/2} = 300$ GeV, $A_0 = 0$, and $m_t = 174$ GeV. For both values of $\tan \beta$, $m_{H_u}^2$ exhibits an RG focus point near the weak scale, where $Q_F^{(H_u)} \sim \mathcal{O}(100 \text{ GeV})$, irrespective of m_0 . [Feng, Matchev, Moroi, PRL, PRD (2000)]

Focus Point scenario

Then, the Higgs mass parameter m_{hu}^2 becomes

insensitive to m_0^2 or stop mass squared.

Challenges

from experiments

The gluino mass bound has already exceeded
 M₃ > 1.4 TeV.

 $M_{1/2}$ should NOT be small any longer.

$$\rightarrow$$
 m_{hu}² < - (1 TeV)²

2. The stop mass bound has exceeded 700 GeV. If stop masses > 1 TeV, then ???

Challenges

from theory

1. 3-4 TeV stop masses are necessary for 126 GeV Higgs mass without A_t at 3-loop level.

[Feng, etal., PRL (2013)]

The needed 3-4 TeV stop decoupling scale is too high from the FP scale.

2. How to get the almost vanishing A-term?

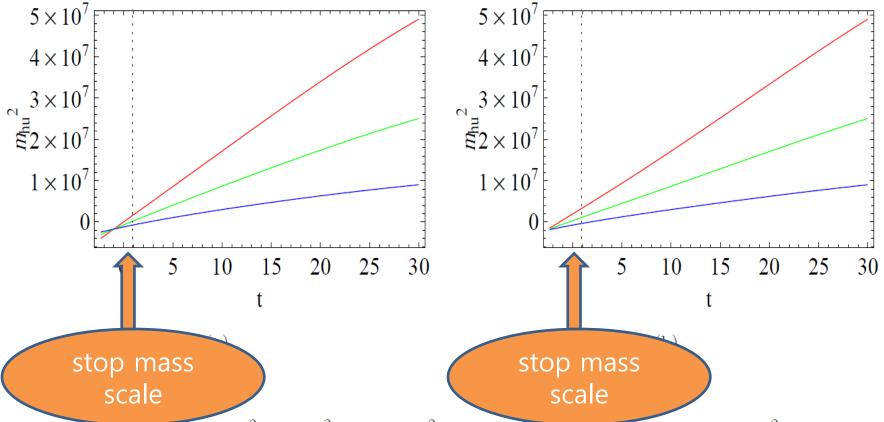


FIG. 1: RG evolutions of $m_{h_u}^2$ for $m_0^2 = (7 \,\text{TeV})^2$ [Red], $(5 \,\text{TeV})^2$ [Green], and $(3 \,\text{TeV})^2$ [Blue], and for (a) $\tan \beta = 5$ and (b) $\tan \beta = 50$, when $m_{1/2} = 1 \,\text{TeV}$ and $A_0 = 0$. Here we take $\alpha_G = 1/25$. The unit of the vertical axis is $(\text{GeV})^2$. The dotted lines at $t \approx 0.92$ denote the assumed stop decoupling scale, $Q = 5 \,\text{TeV}$. $t \approx -2.3$ [$t \approx 29.9$] corresponds to $Q = 200 \,\text{GeV}$ [$Q = 2 \times 10^{16} \,\text{GeV}$]. Below the stop decoupling scale, the above RG runnings must be modified. The above figures show that the extrapolated FP, where $m_{h_u}^2$ is negative, appears at a relatively higher (lower) energy scale for small (large) $\tan \beta$.

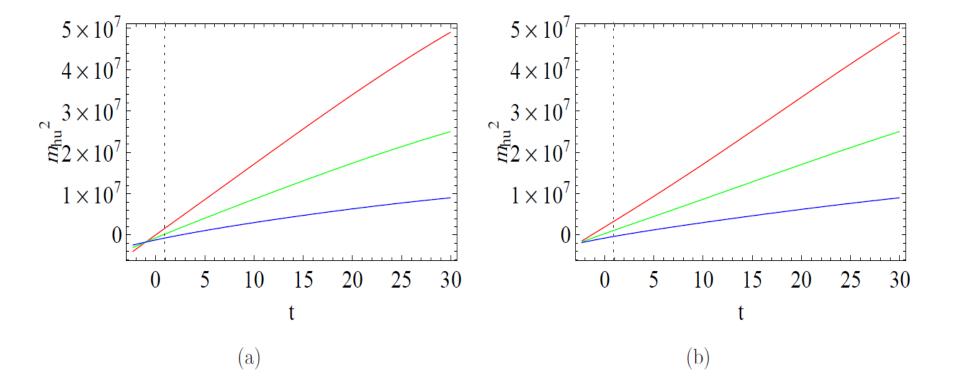
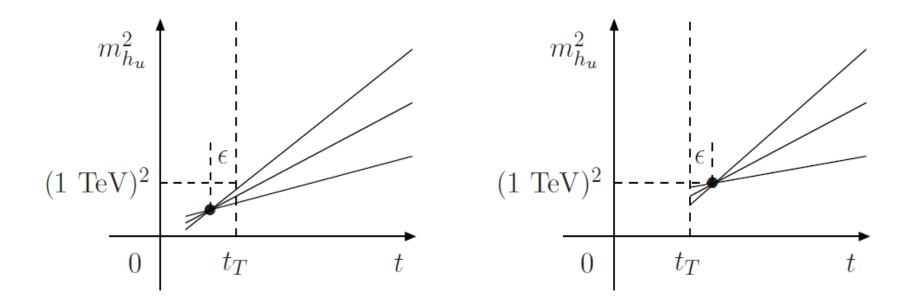
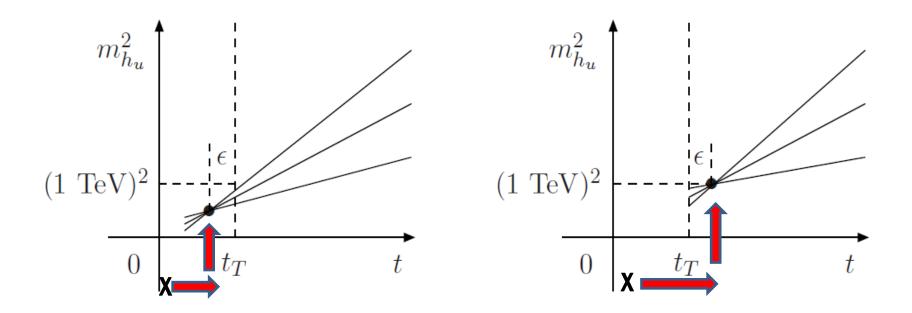



FIG. 1: I for (a) to
$$\Delta_{m_0^2} = \left| \frac{\partial \log m_Z^2}{\partial \log m_0^2} \right| = \left| \frac{m_0^2}{m_Z^2} \frac{\partial m_Z^2}{\partial m_0^2} \right| \sim 1000$$
 [1e], and $\Delta_{m_0^2} = 1/25$. The unit decoupling scare, $Q = 3$ rev. $t \approx -2.5$ [$t \approx 29.9$] corresponds to $Q = 200$ GeV [$Q = 2 \times 10^{-6}$ GeV].


Below the stop decoupling scale, the above RG runnings must be modified. The above figures show that the extrapolated FP, where $m_{h_u}^2$ is negative, appears at a relatively higher (lower) energy scale for small (large) tan β .

For predictively small EW scale

FP needs to appear around stop mass scale (3-4 TeV), and $|m_{hu}|^2 < (1 \text{ TeV})^2$ there.

For predictively small EW scale

FP needs to appear around stop mass scale (3-4 TeV), and $|m_{hu}|^2$ < (1 TeV)² there.

Below the stop mass scale

$$m_{h_u}^2(t_W) \approx m_{h_u}^2 |_{\Lambda_T} + \frac{3|y_t|^2}{8\pi^2} \left[(\widetilde{m}_t^2 + m_t^2) \left\{ \log \frac{\widetilde{m}_t^2 + m_t^2}{\Lambda_T^2} - 1 \right\} - m_t^2 \left\{ \log \frac{m_t^2}{\Lambda_T^2} - 1 \right\} \right]$$

$$\approx m_{h_u}^2 |_{\Lambda_T} - \frac{3|y_t|^2}{8\pi^2} \widetilde{m}_t^2,$$

 m_{hu}^2 further decreases by $\sim (550 \text{ GeV})^2$ from Q = 3-4 TeV to Q = M_7 .

How can we shift the Focus Point of m_{hu}² upto the desired stop mass scale (3-4 TeV) ??

How can we shift the Focus Point of m_{hu}² upto the desired stop mass scale (3-4 TeV) ??

minimal Gravity mediation

minimal Gauge mediation

$$K = \sum_{i,a} |z_i|^2 + |\phi_a|^2 , \quad W = W_H(z_i) + W_O(\phi_a)$$
$$\langle z_i \rangle = b_i M_P, \ \langle \partial_{z_i} W_H \rangle = a_i^* m M_P, \ \langle W_H \rangle = m M_P^2,$$

$$K = \sum_{i,a} |z_{i}|^{2} + \int_{-\infty}^{\infty} \frac{12}{W_{H}} (z_{i}) + W_{O}(\phi_{a})$$

$$F_{z_{i}} = \frac{\partial W_{H}}{\partial z_{i}} + z_{i}^{*} \frac{W}{M_{P}^{2}} = M_{P} \left[(a_{i}^{*} + b_{i}^{*}) m + b_{i}^{*} \frac{W_{O}}{M_{P}^{2}} \right]$$

$$F_{\phi_{a}} = \frac{\partial W_{O}}{\partial \phi_{a}} + \phi_{a}^{*} \frac{W}{M_{P}^{2}} = \frac{\partial W_{O}}{\partial \phi_{a}} + \phi_{a}^{*} \left(m + \frac{W_{O}}{M_{P}^{2}} \right).$$

$$K = \sum_{i,a} |z_i|^2 + |\phi_a|^2 , \quad W = W_H(z_i) + W_O(\phi_a)$$
$$\langle z_i \rangle = b_i M_P, \ \langle \partial_{z_i} W_H \rangle = a_i^* m M_P, \ \langle W_H \rangle = m M_P^2,$$

$$V_F = e^{\frac{K}{M_P^2}} \left[|F_{z_i}|^2 + |F_{\phi_a}|^2 - \frac{3}{M_P^2} |W|^2 \right]$$

With the minimal Kahler pot., and superpot.

where the Uillan and Observ. Sectors are separated,

For the *vanishing*Cosmological Constant,

$$\sum_{i} \langle |F_{z_i}|^2 \rangle = 3|\langle W_H \rangle|^2 / M_P^2$$
, or $\sum_{i} |a_i + b_i|^2 = 3$

$$W_H(z_i) + W_O(\phi_a)$$

$$a_i m M_P, \langle W_H \rangle = m M_P^2,$$

$$V_F = e^{\frac{K}{M_P^2}} \left[|F_{z_i}|^2 + |F_{\phi_a}|^2 - \frac{3}{M_P^2} |W|^2 \right]$$

$$K = \sum_{i,a} |z_i|^2 + |\phi_a|^2$$
, $W = W_H(z_i) + W_O(\phi_a)$

$$\langle z_i \rangle = b_i M_P, \ \langle \partial_{z_i} W_H \rangle = a_i^* m M_P, \ \langle W_H \rangle = m M_P^2,$$

$$V_F \approx \left| \partial_{\phi_a} \widetilde{W}_O \right|^2 + \underline{m}_0^2 |\phi_a|^2$$

$$+ \underline{m}_0 \left[\phi_a \partial_{\phi_a} \widetilde{W}_O + (A_{\Sigma} - 3) \widetilde{W}_O + \text{h.c.} \right]$$

With the minimal Kahler pot., and superpot. Observ. Sectors are separated,

Universal Soft Masses:

$$m_{h_u}^2 = m_{h_d}^2 = m_{q_3}^2 = m_{u_3^c}^2 = \dots = m_0^2$$
 $W_H(z_i) + W_O(\phi_a)$

$$W_H(z_i) + W_O(\phi_a)$$

A-terms $\propto m_0$

$$V_F \approx \left| \partial_{\phi_a} \widetilde{W}_O \right|^2 + \underline{m_0^2} |\phi_a|^2$$

$$+ \underline{m_0} \left[\phi_a \partial_{\phi_a} \widetilde{W}_O + (A_{\Sigma} - 3) \widetilde{W}_O + \text{h.c.} \right]$$

With the minimal Kahler pot., and superpot. where the Wilden and Observ. Sectors are separated,

Universal Soft Masses:

$$m_{h_u}^2 = m_{h_d}^2 = m_{q_3}^2 = m_{u_3^c}^2 = \dots = m_0^2$$

 $\underline{A\text{-terms}} \propto \underline{m}_{\underline{0}}$

 $a_i m M_P$,

Assume $f_{ab} = const.$ So $M_a = 0$ at tree level.

$$V_F \approx \left| \partial_{\phi_a} \widetilde{W}_O \right|^2 + \underline{m_0^2} |\phi_a|^2$$

$$+ \underline{m_0} \left[\phi_a \partial_{\phi_a} \widetilde{W}_O + (A_{\Sigma} - 3) \widetilde{W}_O + \text{h.c.} \right]$$

With ONE pair of messenger fields {5, 5*},

$$W_{\rm m} = y_{\rm S} 5.5.5$$

$$M_a = \frac{g_a^2}{16\pi^2} \frac{\langle F_S \rangle}{\langle S \rangle}, \ m_i^2 = 2 \sum_{a=1}^3 \left[\frac{g_a^2}{16\pi^2} \frac{\langle F_S \rangle}{\langle S \rangle} \right]^2 C_a(i)$$

where $C_a(i)$ is the quadratic Casimir invariant $(T^aT^a)_i^j = C_a(i)\delta_i^j$

With ONE pair of messenger fields {5, 5*},

Non-universal

(dep. on flavors)

Soft Mass corrections !!

$$M_a = \frac{g_a^2}{16\pi^2} \frac{\langle F_S \rangle}{\langle S \rangle}, \ m_i^2 = 2 \sum_{a=1}^3 \left[\frac{g_a^2}{16\pi^2} \frac{\langle F_S \rangle}{\langle S \rangle} \right]^2 C_a(i)$$

where $C_a(i)$ is the quadratic Casimir invariant $(T^aT^a)_i^j = C_a(i)\delta_i^j$

With ONE pair of messenger fields {5, 5*},

$$\frac{\langle F_S \rangle = m_0 M_P}{\langle S \rangle = \langle \mathbf{24}_H \rangle}$$

$$M_a = \frac{g_a^2}{16\pi^2} \frac{\langle F_S \rangle}{\langle S \rangle}, \ m_i^2 = 2 \sum_{a=1}^3 \left[\frac{g_a^2}{16\pi^2} \frac{\langle F_S \rangle}{\langle S \rangle} \right]^2 C_a(i)$$

where $C_a(i)$ is the quadratic Casimir invariant $(T^aT^a)_i^j = C_a(i)\delta_i^j$

With ONE pair of messenger fields {5, 5*},

$$\frac{\langle F_S \rangle = m_0 M_P}{\langle S \rangle = \langle \mathbf{24}_H \rangle}$$

$$M_a = \frac{g_a^2}{K} \underbrace{K \supset f(z)S + \text{h.c.}}^{3} \underbrace{\langle F_S \rangle}_{\langle W_H \rangle = mM_P^2}^{2}$$
where $C_a(i)$ is the question of T^aT^a , T^aT^a ,

With ONE pair of messenger fields {5, 5*},

$$\frac{\langle F_S \rangle = m_0 M_P}{\langle S \rangle = \langle \mathbf{24}_H \rangle}$$

ONE SUSY
breaking source
but
TWO mediations

$$M_a = \frac{g_a^2}{K} \underbrace{\langle F_S \rangle}_{K \supset f(z)S + \text{h.c.}}^{3} \underbrace{\langle F_S \rangle}_{\langle W_H \rangle = mM_P^2}^{2}$$
where $C_a(i)$ is the quasir of $T^a T^a$, $T^a T^a$

With ONE pair of messenger fields {5, 5*},

$$\frac{\langle F_S \rangle = m_0 M_P}{\langle S \rangle = \langle \mathbf{24}_H \rangle}$$

$$M_{a} = \frac{g_{a}^{2}}{K} \underbrace{K \supset f(z)S + \text{h.c.}}^{3} \underbrace{C_{a}(i)}^{2}$$

$$\langle F_{S} \rangle \approx m \left[f(z) + \langle S^{*} \rangle \right] \underbrace{\mathcal{O}(mM_{P})}^{2}$$
where $C_{a}(i)$ is the quasir of $C_{a}(i)$ and $C_{a}(i)$ is the quasir of $C_{a}(i)$ and $C_{a}(i)$ is the quasir of $C_{a}(i)$ and $C_{a}(i)$ and $C_{a}(i)$ is the quasir of $C_{a}(i)$ and $C_{a}(i)$ and $C_{a}(i)$ and $C_{a}(i)$ are $C_{a}(i)$ and $C_{a}(i)$ are

With ONE pair of messenger fields {5, 5*},

Assoc. w/C.C. prob.

$$\frac{\langle F_S \rangle = m_0 M_P}{\langle S \rangle = \langle \mathbf{24}_H \rangle}$$

Possible by a GUT Model

$$M_a = \frac{g_a^2}{K} \xrightarrow{F_S} \frac{2}{\langle F_S \rangle} C_a(i)$$
where $C_a(i)$ is the question of $T^a T^a$.

$$M_a = \frac{g_a^2}{\langle F_S \rangle} = \frac{2}{\langle F_S \rangle} C_a(i)$$

$$\langle F_S \rangle \approx m \left[f(z) + \langle S^* \rangle \right]$$

With ONE pair of messenger fields {5, 5*},

$$\frac{\langle F_S \rangle = m_0 M_P}{\langle S \rangle = \langle \mathbf{24}_H \rangle}$$

$$M_{a} = \frac{g_{a}^{2} \langle F \rangle}{16\pi^{2}\langle S \rangle} = \frac{m_{0}M_{P}}{16\pi^{2}M_{X}} \sqrt{\frac{5}{24}} g_{G} \approx 0.57 \times m_{0}$$
where $C_{a}(i)$ is the question of $T^{a}T^{a}$, T^{a} ,

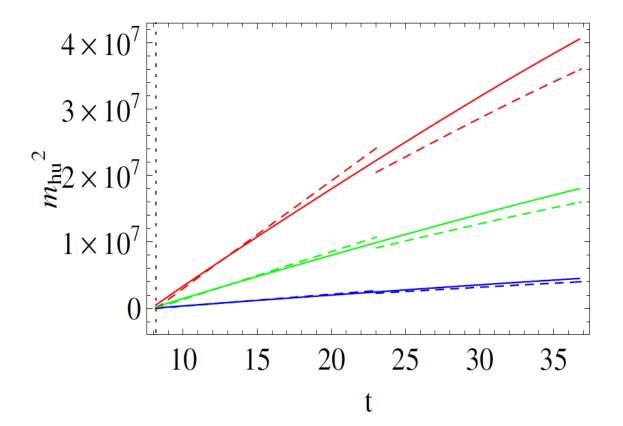
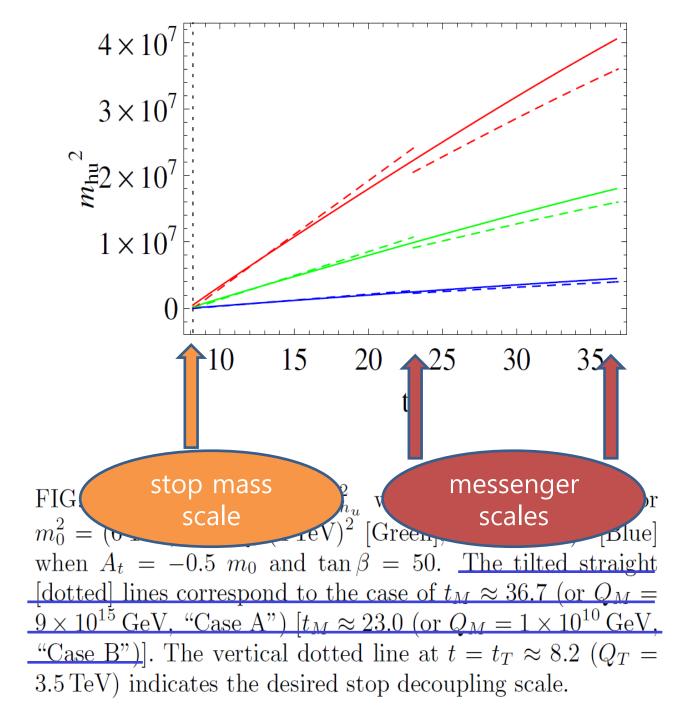



FIG. 1. RG evolutions of $m_{h_u}^2$ with $t \equiv \log(Q/\text{GeV})$ for $m_0^2 = (6 \text{ TeV})^2$ [Red], $(4 \text{ TeV})^2$ [Green], and $(2 \text{ TeV})^2$ [Blue] when $A_t = -0.5 \ m_0$ and $\tan \beta = 50$. The tilted straight [dotted] lines correspond to the case of $t_M \approx 36.7$ (or $Q_M = 9 \times 10^{15} \text{ GeV}$, "Case A") [$t_M \approx 23.0$ (or $Q_M = 1 \times 10^{10} \text{ GeV}$, "Case B")]. The vertical dotted line at $t = t_T \approx 8.2$ ($Q_T = 3.5 \text{ TeV}$) indicates the desired stop decoupling scale.

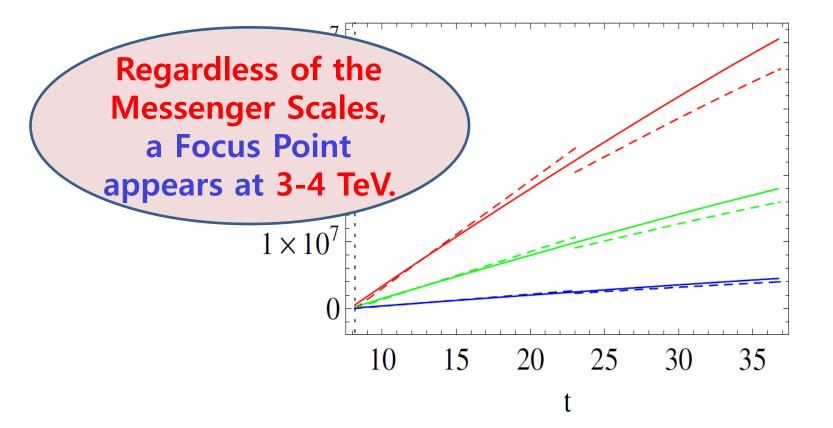


FIG. 1. RG evolutions of $m_{h_u}^2$ with $t \equiv \log(Q/\text{GeV})$ for $m_0^2 = (6 \text{ TeV})^2$ [Red], $(4 \text{ TeV})^2$ [Green], and $(2 \text{ TeV})^2$ [Blue] when $A_t = -0.5 \ m_0$ and $\tan \beta = 50$. The tilted straight [dotted] lines correspond to the case of $t_M \approx 36.7$ (or $Q_M = 9 \times 10^{15} \text{ GeV}$, "Case A") [$t_M \approx 23.0$ (or $Q_M = 1 \times 10^{10} \text{ GeV}$, "Case B")]. The vertical dotted line at $t = t_T \approx 8.2$ ($Q_T = 3.5 \text{ TeV}$) indicates the desired stop decoupling scale.

a t	Case I	$A_t = 0$	$\tan \beta = 50$	$\Delta_{m_0^2} = 85$
at	$\mathbf{m_0^2}$	$(5 \mathrm{TeV})^2$	$(4 \mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
$Q_T = 3.5 \text{ TeV}$	$m_{q_3}^2(t_T)$	$(5134 {\rm GeV})^2$	$(4107 {\rm GeV})^2$	$(3080{\rm GeV})^2$
	$m_{u_3^c}^{2^0}(t_T)$	$(4191 {\rm GeV})^2$	$(3353\mathrm{GeV})^2$	$(2515\mathrm{GeV})^2$
for various	$\mathbf{m_{h_{\mathbf{u}}}^{2^3}(t_{\mathbf{T}})}$	$-(148{\rm GeV})^2$	$-(118{\rm GeV})^2$	$-(89{ m GeV})^2$
trial m ₀ ² s	$m_{h_d}^{\widehat{2} \mathbf{u}}(t_T)$	$(3629{\rm GeV})^2$	$(2903\mathrm{GeV})^2$	$(2177\mathrm{GeV})^2$
	Case II	$A_t = -0.4 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m}^2}=27$
when Q _M =	$\mathbf{m_0^2}$	$(5 \mathrm{TeV})^2$	$(4 \mathrm{TeV})^2$	$(3 \mathrm{TeV})^2$
5x10 ¹⁵ GeV	$\overline{m_{q_3}^2(t_T)}$	$(5153 { m GeV})^2$	$(4123 { m GeV})^2$	$(3092 {\rm GeV})^2$
	$m_{u_{2}^{c}}^{2}(t_{T})$	$(4221 {\rm GeV})^2$	$(3377\mathrm{GeV})^2$	$(2533\mathrm{GeV})^2$
	$\mathbf{m_{h_{\mathbf{u}}}^{2^3}(t_{\mathbf{T}})}$	$(600{ m GeV})^2$	$(480\mathrm{GeV})^2$	$(360\mathrm{GeV})^2$
	$m_{h_d}^{\overline{2} a}(t_T)$	$(3643{\rm GeV})^2$	$(2915\mathrm{GeV})^2$	$(2186{\rm GeV})^2$
	Case III	$A_t = -0.7 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m}^2}=74$
	$\mathbf{m_0^2}$	$(5 \mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3 \mathrm{TeV})^2$
	$m_{q_3}^2(t_T)$	$(5138 {\rm GeV})^2$	$(4111 {\rm GeV})^2$	$(3083 {\rm GeV})^2$
	$m_{u_3^c}^2(t_T)$	$(4197{\rm GeV})^2$	$(3358\mathrm{GeV})^2$	$(2518\mathrm{GeV})^2$
	$\mathbf{m_{h_{\mathbf{u}}}^{2}(t_{\mathbf{T}})}$	$({\bf 231}{ m GeV})^2$	$({f 185}{ m GeV})^2$	$({f 139}{ m GeV})^2$
	$m_{h_d}^2(t_T)$	$(3578\mathrm{GeV})^2$	$(2862 {\rm GeV})^2$	$(2147{\rm GeV})^2$
	Case IV	$A_t = -0.4 \ m_0$	$\tan \beta = 15$	$\Delta_{m_0^2} = 94$
	$\mathbf{m_0^2}$	$(5 \mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3 \mathrm{TeV})^2$
	$m_{q_3}^2(t_T)$	$(5423 \text{GeV})^2$	$(4338 {\rm GeV})^2$	$(3254\mathrm{GeV})^2$
	$m_{u_3^c}^2(t_T)$	$(4212{\rm GeV})^2$	$(3370\mathrm{GeV})^2$	$(2527\mathrm{GeV})^2$
	$\mathbf{m_{h_{\mathbf{u}}}^{2}(t_{\mathbf{T}})}$	$(495{\rm GeV})^2$	$(396\mathrm{GeV})^2$	$({f 297}{ m GeV})^2$
	$m_{h_d}^2(t_T)$	$(5246{\rm GeV})^2$	$(4197 {\rm GeV})^2$	$(3148 \text{GeV})^2$

at	Case I	$A_t = 0$	$\tan \beta = 50$	$\Delta_{ ext{m}_0^2}=85$
at	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
$Q_T = 3.5 \text{ TeV}$	$m_{q_3}^2(t_T)$	$(5134 {\rm GeV})^2$	$(4107{ m GeV})^2$	$(3080{\rm GeV})^2$
	$m_{u_{2}^{c}}^{2}(t_{T})$	$(4191 {\rm GeV})^2$	$(3353\mathrm{GeV})^2$	$(2515\mathrm{GeV})^2$
for various	$\mathbf{m_{h_{H}}^{2}}(\mathbf{t_{T}})$	$-(148{\rm GeV})^2$	$-(118{\rm GeV})^2$	$-(89{ m GeV})^2$
trial m _o ² s	$m_{h_d}^{\overline{2}a}(t_T)$	$(3629\mathrm{GeV})^2$	$(2903\mathrm{GeV})^2$	$(2177\mathrm{GeV})^2$
	Case II	$A_t = -0.4 \ m_0$	$\tan \beta = 50$	$\overline{\Delta_{ ext{m}_{ ext{O}}^2} = 27}$
when Q _M =	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
5x10 ¹⁵ GeV	$m_{q_3}^2(t_T)$	$(5153{ m GeV})^2$	$(4123{ m GeV})^2$	$(3092 {\rm GeV})^2$
	$m_{u_{2}^{c}}^{2}(t_{T})$	$(4221 {\rm GeV})^2$	$(3377\mathrm{GeV})^2$	$(2533\mathrm{GeV})^2$
	$\mathbf{m_{h_{11}}^{2}}(\mathbf{t_{T}})$	$(600{ m GeV})^2$	$(480\mathrm{GeV})^2$	$({\bf 360}{ m GeV})^2$
	$m_{h_d}^2(t_T)$	$(3643 {\rm GeV})^2$	$(2915\mathrm{GeV})^2$	$(2186{\rm GeV})^2$
	Case III	$A_t = -0.7 \ m_0$	$\tan \beta = \underline{50}$	$\Delta_{\mathrm{m_0^2}} = 74$
	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
	$m_{q_3}^2(t_T)$	$(5138{\rm GeV})^2$	$(4111 {\rm GeV})^2$	$(3083 {\rm GeV})^2$
	$m_{u_3^c}^{2^c}(t_T)$	$(4197{\rm GeV})^2$	$(3358\mathrm{GeV})^2$	$(2518\mathrm{GeV})^2$
	$\mathbf{m_{h_{11}}^{2}}(\mathbf{t_{T}})$	$({\bf 231}{ m GeV})^2$	$({f 185}{ m GeV})^2$	$({f 139}{ m GeV})^2$
	$m_{h_d}^{\overline{2} a}(t_T)$	$(3578\mathrm{GeV})^2$	$(2862\mathrm{GeV})^2$	$(2147\mathrm{GeV})^2$
	Case IV	$A_t = -0.4 \ m_0$	$\tan \beta = \underline{15}$	$\Delta_{\mathrm{m_0^2}} = 94$
	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
	$m_{q_3}^2(t_T)$	$(5423{\rm GeV})^2$	$(4338{\rm GeV})^2$	$(3254\mathrm{GeV})^2$
	$m_{u_3^c}^{2^3}(t_T)$	$(4212{\rm GeV})^2$	$(3370\mathrm{GeV})^2$	$(2527\mathrm{GeV})^2$
	$\mathbf{m_{h_{\mathbf{u}}}^{2}(t_{\mathbf{T}})}$	$(495{ m GeV})^2$	$(396\mathrm{GeV})^2$	$({f 297}{ m GeV})^2$
	$m_{h_d}^2(t_T)$	$(5246{\rm GeV})^2$	$(4197\mathrm{GeV})^2$	$(3148 {\rm GeV})^2$

ot.	Case I	$A_t = 0$	$\tan \beta = 50$	$oldsymbol{\Delta_{ ext{m}_0^2}=85}$
at	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
$Q_T = 3.5 \text{ TeV}$	$m_{q_3}^2(t_T)$	$(5134 {\rm GeV})^2$	$(4107{ m GeV})^2$	$(3080{\rm GeV})^2$
	$m_{u_{2}^{c}}^{2}(t_{T})$	$(4191 {\rm GeV})^2$	$(3353 {\rm GeV})^2$	$(2515{\rm GeV})^2$
for various	$\mathbf{m_{h}^2}^{2^3}(\mathbf{t_T})$	$-(148\mathrm{GeV})^2$	$-(118\mathrm{GeV})^{2}$	$-(89\mathrm{GeV})^2$
trial m ₀ ² s	$m_{h_d}^2(t_T)$	$(3629 \text{GeV})^2$	$(2903{\rm GeV})^2$	$(2177{\rm GeV})^2$
	Case II	$A_t = -0.4 \ m_0$	$\tan \beta = 50$	$oldsymbol{\Delta_{ ext{m}_0^2}=27}$
when Q _M =	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
5x10 ¹⁵ GeV	$m_{q_3}^2(t_T)$	$(5153{\rm GeV})^2$	$(4123{\rm GeV})^2$	$(3092 {\rm GeV})^2$
	$m_{u_{2}^{c}}^{2c}(t_{T})$	$(4221 {\rm GeV})^2$	$(3377 {\rm GeV})^2$	$(2533\mathrm{GeV})^2$
	$\mathbf{m_{h_{\mathbf{u}}}^{2}}^{\mathbf{s}}(\mathbf{t_{T}})$	$(600{\rm GeV})^2$	$(480\mathrm{GeV})^2$	$(360\mathrm{GeV})^2$
	$m_{h_d}^{\overline{2}^{\mathbf{d}}}(t_T)$	$(3643{\rm GeV})^2$	$(2915{\rm GeV})^2$	$(2186{ m GeV})^2$
	Case III	$A_t = -0.7 \ m_0$	$\tan \beta = 50$	$oldsymbol{\Delta_{m_0^2}=74}$
	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
	$\overline{m_{q_3}^2(t_T)}$	$(5138{\rm GeV})^2$	$(4111 {\rm GeV})^2$	$(3083 {\rm GeV})^2$
	$m_{u_{3}^{c}}^{2}(t_{T})$	$(4197{\rm GeV})^2$	$(3358\mathrm{GeV})^2$	$(2518\mathrm{GeV})^2$
	$\mathbf{m_{h_{\mathbf{u}}}^2(t_T)}$	$(231\mathrm{GeV})^2$	$(185\mathrm{GeV})^2$	$({f 139}{ m GeV})^2$
	$m_{h_d}^2(t_T)$	$(3578 \mathrm{GeV})^2$	$(2862{\rm GeV})^2$	$(2147{\rm GeV})^2$
	Case IV	$A_t = -0.4 \ m_0$	$\tan \beta = 15$	$oldsymbol{\Delta_{m_0^2}=94}$
	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
	$m_{q_3}^2(t_T)$	$(5423{\rm GeV})^2$	$(4338{\rm GeV})^2$	$(3254\mathrm{GeV})^2$
	$m_{u_3^c}^2(t_T)$	$(4212{\rm GeV})^2$	$(3370 \text{GeV})^2$	$(2527\mathrm{GeV})^2$
	$\mathbf{m_{h_{\mathbf{u}}}^2(t_T)}$	$(495\mathrm{GeV})^2$		$\left((297\mathrm{GeV})^2 ight)$
	$m_{h_d}^2(t_T)$	$(5246{ m GeV})^2$	$(4197 {\rm GeV})^2$	$(3148{\rm GeV})^2$

at	$\mathbf{Case} \; \mathbf{I}$	$A_t = 0$	$\tan \beta = 50$	$\Delta_{\mathrm{m_0^2}} = 85$
	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
$Q_T = 3.5 \text{ TeV}$	$m_{q_3}^2(t_T)$	$(5134 {\rm GeV})^2$	$(4107{\rm GeV})^2$	$(3080{\rm GeV})^2$
	$m_{u_3^c}^{2^c}(t_T)$	$(4191 {\rm GeV})^2$	$(3353\mathrm{GeV})^2$	$(2515\mathrm{GeV})^2$
for various	$\mathbf{m_{h_{11}}^{2}}^{\mathbf{c}}(\mathbf{t_{T}})$	$-(148{\rm GeV})^2$	$-(118{\rm GeV})^2$	$-(89{ m GeV})^2$
trial m ₀ 2 s	$m_{h_d}^2(t_T)$	$(3629 \text{GeV})^2$	$(2903\mathrm{GeV})^2$	$(2177\mathrm{GeV})^2$
	Case II	$A_t = -0.4 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m_2^2}} = 27$
when Q _M =	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
5x10 ¹⁵ GeV	$m_{q_3}^2(t_T)$	$(5153{\rm GeV})^2$	$(4123 {\rm GeV})^2$	$(3092 {\rm GeV})^2$
	$m_{u_3^c}^{2^3}(t_T)$	$(4221 {\rm GeV})^2$	$(3377\mathrm{GeV})^2$	$(2533\mathrm{GeV})^2$
	$\mathbf{m_{h_{\mathbf{u}}}^{2^3}(t_{\mathbf{T}})}$	$(600{ m GeV})^2$	$(480\mathrm{GeV})^2$	$(360\mathrm{GeV})^2$
	$m_{h_d}^{\overline{2}^{\mathbf{d}}}(t_T)$	$(3643{\rm GeV})^2$	$(2915\mathrm{GeV})^2$	$(2186\mathrm{GeV})^2$
	Case III	$A_t = -0.7 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m_0^2}} = 74$
	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
	$m_{q_3}^2(t_T)$	$(5138{\rm GeV})^2$	$(4111 {\rm GeV})^2$	$(3083 {\rm GeV})^2$
	$m_{u_3^c}^{2^c}(t_T)$	$(4197{\rm GeV})^2$	$(3358\mathrm{GeV})^2$	$(2518\mathrm{GeV})^2$
	$\mathbf{m_{h_{\mathbf{u}}}^{2^{3}}(t_{\mathbf{T}})}$	$(231 {\rm GeV})^2$	$({f 185}{ m GeV})^2$	$({f 139}{ m GeV})^2$
	$m_{h_d}^{\overline{2}^{\mathrm{d}}}(t_T)$	$(3578{\rm GeV})^2$	$(2862\mathrm{GeV})^2$	$(2147\mathrm{GeV})^2$
	Case IV	$A_t = -0.4 \ m_0$	$\tan \beta = 15$	$\Delta_{\mathrm{m_a^2}} = 94$
	$\mathbf{m_0^2}$	$(5 \mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3 \mathrm{TeV})^2$
	$m_{q_3}^2(t_T)$	$(5423{\rm GeV})^2$	$(4338{\rm GeV})^2$	$(3254 {\rm GeV})^2$
	ñ .	(4010 (7.7)2	$(2270 \text{G} \text{M})^2$	$(2527 {\rm GeV})^2$
	$m_{u_2^c}^2(t_T)$	$(4212{\rm GeV})^2$	$(3370{ m GeV})^2$	(2321 GeV)
	$m_{u_3^c}^2(t_T) \ \mathbf{m_{h_{\mathbf{u}}}^2(t_T)}$	$(4212 \text{GeV})^2$ $(495 \text{GeV})^2$	$(3370 \text{GeV})^2$	

Fine-Tuning Measures

For

$$m_0^2 = (4 \, \text{TeV})^2$$

and

$$-0.5 \lesssim A_t/m_0 \lesssim 0$$

both

$$\Delta_{m_0^2}$$

and
$$\Delta_{A_t}$$

100

$$\equiv \left| \frac{\partial \log m_Z^2}{\partial \log m_0^2} \right| = \left[\frac{m_0^2}{m_Z^2} \frac{\partial m_Z^2}{\partial m_0^2} \right] \qquad = \left| \frac{A_t}{m_Z^2} \frac{\partial m_Z^2}{\partial A_t} \right|$$

Fine-Tuning Measures

Even for

For

$$m_0^2 = (4\,{
m TeV})^2
ightharpoonup (m_{q_3}^2, m_{u_3^c}^2) = {
m 3 - 4 \, TeV}$$

$$-0.5 \lesssim A_t/m_0 \lesssim 0$$

both

$$\Delta_{m_0^2}$$
 and Δ_{A_t}

$$\Delta_{A_t}$$

-100

$$\equiv \left| \frac{\partial \log m_Z^2}{\partial \log m_0^2} \right| = \left| \frac{m_0^2}{m_Z^2} \frac{\partial m_Z^2}{\partial m_0^2} \right| \qquad = \left| \frac{A_t}{m_Z^2} \frac{\partial m_Z^2}{\partial A_t} \right|$$

For

$$m_0^2 = (4 \, \text{TeV})^2$$

and

$$-0.5 \lesssim A_t/m_0 \lesssim 0$$

$$(m_{q_3}^2, m_{u_3^c}^2) = 3 - 4 \text{ TeV}$$

responsible for

126 GeV Higgs mass

$$M_a(t_T) \approx 0.57 \times m_0 \times g_a^2(t_T)$$

For

$$m_0^2 = (4 \, \text{TeV})^2$$

and

$$-0.5 \lesssim A_t/m_0 \lesssim 0$$

$$(m_{q_3}^2, m_{u_2^c}^2) = 3 - 4 \text{ TeV}$$

responsible for

126 GeV Higgs mass

$$M_{3,2,1} \approx \{2.3 \,\text{TeV}, 912 \,\text{GeV}, 504 \,\text{GeV}\}$$

PREDICTIONS!

testable at LHC run2

For

$$m_0^2 = (4 \, \text{TeV})^2$$

and

$$-0.5 \lesssim A_t/m_0 \lesssim 0$$

$$(m_{q_3}^2, m_{u_2^c}^2) = 3 - 4 \text{ TeV}$$

responsible for

126 GeV Higgs mass

$$M_{3,2,1} \approx \{2.3 \,\text{TeV}, 912 \,\text{GeV}, 504 \,\text{GeV}\}$$

sleptons, sbottom masses > 3 - 4 TeV

For

$$m_0^2 = (4 \, \text{TeV})^2$$

and

$$-0.5 \lesssim A_t/m_0 \lesssim 0$$

$$(m_{q_3}^2, m_{u_3^c}^2) = 3 - 4 \text{ TeV}$$

responsible for

126 GeV Higgs mass

$$M_{3,2,1} \approx \{2.3 \,\text{TeV}, 912 \,\text{GeV}, 504 \,\text{GeV}\}$$

 $|\mu| = 330 \text{ GeV} - 590 \text{ GeV}$ for $m_z = 91 \text{ GeV}$

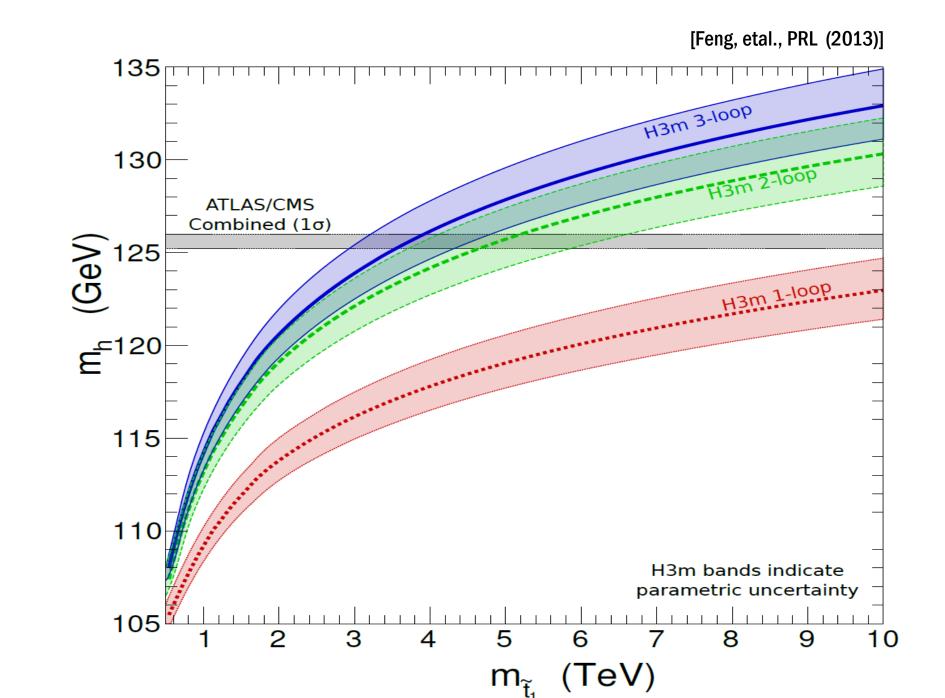
For $M_1<|\mu|$ $(M_1>|\mu|),\;$ Bino (Higgsino) is the LSP.

Some entropy production

needed

Some other DM component

needed


Conclusion

- minimal Gravity medi. + minimal Gauge medi.
 - = precise focusing of m_{hu}^2 around stop mass scale.
- m_{hu}^2 is insensitive to trial m_0^2 or heavy stop masses.
- m₀² happens to be ≈ (4 TeV)², which yields
 3-4 TeV stop and 126 GeV Higgs masses.

Conclusion

- The fine-tuning measures significantly decrease well-below 100 even for 3-4 TeV stop masses.
 - → predictively small EW scale
- The fine-tuning associated with zero C.C. would be responsible for the fine-tuning required in the little hierarchy problem ($F_s = m_0 M_P$).
- Gluino mass is predicted to be about 2.3 TeV.
 - → it could readily tested at LHC run2.

at .	Case I	$A_t = 0$	$\tan \beta = 50$	$\Delta_{\mathrm{m_0^2}} = 85$
at	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
$Q_T = 3.5 \text{ TeV}$	$m_{q_3}^2(t_T)$	$(5134 {\rm GeV})^2$	$(4107{ m GeV})^2$	$(3080{\rm GeV})^2$
	$m_{u_3^c}^{2^{\circ}}(t_T)$	$(4191 {\rm GeV})^2$	$(3353\mathrm{GeV})^2$	$(2515\mathrm{GeV})^2$
for various	$\mathbf{m_{h}^2}^{2^3}(\mathbf{t_T})$	$-(148{\rm GeV})^2$	$-(118{\rm GeV})^2$	$-(89{ m GeV})^2$
trial m _o ² s	$m_{h_d}^2(t_T)$	$(3629{\rm GeV})^2$	$(2903{\rm GeV})^2$	$(2177\mathrm{GeV})^2$
	Case II	$A_t = -0.4 \ m_0$	$\tan \beta = 50$	$\Delta_{ m m_0^2}=27$
when Q _M =	$\mathbf{m_0^2}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
5x10 ¹⁵ GeV	$m_{q_3}^2(t_T)$	$(5153{ m GeV})^2$	$(4123{\rm GeV})^2$	$(3092 {\rm GeV})^2$
0.120	$m_{u_3^c}^{2}(t_T)$	$(4221 {\rm GeV})^2$	$(3377\mathrm{GeV})^2$	$(2533\mathrm{GeV})^2$
	$\mathbf{m_{h}^2}^{2}(\mathbf{t_T})$	$(600{ m GeV})^2$	$({f 480}{ m GeV})^2$	$({\bf 360}{ m GeV})^2$
	$m_{h_d}^{\overline{2} a}(t_T)$	$(3643{\rm GeV})^2$	$(2915{\rm GeV})^2$	$(2186{ m GeV})^2$
		l .		
	Case III	$A_t = -0.7 \ m_0$	$\tan \beta = 50$	$\Delta_{ ext{m}_{ ext{O}}^2} = 74$
	$\begin{array}{c} \hline \text{Case III} \\ \text{m}_0^2 \\ \end{array}$	$A_t = -0.7 \ m_0$ $(5 \text{TeV})^2$	$\tan \beta = 50$ $(4 \text{TeV})^2$	$rac{oldsymbol{\Delta_{m_0^2}} = 74}{(3\mathrm{TeV})^2}$
	$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}$			
	$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}$	$(5\mathrm{TeV})^2$	$(4\mathrm{TeV})^2$	$(3\mathrm{TeV})^2$
	$ m m_0^2$	$(5 \text{TeV})^2$ $(5138 \text{GeV})^2$	$(4 \text{TeV})^2$ $(4111 \text{GeV})^2$	$(3 \text{TeV})^2$ $(3083 \text{GeV})^2$
	$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}$ $m_{u_{3}^{c}}^{2}(t_{T})$	$(5 \text{TeV})^2$ $(5138 \text{GeV})^2$ $(4197 \text{GeV})^2$	$(4 \text{TeV})^2$ $(4111 \text{GeV})^2$ $(3358 \text{GeV})^2$	$(3 \text{TeV})^2$ $(3083 \text{GeV})^2$ $(2518 \text{GeV})^2$
	$egin{array}{c} \mathbf{m_0^2} \\ \hline m_{q_3}^2(t_T) \\ m_{u_3^c}^2(t_T) \\ \mathbf{m_{h_{II}}^2}(\mathbf{t_T}) \end{array}$	$(5 \mathrm{TeV})^2$ $(5138 \mathrm{GeV})^2$ $(4197 \mathrm{GeV})^2$ $(231 \mathrm{GeV})^2$	$(4 {\rm TeV})^2$ $(4111 {\rm GeV})^2$ $(3358 {\rm GeV})^2$ $(185 {\rm GeV})^2$	$(3 \text{TeV})^2$ $(3083 \text{GeV})^2$ $(2518 \text{GeV})^2$ $(139 \text{GeV})^2$ $(2147 \text{GeV})^2$
	$egin{array}{c} \mathbf{m_{0}^{2}} \\ \hline m_{q_{3}}^{2}(t_{T}) \\ m_{u_{3}^{c}}^{2}(t_{T}) \\ \hline \mathbf{m_{h_{II}}^{2}(t_{T})} \\ \hline m_{h_{d}}^{2}(t_{T}) \\ \hline \mathbf{Case\ IV} \\ \mathbf{m_{0}^{2}} \end{array}$	$(5 \text{TeV})^2$ $(5138 \text{GeV})^2$ $(4197 \text{GeV})^2$ $(231 \text{GeV})^2$ $(3578 \text{GeV})^2$ $A_t = -0.4 m_0$ $(5 \text{TeV})^2$	$(4 {\rm TeV})^2$ $(4111 {\rm GeV})^2$ $(3358 {\rm GeV})^2$ $(185 {\rm GeV})^2$ $(2862 {\rm GeV})^2$	$(3 { m TeV})^2$ $(3083 { m GeV})^2$ $(2518 { m GeV})^2$ $(139 { m GeV})^2$
	$egin{array}{c} \mathbf{m_{0}^{2}} \\ \hline m_{q_{3}}^{2}(t_{T}) \\ m_{u_{3}^{c}}^{2}(t_{T}) \\ \hline \mathbf{m_{h_{II}}^{2}(t_{T})} \\ \hline m_{h_{d}}^{2}(t_{T}) \\ \hline \mathbf{Case\ IV} \\ \mathbf{m_{0}^{2}} \end{array}$	$(5 \text{TeV})^2$ $(5138 \text{GeV})^2$ $(4197 \text{GeV})^2$ $(231 \text{GeV})^2$ $(3578 \text{GeV})^2$ $A_t = -0.4 m_0$ $(5 \text{TeV})^2$ $(5423 \text{GeV})^2$	$(4 \text{TeV})^2$ $(4111 \text{GeV})^2$ $(3358 \text{GeV})^2$ $(185 \text{GeV})^2$ $(2862 \text{GeV})^2$ $\tan \beta = 15$ $(4 \text{TeV})^2$ $(4338 \text{GeV})^2$	$(3 {\rm TeV})^2$ $(3083 {\rm GeV})^2$ $(2518 {\rm GeV})^2$ $(139 {\rm GeV})^2$ $(2147 {\rm GeV})^2$ $\Delta_{\mathbf{m_0^2}} = 94$ $(3 {\rm TeV})^2$ $(3254 {\rm GeV})^2$
	$egin{array}{c} \mathbf{m_{0}^{2}} \\ m_{q_{3}}^{2}(t_{T}) \\ m_{u_{3}^{c}}^{2}(t_{T}) \\ \mathbf{m_{h_{u}}^{2}}(t_{T}) \\ \hline m_{h_{d}}^{2}(t_{T}) \\ \hline \mathbf{Case\ IV} \\ \mathbf{m_{0}^{2}} \\ m_{q_{3}}^{2}(t_{T}) \\ m_{u_{3}^{c}}^{2}(t_{T}) \end{array}$	$(5 \text{TeV})^2$ $(5138 \text{GeV})^2$ $(4197 \text{GeV})^2$ $(231 \text{GeV})^2$ $(3578 \text{GeV})^2$ $A_t = -0.4 m_0$ $(5 \text{TeV})^2$	$(4 {\rm TeV})^2$ $(4111 {\rm GeV})^2$ $(3358 {\rm GeV})^2$ $(185 {\rm GeV})^2$ $(2862 {\rm GeV})^2$ $\tan \beta = 15$ $(4 {\rm TeV})^2$	$(3 {\rm TeV})^2$ $(3083 {\rm GeV})^2$ $(2518 {\rm GeV})^2$ $(139 {\rm GeV})^2$ $(2147 {\rm GeV})^2$ $\Delta_{\mathbf{m_0^2}} = 94$ $(3 {\rm TeV})^2$
	$egin{array}{c} \mathbf{m_{0}^2} \\ m_{q_3}^2(t_T) \\ m_{u_3^c}^2(t_T) \\ \mathbf{m_{h_u}^2}(\mathbf{t_T}) \\ \hline m_{h_d}^2(t_T) \\ \hline \mathbf{Case\ IV} \end{array}$	$(5 \text{TeV})^2$ $(5138 \text{GeV})^2$ $(4197 \text{GeV})^2$ $(231 \text{GeV})^2$ $(3578 \text{GeV})^2$ $A_t = -0.4 m_0$ $(5 \text{TeV})^2$ $(5423 \text{GeV})^2$	$(4 \text{TeV})^2$ $(4111 \text{GeV})^2$ $(3358 \text{GeV})^2$ $(185 \text{GeV})^2$ $(2862 \text{GeV})^2$ $\tan \beta = 15$ $(4 \text{TeV})^2$ $(4338 \text{GeV})^2$ $(3370 \text{GeV})^2$	$(3 {\rm TeV})^2$ $(3083 {\rm GeV})^2$ $(2518 {\rm GeV})^2$ $(139 {\rm GeV})^2$ $(2147 {\rm GeV})^2$ $\frac{\Delta_{m_0^2} = 94}{(3 {\rm TeV})^2}$ $(3254 {\rm GeV})^2$ $(2527 {\rm GeV})^2$ $(297 {\rm GeV})^2$

