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Introduction
Higgs(-like particle) has been discovered! 

　　
H → bb̅ has not been con!rmed. (too many background)

H → ττ ̅ has been found (σ/σSM =1.1± 0.4 @ CMS)

H → WW  2.8σ excess

H → γγ peak at 125(127?)GeV (6σ)

H → ZZ(4lepton) peak at 125(123?)GeV (4σ)

Basic properties look consistent with the SM Higgs boson!
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What do we learn from the discovery?
1. Higgsless models are almost excluded!
2. Higgs is more like an elementary scalar!

 V = - mhiggs2/2 h†h + λ/4 (h†h)2  

mhiggs = λ1/2 v  [ v=174.1GeV]

λ ~ 0.5mhiggs ~ 125GeV

The quartic coupling is small and this simple elementary 
scalar Higgs description works consistently!

The simplest implementation

( We knew v=174.1GeV before the discovery of Higgs!)

V

h
mh2
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The size of λ provides us hints on the Physics behind the SM!

H

H† H

H†

λ is the coefficient of the quartic coupling... λ

H

H† H

H† λ is expected to be very large (≃ 4π)

(Exceptional models : NGB Higgs
→ Top Yukawa coupling is difficult...)

If the Higgs is a composite state bounded by dynamics at 
around O(100)GeV scale,

mh ≃ 126GeV (λ ≃ 0.5) suggests that the observed Higgs is
more like an elementary scalar! 



Furthermore, the elementary scalar Higgs description can be 
consistent even up to the Planck scale for mh ≃ 126GeV !
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dλ
dlnE / E0

=
1

16π2 (12λ2 +12λyt2 −12yt4 + ...)

RGE of the quartic coupling...

( yt ≃0.95 Top Yukawa coupling)

makes λ large at the high energy → Landau pole

draws λ at the high energy scale → Vacuum instability
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Figure 2: The scale Λ at which the two-loop RGEs drive the quartic SM Higgs coupling
non-perturbative, and the scale Λ at which the RGEs create an instability in the electroweak
vacuum (λ < 0). The width of the bands indicates the errors induced by the uncertainties
in mt and αS (added quadratically). The perturbativity upper bound (sometimes referred to
as ‘triviality’ bound) is given for λ = π (lower bold line [blue]) and λ = 2π (upper bold line
[blue]). Their difference indicates the size of the theoretical uncertainty in this bound. The
absolute vacuum stability bound is displayed by the light shaded [green] band, while the less
restrictive finite-temperature and zero-temperature metastability bounds are medium [blue]
and dark shaded [red], respectively. The theoretical uncertainties in these bounds have been
ignored in the plot, but are shown in Fig. 3 (right panel). The grey hatched areas indicate
the LEP [ 1] and Tevatron [ 2] exclusion domains.

mation were not included. On the other hand, the Tevatron data, although able to narrow

down the region of the ‘survival’ scenario, have no significant impact on the relative likeli-

hoods of the ‘collapse’, ‘metastable’ and ‘survival’ scenarios, neither of which can be excluded

at the present time.

We also consider the prospects for gathering more information about the fate of the SM

in the near future. The Tevatron search for the SM Higgs boson will extend its sensitivity

to both higher and lower MH , and then the LHC will enter the game. It is anticipated that

the LHC has the sensitivity to extend the Tevatron exclusion down to 127 GeV or less with

1 fb−1 of well-understood data at 14 TeV centre-of-mass energy [ 9]. This would decrease

the relative likelihood of the ‘survival’ scenario, but not sufficiently to exclude it with any

significance. On the other hand, discovery of a Higgs boson weighing 120 GeV or less would

3

~126GeV

[’09, Ellis,Espinoza,Giudice,Hoecker, Riotto]

No positive Hints on New Physics?

Furthermore, the elementary scalar Higgs description can be 
consistent even up to the Planck scale for mh ≃ 126GeV !
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We have a lot of motivation
for new physics beyond!

1018GeV

Quantum 
Gravity?Grand

Uni!cation?
1014-17GeV

10~16GeV
In'ation?

log E

102~15GeV
Neutrino?

~ ~

~ ~~102GeV

Standard 
Model

Dark Matter
(WIMP)?
102-5GeV

Dark Matter
(axion)?
109-12GeV

There should be a lot of unknown possibilities!
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Among them, the grand uni"cation is the most attractive!

The matter content of the SM looks complicated...
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Once we embed SU(3) x SU(2) x U(1) into SU(5)...
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Matter multiplets are embedded into only two multiplets!

It seems more than a coincidence! 
[ In addition, in the Grand Uni"ed Theory, the neutrality of 
the atom (i.e. the charge quantization of U(1) can be easily 
understood ]



Introduction

The Grand Uni"cation is also suggested by the fact that the three 
gauge coupling constants tend to unify at the very high energy 
scale at 10~14 -17GeV

It seems more than a coincidence too! 
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Once we consider at 10~14 -17GeV, we encounters the so-called 
Hierarchy problem : 

Why (weak scale) << ( GUT scale) ?

 V = - mhiggs2/2 h†h + λ/4 (h†h)2  

In the simplest model, 

mhiggs2 is not protected by any symmetries 
(i.e. no symmetry is enhanced in the limit of mhiggs2 → 0 )

The hierarchy problem must give us a hint on new physics 
which is not so above the O(100)GeV scale!



Standard Model Superparticles

supersymmetry

Supersymmetric Standard Model

same properties
except for spins!
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In the supersymmetric extension of the SM, we simply 
introduce superpartners of the SM particles.

We also extend the interactions so that the theory 
respects supersymmetry.
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Standard Model Superparticles

supersymmetry

Supersymmetric Standard Model
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Higgs mass term = Higgsino mass term 
Higgs mass term can be protected by the chiral symmetry!
Hierarchy problem is solved if SUSY breaking is around TeV.

Higgs mass term is protected!

same properties
except for spins!
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Just by introducing the superpartners at around TeV, the 
three gauge coupling constants become more precise! 

It seems much more than a coincidence!

Bonus!

Introduction



Why Supersymmetry?
No observation of superparticles so far....

Is SUSY still motivated?

SUSY is an extension of the spacetime symmetry.
It is exciting if there is SUSY in nature! 
                             (although it’s not convincing at all...)

SUSY models are consistent with the elementary Higgs.

In the MSSM, the Higgs boson mass is interrelated to the mass 
scale of not yet observed sparticle masses!

 gluino mass >1-1.5 TeV 

It is now supported by the discovery of the Higgs.

It is interesting to ask which SUSY breaking scale the observed 
Higgs boson mass implies.
[In the SM, the Higgs boson mass is a free parameter]



Coleman-Mandula Theorem
Symmetry   

Unitary operator U on Hilbert space is a symmetry 
transformation if : 

1) U maps one-particle states → one-particle state
2) Many particle states = tensor products 

A : in"nitesimal generator of U
     A (| p1 > | p2 >) =   (A| p1 >)| p2 > + | p1 >(A| p2 >)

3) U (or A) commutes with the S-matrix

ex.) Spacetime symmetry :  Lorentz symmetry + Translation

 Internal symmetries :  SU(3)xSU(2)xU(1) gauge symmetry, 
                                                   Baryon, Lepton symmetries, etc...

(Poincare symmetry)



Coleman-Mandula Theorem

Coleman-Mandula Theorem (No-Go theorem in d>2)

Can we extend spacetime symmetry larger than the 
Poincare symmetry? 

1) For any M, there are only a "nite number of particle types with mass 
less than M.
2) Scattering occurs at almost all energies

3) The amplitudes for elastic two-body scattering are analytic functions 
of the scattering angle at almost all energies and angles.

 Symmetry of S-matrix consists of the direct product
of the Poincare symmetry and the internal symmetry!

Only exception = Supersymmetry!



Coleman-Mandula Theorem

1) [ B, Pμ ] = 0,     [ Ba, Bb] = i Cabc Bc 

B|p1m, p2n〉 =
∑

b(p1, p2)mn
m′n′ |p1m

′, p2n
′〉

consider two particle state

Let us consider a scattering : (p1 ,p2) → (q1, q2)

b(q1, q2)m′n′

lk S(q1, q2; p1, p2)lk
mn = S(q1, q2; p1, p2)m′n′

lk b(p1, p2)lk
mn

Tr b(q1, q2) = Tr b(p1, p2)

tr b(q1) + tr b(q2) = tr b(p1) + tr b(p2)

for any p’s and q’s with p1+p2 = q1+q2

[m,n: indices of spins and internal symmetries]

[ cf.  B|p>|p’> = (B|p>)|p’> + |p>(B|p’>)  ]



　　

　　

Coleman-Mandula Theorem

1) [ B, Pμ ] = 0,     [ Ba, Bb] = i Cabc Bc 

tr B = aμ Pμ  ( aμ : p and spin independent )

→  B = aμ Pμ   ⊕  B# ( B#  traceless )

 [ B#a, B#b] = i Cabc B#c (← Not true in SUSY! )

B#

Let me skip the proof...

: commutes with Jμν and momentum independent!
→ B#  are internal symmetries!

[ cf. semi-simple B# case : [ Jμν , B#a ] ≠ 0, B#a goes to D(Λ)ba B#a under the 
Lorentz transformation Λ.  We can show that D(Λ)ba consists "nite 
dimensional unitary representation of Λ which should not exist! 
Thus,  = 1, [ Jμν , B#a ] = 0. ]



Coleman-Mandula Theorem

2) [ A, Pμ ] ≠ 0 : A changes the momentum of the state:

A|p〉 =
∫

d4p′A(p′, p)|p′〉

Let us consider 

Af =
∫

d4x eixP Ae−ixP f(x)

Then

We may choose f(x) so that fFT(p) is non-zero in a tiny region.

〈p′|Af |p〉 = fFT (p′ − p) × A(p′, p)

(p, p’ : on-shell)

p-space

0

fFT(p) ≠ 0 

p1

p2 p’1

off-shell!
Af |p1〉 "= 0

Af |p2〉 = 0



Coleman-Mandula Theorem
Let us consider a scattering : (p1 ,p2) → (q1, q2)

p1

p2 q2

q1

In particular, we choose
Af |p1〉 "= 0
Af |p2〉 = 0

Af |q2〉 = 0
Af |q1〉 = 0

so that

Then,  [ S, Af ] = 0 leads to

Af |q1, q2〉 = 0

Af |p1, p2〉 = fFT A(p′1, p1)|p′1, p2〉

〈q1, q2|S|p′1, p2〉 = 0

Af forbids scattering process where ( p’1 ,p2 ) goes into “any” 
(q1, q2) states! → contradicts with the 3rd condition!



Coleman-Mandula Theorem

[ A, Pμ ] ≠ 0 generators are at most,

Corollary: A cannot connect states on di↵erent mass hyperboloids (O’Raifeartaigh’s
theorem).

We make the technical assumption that A is a matrix valued distribution. Then, it
follows that A(p) is a polynomial in the di↵erential operator on the mass hyperboloid,

rµ =
@

@pµ

� pµp⌫

m2

@

@p⌫

.

In other words

A =
N

X

n=0

A(n)(p)µ1,···,µ
n

@

@pµ1

· · · @

@pµ
n

, (3)

with [A, pµpµ] = 0, acting on any state on D. To complete the argument we need
another result which we state without proof.
Lemma 2:
Let B be the subset of G-transformations which commute with space-time translations
then for B(p) 2 B

B(p) = aµp
µ + b,

where aµ is a constant four vector (i.e. no internal indices) and b is a constant Her-
mitian matrix which does not involve spin indices. Note hat lemma 2 assumes a
Lie-multiplication [ , ] for generators of B. In particular the result does not hold for
anti-commuting generators. Now, taking the N -fold commutator of A with pµ:

[pµ1 , [pµ2 · · · , A] · · ·] = A(N)
µ1···µ

N

(p)

we obtain an object which is in B, hence by lemma 2,

A(N)
µ1···µ

N

(p) = a�µ1···µ
N

p� + bµ1···µ
N

.

However, (3) and the symmetry properties of N -fold commutators with pµ imply

bµ1···µ
N

= 0,

unless N =0. Similarly

a�µ1···µ
N

= 0,

7

with "nite N.
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Note : [p, [p, .... ,A]]N commutes with P! 

[ Lemma : for [ B, Pμ ] = 0, B = aμ Pμ + B#  
( aμ :constant 4 vector x 1, b: traceless Hermitian matrix )  ]

Corollary: A cannot connect states on di↵erent mass hyperboloids (O’Raifeartaigh’s
theorem).

We make the technical assumption that A is a matrix valued distribution. Then, it
follows that A(p) is a polynomial in the di↵erential operator on the mass hyperboloid,

rµ =
@

@pµ

� pµp⌫

m2

@

@p⌫

.

In other words

A =
N

X

n=0

A(n)(p)µ1,···,µ
n

@

@pµ1

· · · @

@pµ
n

, (3)

with [A, pµpµ] = 0, acting on any state on D. To complete the argument we need
another result which we state without proof.
Lemma 2:
Let B be the subset of G-transformations which commute with space-time translations
then for B(p) 2 B

B(p) = aµp
µ + b,

where aµ is a constant four vector (i.e. no internal indices) and b is a constant Her-
mitian matrix which does not involve spin indices. Note hat lemma 2 assumes a
Lie-multiplication [ , ] for generators of B. In particular the result does not hold for
anti-commuting generators. Now, taking the N -fold commutator of A with pµ:

[pµ1 , [pµ2 · · · , A] · · ·] = A(N)
µ1···µ

N

(p)

we obtain an object which is in B, hence by lemma 2,

A(N)
µ1···µ

N

(p) = a�µ1···µ
N

p� + bµ1···µ
N

.

However, (3) and the symmetry properties of N -fold commutators with pµ imply

bµ1···µ
N

= 0,

unless N =0. Similarly

a�µ1···µ
N

= 0,

7

→



　　

Coleman-Mandula Theorem

[ A, Pμ ] ≠ 0 generators are at most,

Corollary: A cannot connect states on di↵erent mass hyperboloids (O’Raifeartaigh’s
theorem).

We make the technical assumption that A is a matrix valued distribution. Then, it
follows that A(p) is a polynomial in the di↵erential operator on the mass hyperboloid,

rµ =
@

@pµ

� pµp⌫

m2

@

@p⌫

.

In other words

A =
N

X

n=0

A(n)(p)µ1,···,µ
n

@

@pµ1

· · · @

@pµ
n

, (3)

with [A, pµpµ] = 0, acting on any state on D. To complete the argument we need
another result which we state without proof.
Lemma 2:
Let B be the subset of G-transformations which commute with space-time translations
then for B(p) 2 B

B(p) = aµp
µ + b,

where aµ is a constant four vector (i.e. no internal indices) and b is a constant Her-
mitian matrix which does not involve spin indices. Note hat lemma 2 assumes a
Lie-multiplication [ , ] for generators of B. In particular the result does not hold for
anti-commuting generators. Now, taking the N -fold commutator of A with pµ:

[pµ1 , [pµ2 · · · , A] · · ·] = A(N)
µ1···µ

N

(p)

we obtain an object which is in B, hence by lemma 2,

A(N)
µ1···µ

N

(p) = a�µ1···µ
N

p� + bµ1···µ
N

.

However, (3) and the symmetry properties of N -fold commutators with pµ imply

bµ1···µ
N

= 0,

unless N =0. Similarly

a�µ1···µ
N

= 0,

7

with "nite N.

Note : A commutes with PμPμ ! 

pµ1A(N)
µ1···µN = aλµ1µ2···µN pλpµ1 + bµ1µ2···µN pµ1 = 0

N > 0  → b = 0
aλμν... = - aμλν...  → a = 0  for N >1 .

(aλμν... = - aμλν... = - aμνλ... =  aνμλ... ＝aνλμ... = - aλνμ... = - aλμν... )

A = aµνpµ ∂

∂pν
+ b aµν = −aνµ

absorbed by spacetime Lorentz transf.
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Note : A commutes with PμPμ ! 

pµ1A(N)
µ1···µN = aλµ1µ2···µN pλpµ1 + bµ1µ2···µN pµ1 = 0

N > 0  → b = 0
aλμν... = - aμλν...  → a = 0  for N >1 .

(aλμν... = - aμλν... = - aμνλ... =  aνμλ... ＝aνλμ... = - aλνμ... = - aλμν... )

 A = Lorentz transformation ⊕ B , ( [ B, Pμ ] = 0 )



Coleman-Mandula Theorem

Coleman-Mandula Theorem (No-Go theorem in d>2)
1) For any M, there are only a "nite number of particle types with mass 
less than M.

2) Scattering occurs at almost all energies

3) The amplitudes for elastic two-body scattering are analytic functions 
of the scattering angle at almost all energies and angles.

A =  Jμν  ⊕ Pμ   ⊕  B#

 Symmetry of S-matrix consists of the direct product
of the Poincare symmetry and the internal symmetry!

Only exception = Supersymmetry!



Supersymmetry

Boson → FermionSupersymmetry :
Fermion → Boson

Symmetry = Bosonic symmetry B 
                                                   + Fermionic symmetry F

Bosonic symmetry :  changes spins of states by integers.
Fermionic symmetry : changes spins of states by half integers.                                                                       

Poincare, internal symmetries = Bosonic symmetry 
Supersymmetry = Fermionic symmetry 

[ Here, spin-statistic relation is assumed. ]



Supersymmetry

B = b†Kbb b + f† Kff f 

F = f†Kfb b + b† Kbf f 

The generators of B and F can be given by: 

[ bi†,bj ] = δij,  { fi†, fj } = δij,
b and f are annihilating operators of bosons and fermions.

[ B, B ] = b†Kbb’ b + f† Kbb’ f 

(anti)-commutators of B, F are bi-linear!

[ F(†) , B ] = f† Kfb‘ b + b† Kbf‘ f 

{ F(†), F } = b†Kbb‘’ b + f† Kff‘’ f 

[ [F,F], {B,B}, {B,F} are not bi-linear! So don’t care!   ]

They are also generators of symmetry!



Supersymmetry

[ B, B ] = B,    [ F(†), B ] = F(†),    { F(†), F } = B

In the presence of Fermionic symmetry, generators of 
symmetry forms “graded” algebra!

New!

Coleman-Mandula theorem is not fully applicable! 

B = b†Kbb b + f† Kff f 

F = f†Kfb b + b† Kbf f 

The generators of B and F can be given by: 

[ bi†,bj ] = δij,  { fi†, fj } = δij,
b and f are annihilating operators of bosons and fermions.



　　

Supersymmetry

[ B, B ] = B,    [ F(†), B ] = F(†),    { F(†), F } = B

Symmetry : Graded symmetry algebra

B is closed by themselves and constrained by the CM theorem
B =  Jμν  ⊕  Pμ   ⊕  B#

F changes spin 1/2 by the CM theorem

If F changes spin n/2 (n>1),  { F†, F } = B has spin n.
The CM theorem does not allow B with spin n>1.

→ { F†, F } = 0 for spin n/2 (n>1)

On the positive de"nite Hilbert space :

<state| { F†, F } |state> = | F|state>|2 + | F† |state>|2 > 0

{ F†, F } = 0 → F = 0

F = Qαn  (α: spin, n = 1,...N)



　　

Supersymmetry
Explicit N =1 Supersymmetry Algebra :

( N >1 does not allow chiral representation of the gauge 
interactions... Phenomenologically less motivated as is. )

Qα has a spin 1/2, and hence not commutes with Jμν 

※ Supersymmetry commutes with Pμ

SUSY predicts degenerated boson and fermion spectrum!



　　

Supersymmetry

SUSY multiplet (N=1)
massive case : let us take P = (M,0,0,0)

aa = Qa /(2M)1/2  satis"es  { aa , (ab)† } = δab

Irreducible one-particle state of SUSY consists of

| j >
(ab)† | j >

εab (aa)† (ab)† | j >

(spin j )
(spin j±1/2 )

(spin j )

spin\ j 0 1/2 1 3/2

0 2 1

1/2 1 2 1

1 1 2 1

3/2 1 2

2 1

quark
lepton
Higgs

massive
gauge
bosons



　　

Supersymmetry

SUSY multiplet (N=1)
massless case : let us take P = (E,0,0,E)

a1 = Q1 /2(E)1/2  satis"es  { a1 , (a1)† } = 1

Irreducible one-particle state of SUSY consists of

| λ >
(ab)† | λ>

(helicity λ )

(helicity λ+1/2 )

Q2, Q2† = 0 for this choice of momentum

massless particles form shorter multiplets!



Supersymmetry

SUSY multiplet (N=1)
massless case : let us take P = (E,0,0,E)

a1 = Q1 /2(E)1/2  satis"es  { a1 , (a1)† } = 1

Irreducible one-particle state of SUSY consists of
helicity\ λ -2 -3/2 -1 -1/2 0 1/2 1 3/2

2 1

3/2 1 1

1 1 1

1/2 1 1

0 1 1

-1/2 1 1

-1 1 1

-3/2 1 1

-2 1

Q2, Q2† = 0 for this choice of momentum

CPT invariance requires λ and -λ...



Supersymmetry

SUSY multiplet (N=1)
massless case : let us take P = (E,0,0,E)

a1 = Q1 /2(E)1/2  satis"es  { a1 , (a1)† } = 1

helicity\ λ -2 -3/2 -1 -1/2 0 1/2 1 3/2

2 1 1

3/2 1 1 1 1

1 1 1 1 1

1/2 1 1 1 1

0 1+1 1+1

-1/2 1 1 1 1

-1 1 1 1 1

-3/2 1 1 1 1

-2 1 1

Q2, Q2† = 0 for this choice of momentum

In relativistic "eld theory, pairing of ±λ is automatic!

equivalent



　　

Supersymmetric Field Theory

Spin (or helicity) 0 multiplet : spin 0 x 2, spin 1/2 x 1  

complex scalar φ :   2 boson 
Weyl Fermion ψ   :   2 fermion  

complex scalar φ :   2 boson 
Weyl Fermion ψ   :   4 fermion  

On off-shell

We want to have symmetries at off-shell!

complex scalar φ :   2 boson 
auxiliary scalar F  :   2 boson
Weyl Fermion ψ   :   4 fermion  

Spin (or helicity) 0 multiplet : spin 0 x 2, spin 1/2 x 1  



　　

Supersymmetric Field Theory

Free-Lagrangean

The last two terms in (3.11) vanish on-shell; that is, if the equation of motion σµ∂µψ = 0 following
from the action is enforced. The remaining piece is exactly the same spacetime translation that we
found for the scalar field.

The fact that the supersymmetry algebra only closes on-shell (when the classical equations of motion
are satisfied) might be somewhat worrisome, since we would like the symmetry to hold even quantum
mechanically. This can be fixed by a trick. We invent a new complex scalar field F , which does not
have a kinetic term. Such fields are called auxiliary, and they are really just book-keeping devices that
allow the symmetry algebra to close off-shell. The Lagrangian density for F and its complex conjugate
is simply

Lauxiliary = F ∗F . (3.12)

The dimensions of F are [mass]2, unlike an ordinary scalar field, which has dimensions of [mass].
Equation (3.12) implies the not-very-exciting equations of motion F = F ∗ = 0. However, we can use
the auxiliary fields to our advantage by including them in the supersymmetry transformation rules. In
view of eq. (3.11), a plausible thing to do is to make F transform into a multiple of the equation of
motion for ψ:

δF = iε†σµ∂µψ, δF ∗ = −i∂µψ
†σµε. (3.13)

Once again we have chosen the overall factor on the right-hand sides by virtue of foresight. Now the
auxiliary part of the Lagrangian density transforms as

δLauxiliary = iε†σµ∂µψ F ∗ − i∂µψ
†σµε F, (3.14)

which vanishes on-shell, but not for arbitrary off-shell field configurations. Now, by adding an extra
term to the transformation law for ψ and ψ†:

δψα = i(σµε†)α ∂µφ+ εαF, δψ†
α̇ = −i(εσµ)α̇ ∂µφ

∗ + ε†α̇F
∗, (3.15)

one obtains an additional contribution to δLfermion, which just cancels with δLauxiliary, up to a total
derivative term. So our “modified” theory with L = Lscalar + Lfermion + Lauxiliary is still invariant
under supersymmetry transformations. Proceeding as before, one now obtains for each of the fields
X = φ,φ∗,ψ,ψ†, F, F ∗,

(δε2δε1 − δε1δε2)X = i(ε1σ
µε†2 − ε2σ

µε†1) ∂µX (3.16)

using eqs. (3.3), (3.13), and (3.15), but now without resorting to any of the equations of motion. So
we have succeeded in showing that supersymmetry is a valid symmetry of the Lagrangian off-shell.

In retrospect, one can see why we needed to introduce the auxiliary field F in order to get the
supersymmetry algebra to work off-shell. On-shell, the complex scalar field φ has two real propagating
degrees of freedom, matching the two spin polarization states of ψ. Off-shell, however, the Weyl fermion
ψ is a complex two-component object, so it has four real degrees of freedom. (Going on-shell eliminates
half of the propagating degrees of freedom for ψ, because the Lagrangian is linear in time derivatives,
so that the canonical momenta can be reexpressed in terms of the configuration variables without time
derivatives and are not independent phase space coordinates.) To make the numbers of bosonic and
fermionic degrees of freedom match off-shell as well as on-shell, we had to introduce two more real
scalar degrees of freedom in the complex field F , which are eliminated when one goes on-shell. This
counting is summarized in Table 3.1. The auxiliary field formulation is especially useful when discussing
spontaneous supersymmetry breaking, as we will see in section 6.

Invariance of the action under a symmetry transformation always implies the existence of a con-
served current, and supersymmetry is no exception. The supercurrent Jµ

α is an anticommuting four-
vector. It also carries a spinor index, as befits the current associated with a symmetry with fermionic
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It generates spacetime translations on the fields X according to

[Pµ,X] = i∂µX. (3.27)

Rearranging the terms in eq. (3.24) using the Jacobi identity, we therefore have
[
[ε2Q + ε†2Q

†, ε1Q + ε†1Q
†], X

]
= 2(ε2σµε

†
1 − ε1σµε

†
2) [Pµ,X], (3.28)

for any X, up to terms that vanish on-shell, so it must be that

[ε2Q + ε†2Q
†, ε1Q + ε†1Q

†] = 2(ε2σµε
†
1 − ε1σµε

†
2)Pµ. (3.29)

Now by expanding out eq. (3.29), one obtains the precise form of the supersymmetry algebra relations

{Qα, Q†
α̇} = 2σµ

αα̇Pµ, (3.30)

{Qα, Qβ} = 0, {Q†
α̇, Q†

β̇
} = 0, (3.31)

as promised in the Introduction. [The commutator in eq. (3.29) turns into anticommutators in
eqs. (3.30) and (3.31) in the process of extracting the anticommuting spinors ε1 and ε2.] The results

[Qα, Pµ] = 0, [Q†
α̇, Pµ] = 0 (3.32)

follow immediately from eq. (3.27) and the fact that the supersymmetry transformations are global
(independent of position in spacetime). This demonstration of the supersymmetry algebra in terms of
the canonical generators Q and Q† requires the use of the Hamiltonian equations of motion, but the
symmetry itself is valid off-shell at the level of the Lagrangian, as we have already shown.

3.2 Interactions of chiral supermultiplets

In a realistic theory like the MSSM, there are many chiral supermultiplets, with both gauge and non-
gauge interactions. In this subsection, our task is to construct the most general possible theory of
masses and non-gauge interactions for particles that live in chiral supermultiplets. In the MSSM these
are the quarks, squarks, leptons, sleptons, Higgs scalars and higgsino fermions. We will find that the
form of the non-gauge couplings, including mass terms, is highly restricted by the requirement that
the action is invariant under supersymmetry transformations. (Gauge interactions will be dealt with
in the following subsections.)

Our starting point is the Lagrangian density for a collection of free chiral supermultiplets labeled
by an index i, which runs over all gauge and flavor degrees of freedom. Since we will want to construct
an interacting theory with supersymmetry closing off-shell, each supermultiplet contains a complex
scalar φi and a left-handed Weyl fermion ψi as physical degrees of freedom, plus a complex auxiliary
field Fi, which does not propagate. The results of the previous subsection tell us that the free part of
the Lagrangian is

Lfree = −∂µφ∗i∂µφi − iψ†iσµ∂µψi + F ∗iFi, (3.33)

where we sum over repeated indices i (not to be confused with the suppressed spinor indices), with
the convention that fields φi and ψi always carry lowered indices, while their conjugates always carry
raised indices. It is invariant under the supersymmetry transformation

δφi = εψi, δφ∗i = ε†ψ†i, (3.34)

δ(ψi)α = i(σµε†)α ∂µφi + εαFi, δ(ψ†i)α̇ = −i(εσµ)α̇ ∂µφ
∗i + ε†α̇F

∗i, (3.35)

δFi = iε†σµ∂µψi, δF ∗i = −i∂µψ
†iσµε . (3.36)
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Supersymmetry transformation

It generates spacetime translations on the fields X according to

[Pµ,X] = i∂µX. (3.27)

Rearranging the terms in eq. (3.24) using the Jacobi identity, we therefore have
[
[ε2Q + ε†2Q

†, ε1Q + ε†1Q
†], X

]
= 2(ε2σµε

†
1 − ε1σµε

†
2) [Pµ,X], (3.28)

for any X, up to terms that vanish on-shell, so it must be that

[ε2Q + ε†2Q
†, ε1Q + ε†1Q

†] = 2(ε2σµε
†
1 − ε1σµε

†
2)Pµ. (3.29)

Now by expanding out eq. (3.29), one obtains the precise form of the supersymmetry algebra relations

{Qα, Q†
α̇} = 2σµ

αα̇Pµ, (3.30)

{Qα, Qβ} = 0, {Q†
α̇, Q†

β̇
} = 0, (3.31)

as promised in the Introduction. [The commutator in eq. (3.29) turns into anticommutators in
eqs. (3.30) and (3.31) in the process of extracting the anticommuting spinors ε1 and ε2.] The results

[Qα, Pµ] = 0, [Q†
α̇, Pµ] = 0 (3.32)

follow immediately from eq. (3.27) and the fact that the supersymmetry transformations are global
(independent of position in spacetime). This demonstration of the supersymmetry algebra in terms of
the canonical generators Q and Q† requires the use of the Hamiltonian equations of motion, but the
symmetry itself is valid off-shell at the level of the Lagrangian, as we have already shown.

3.2 Interactions of chiral supermultiplets

In a realistic theory like the MSSM, there are many chiral supermultiplets, with both gauge and non-
gauge interactions. In this subsection, our task is to construct the most general possible theory of
masses and non-gauge interactions for particles that live in chiral supermultiplets. In the MSSM these
are the quarks, squarks, leptons, sleptons, Higgs scalars and higgsino fermions. We will find that the
form of the non-gauge couplings, including mass terms, is highly restricted by the requirement that
the action is invariant under supersymmetry transformations. (Gauge interactions will be dealt with
in the following subsections.)

Our starting point is the Lagrangian density for a collection of free chiral supermultiplets labeled
by an index i, which runs over all gauge and flavor degrees of freedom. Since we will want to construct
an interacting theory with supersymmetry closing off-shell, each supermultiplet contains a complex
scalar φi and a left-handed Weyl fermion ψi as physical degrees of freedom, plus a complex auxiliary
field Fi, which does not propagate. The results of the previous subsection tell us that the free part of
the Lagrangian is

Lfree = −∂µφ∗i∂µφi − iψ†iσµ∂µψi + F ∗iFi, (3.33)

where we sum over repeated indices i (not to be confused with the suppressed spinor indices), with
the convention that fields φi and ψi always carry lowered indices, while their conjugates always carry
raised indices. It is invariant under the supersymmetry transformation

δφi = εψi, δφ∗i = ε†ψ†i, (3.34)

δ(ψi)α = i(σµε†)α ∂µφi + εαFi, δ(ψ†i)α̇ = −i(εσµ)α̇ ∂µφ
∗i + ε†α̇F

∗i, (3.35)

δFi = iε†σµ∂µψi, δF ∗i = −i∂µψ
†iσµε . (3.36)
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dimensions of [mass], it must be that ε has dimensions of [mass]−1/2. Using eq. (3.3), we find that the
scalar part of the Lagrangian transforms as

δLscalar = −ε∂µψ ∂µφ
∗ − ε†∂µψ† ∂µφ. (3.4)

We would like for this to be canceled by δLfermion, at least up to a total derivative, so that the action
will be invariant under the supersymmetry transformation. Comparing eq. (3.4) with Lfermion, we see
that for this to have any chance of happening, δψ should be linear in ε† and in φ, and should contain
one spacetime derivative. Up to a multiplicative constant, there is only one possibility to try:

δψα = i(σµε†)α ∂µφ, δψ†
α̇ = −i(εσµ)α̇ ∂µφ

∗. (3.5)

With this guess, one immediately obtains

δLfermion = −εσµσν∂νψ ∂µφ
∗ + ψ†σνσµε† ∂µ∂νφ . (3.6)

This can be put in a slightly more useful form by employing the Pauli matrix identities eqs. (2.21),
(2.22) and using the fact that partial derivatives commute (∂µ∂ν = ∂ν∂µ). Equation (3.6) then becomes

δLfermion = ε∂µψ ∂µφ
∗ + ε†∂µψ† ∂µφ

−∂µ

(
εσνσµψ ∂νφ

∗ + εψ ∂µφ∗ + ε†ψ† ∂µφ
)

. (3.7)

The first two terms here just cancel against δLscalar, while the remaining contribution is a total deriva-
tive. So we arrive at

δS =
∫

d4x (δLscalar + δLfermion) = 0, (3.8)

justifying our guess of the numerical multiplicative factor made in eq. (3.5).
We are not quite finished in showing that the theory described by eq. (3.1) is supersymmetric. We

must also show that the supersymmetry algebra closes; in other words, that the commutator of two
supersymmetry transformations parameterized by two different spinors ε1 and ε2 is another symmetry
of the theory. Using eq. (3.5) in eq. (3.3), one finds

(δε2δε1 − δε1δε2)φ ≡ δε2(δε1φ) − δε1(δε2φ) = i(ε1σ
µε†2 − ε2σ

µε†1) ∂µφ. (3.9)

This is a remarkable result; in words, we have found that the commutator of two supersymmetry trans-
formations gives us back the derivative of the original field. Since ∂µ corresponds to the generator of
spacetime translations Pµ, eq. (3.9) implies the form of the supersymmetry algebra that was foreshad-
owed in eq. (1.6) of the Introduction. (We will make this statement more explicit before the end of
this section.)

All of this will be for nothing if we do not find the same result for the fermion ψ. Using eq. (3.3)
in eq. (3.5), we get

(δε2δε1 − δε1δε2)ψα = i(σµε†1)α ε2∂µψ − i(σµε†2)α ε1∂µψ. (3.10)

This can be put into a more useful form by applying the Fierz identity eq. (2.19) with χ = σµε†1, ξ = ε2,

η = ∂µψ, and again with χ = σµε†2, ξ = ε1, η = ∂µψ, followed in each case by an application of the
identity eq. (2.17). The result is

(δε2δε1 − δε1δε2)ψα = i(ε1σ
µε†2 − ε2σ

µε†1) ∂µψα − iε1α ε
†
2σ

µ∂µψ + iε2α ε
†
1σ

µ∂µψ. (3.11)

17

It generates spacetime translations on the fields X according to

[Pµ,X] = i∂µX. (3.27)

Rearranging the terms in eq. (3.24) using the Jacobi identity, we therefore have
[
[ε2Q + ε†2Q

†, ε1Q + ε†1Q
†], X

]
= 2(ε2σµε

†
1 − ε1σµε

†
2) [Pµ,X], (3.28)

for any X, up to terms that vanish on-shell, so it must be that

[ε2Q + ε†2Q
†, ε1Q + ε†1Q

†] = 2(ε2σµε
†
1 − ε1σµε

†
2)Pµ. (3.29)

Now by expanding out eq. (3.29), one obtains the precise form of the supersymmetry algebra relations

{Qα, Q†
α̇} = 2σµ

αα̇Pµ, (3.30)

{Qα, Qβ} = 0, {Q†
α̇, Q†

β̇
} = 0, (3.31)

as promised in the Introduction. [The commutator in eq. (3.29) turns into anticommutators in
eqs. (3.30) and (3.31) in the process of extracting the anticommuting spinors ε1 and ε2.] The results

[Qα, Pµ] = 0, [Q†
α̇, Pµ] = 0 (3.32)

follow immediately from eq. (3.27) and the fact that the supersymmetry transformations are global
(independent of position in spacetime). This demonstration of the supersymmetry algebra in terms of
the canonical generators Q and Q† requires the use of the Hamiltonian equations of motion, but the
symmetry itself is valid off-shell at the level of the Lagrangian, as we have already shown.

3.2 Interactions of chiral supermultiplets

In a realistic theory like the MSSM, there are many chiral supermultiplets, with both gauge and non-
gauge interactions. In this subsection, our task is to construct the most general possible theory of
masses and non-gauge interactions for particles that live in chiral supermultiplets. In the MSSM these
are the quarks, squarks, leptons, sleptons, Higgs scalars and higgsino fermions. We will find that the
form of the non-gauge couplings, including mass terms, is highly restricted by the requirement that
the action is invariant under supersymmetry transformations. (Gauge interactions will be dealt with
in the following subsections.)

Our starting point is the Lagrangian density for a collection of free chiral supermultiplets labeled
by an index i, which runs over all gauge and flavor degrees of freedom. Since we will want to construct
an interacting theory with supersymmetry closing off-shell, each supermultiplet contains a complex
scalar φi and a left-handed Weyl fermion ψi as physical degrees of freedom, plus a complex auxiliary
field Fi, which does not propagate. The results of the previous subsection tell us that the free part of
the Lagrangian is

Lfree = −∂µφ∗i∂µφi − iψ†iσµ∂µψi + F ∗iFi, (3.33)

where we sum over repeated indices i (not to be confused with the suppressed spinor indices), with
the convention that fields φi and ψi always carry lowered indices, while their conjugates always carry
raised indices. It is invariant under the supersymmetry transformation

δφi = εψi, δφ∗i = ε†ψ†i, (3.34)

δ(ψi)α = i(σµε†)α ∂µφi + εαFi, δ(ψ†i)α̇ = −i(εσµ)α̇ ∂µφ
∗i + ε†α̇F

∗i, (3.35)

δFi = iε†σµ∂µψi, δF ∗i = −i∂µψ
†iσµε . (3.36)
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It generates spacetime translations on the fields X according to

[Pµ,X] = i∂µX. (3.27)

Rearranging the terms in eq. (3.24) using the Jacobi identity, we therefore have
[
[ε2Q + ε†2Q

†, ε1Q + ε†1Q
†], X

]
= 2(ε2σµε

†
1 − ε1σµε

†
2) [Pµ,X], (3.28)

for any X, up to terms that vanish on-shell, so it must be that

[ε2Q + ε†2Q
†, ε1Q + ε†1Q

†] = 2(ε2σµε
†
1 − ε1σµε

†
2)Pµ. (3.29)

Now by expanding out eq. (3.29), one obtains the precise form of the supersymmetry algebra relations

{Qα, Q†
α̇} = 2σµ

αα̇Pµ, (3.30)

{Qα, Qβ} = 0, {Q†
α̇, Q†

β̇
} = 0, (3.31)

as promised in the Introduction. [The commutator in eq. (3.29) turns into anticommutators in
eqs. (3.30) and (3.31) in the process of extracting the anticommuting spinors ε1 and ε2.] The results

[Qα, Pµ] = 0, [Q†
α̇, Pµ] = 0 (3.32)

follow immediately from eq. (3.27) and the fact that the supersymmetry transformations are global
(independent of position in spacetime). This demonstration of the supersymmetry algebra in terms of
the canonical generators Q and Q† requires the use of the Hamiltonian equations of motion, but the
symmetry itself is valid off-shell at the level of the Lagrangian, as we have already shown.

3.2 Interactions of chiral supermultiplets

In a realistic theory like the MSSM, there are many chiral supermultiplets, with both gauge and non-
gauge interactions. In this subsection, our task is to construct the most general possible theory of
masses and non-gauge interactions for particles that live in chiral supermultiplets. In the MSSM these
are the quarks, squarks, leptons, sleptons, Higgs scalars and higgsino fermions. We will find that the
form of the non-gauge couplings, including mass terms, is highly restricted by the requirement that
the action is invariant under supersymmetry transformations. (Gauge interactions will be dealt with
in the following subsections.)

Our starting point is the Lagrangian density for a collection of free chiral supermultiplets labeled
by an index i, which runs over all gauge and flavor degrees of freedom. Since we will want to construct
an interacting theory with supersymmetry closing off-shell, each supermultiplet contains a complex
scalar φi and a left-handed Weyl fermion ψi as physical degrees of freedom, plus a complex auxiliary
field Fi, which does not propagate. The results of the previous subsection tell us that the free part of
the Lagrangian is

Lfree = −∂µφ∗i∂µφi − iψ†iσµ∂µψi + F ∗iFi, (3.33)

where we sum over repeated indices i (not to be confused with the suppressed spinor indices), with
the convention that fields φi and ψi always carry lowered indices, while their conjugates always carry
raised indices. It is invariant under the supersymmetry transformation

δφi = εψi, δφ∗i = ε†ψ†i, (3.34)

δ(ψi)α = i(σµε†)α ∂µφi + εαFi, δ(ψ†i)α̇ = −i(εσµ)α̇ ∂µφ
∗i + ε†α̇F

∗i, (3.35)

δFi = iε†σµ∂µψi, δF ∗i = −i∂µψ
†iσµε . (3.36)
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action is invariant!

The last two terms in (3.11) vanish on-shell; that is, if the equation of motion σµ∂µψ = 0 following
from the action is enforced. The remaining piece is exactly the same spacetime translation that we
found for the scalar field.

The fact that the supersymmetry algebra only closes on-shell (when the classical equations of motion
are satisfied) might be somewhat worrisome, since we would like the symmetry to hold even quantum
mechanically. This can be fixed by a trick. We invent a new complex scalar field F , which does not
have a kinetic term. Such fields are called auxiliary, and they are really just book-keeping devices that
allow the symmetry algebra to close off-shell. The Lagrangian density for F and its complex conjugate
is simply

Lauxiliary = F ∗F . (3.12)

The dimensions of F are [mass]2, unlike an ordinary scalar field, which has dimensions of [mass].
Equation (3.12) implies the not-very-exciting equations of motion F = F ∗ = 0. However, we can use
the auxiliary fields to our advantage by including them in the supersymmetry transformation rules. In
view of eq. (3.11), a plausible thing to do is to make F transform into a multiple of the equation of
motion for ψ:

δF = iε†σµ∂µψ, δF ∗ = −i∂µψ
†σµε. (3.13)

Once again we have chosen the overall factor on the right-hand sides by virtue of foresight. Now the
auxiliary part of the Lagrangian density transforms as

δLauxiliary = iε†σµ∂µψ F ∗ − i∂µψ
†σµε F, (3.14)

which vanishes on-shell, but not for arbitrary off-shell field configurations. Now, by adding an extra
term to the transformation law for ψ and ψ†:

δψα = i(σµε†)α ∂µφ+ εαF, δψ†
α̇ = −i(εσµ)α̇ ∂µφ

∗ + ε†α̇F
∗, (3.15)

one obtains an additional contribution to δLfermion, which just cancels with δLauxiliary, up to a total
derivative term. So our “modified” theory with L = Lscalar + Lfermion + Lauxiliary is still invariant
under supersymmetry transformations. Proceeding as before, one now obtains for each of the fields
X = φ,φ∗,ψ,ψ†, F, F ∗,

(δε2δε1 − δε1δε2)X = i(ε1σ
µε†2 − ε2σ

µε†1) ∂µX (3.16)

using eqs. (3.3), (3.13), and (3.15), but now without resorting to any of the equations of motion. So
we have succeeded in showing that supersymmetry is a valid symmetry of the Lagrangian off-shell.

In retrospect, one can see why we needed to introduce the auxiliary field F in order to get the
supersymmetry algebra to work off-shell. On-shell, the complex scalar field φ has two real propagating
degrees of freedom, matching the two spin polarization states of ψ. Off-shell, however, the Weyl fermion
ψ is a complex two-component object, so it has four real degrees of freedom. (Going on-shell eliminates
half of the propagating degrees of freedom for ψ, because the Lagrangian is linear in time derivatives,
so that the canonical momenta can be reexpressed in terms of the configuration variables without time
derivatives and are not independent phase space coordinates.) To make the numbers of bosonic and
fermionic degrees of freedom match off-shell as well as on-shell, we had to introduce two more real
scalar degrees of freedom in the complex field F , which are eliminated when one goes on-shell. This
counting is summarized in Table 3.1. The auxiliary field formulation is especially useful when discussing
spontaneous supersymmetry breaking, as we will see in section 6.

Invariance of the action under a symmetry transformation always implies the existence of a con-
served current, and supersymmetry is no exception. The supercurrent Jµ

α is an anticommuting four-
vector. It also carries a spinor index, as befits the current associated with a symmetry with fermionic
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Supersymmetric Field Theory

SUSY invariant interactions ?

3.2 Interactions of chiral supermultiplets

In a realistic theory like the MSSM, there are many chiral supermultiplets, with both gauge and non-
gauge interactions. In this subsection, our task is to construct the most general possible theory of
masses and non-gauge interactions for particles that live in chiral supermultiplets. In the MSSM these
are the quarks, squarks, leptons, sleptons, Higgs scalars and higgsino fermions. We will find that the
form of the non-gauge couplings, including mass terms, is highly restricted by the requirement that
the action is invariant under supersymmetry transformations. (Gauge interactions will be dealt with
in the following subsections.)

Our starting point is the Lagrangian density for a collection of free chiral supermultiplets labeled by
an index i, which runs over all gauge and flavor degrees of freedom. Since we will want to construct an
interacting theory with supersymmetry closing off-shell, each supermultiplet contains a complex scalar
φi and a left-handed Weyl fermion ψi as physical degrees of freedom, plus a non-propagating complex
auxiliary field Fi. The results of the previous subsection tell us that the free part of the Lagrangian is

Lfree = −∂µφ∗i∂µφi + iψ†iσµ∂µψi + F ∗iFi, (3.2.1)

where we sum over repeated indices i (not to be confused with the suppressed spinor indices), with
the convention that fields φi and ψi always carry lowered indices, while their conjugates always carry
raised indices. It is invariant under the supersymmetry transformation

δφi = εψi, δφ∗i = ε†ψ†i, (3.2.2)

δ(ψi)α = −i(σµε†)α ∂µφi + εαFi, δ(ψ†i)α̇ = i(εσµ)α̇ ∂µφ
∗i + ε†α̇F

∗i, (3.2.3)

δFi = −iε†σµ∂µψi, δF ∗i = i∂µψ
†iσµε . (3.2.4)

We will now find the most general set of renormalizable interactions for these fields that is consistent
with supersymmetry. We do this working in the field theory before integrating out the auxiliary fields.
To begin, note that in order to be renormalizable by power counting, each term must have field content
with total mass dimension ≤ 4. So, the only candidate terms are:

Lint =
(
−1

2
W ijψiψj +W iFi + xijFiFj

)
+ c.c. − U, (3.2.5)

where W ij, W i, xij, and U are polynomials in the scalar fields φi,φ∗i, with degrees 1, 2, 0, and 4,
respectively. [Terms of the form F ∗iFj are already included in eq. (3.2.1), with the coefficient fixed by
the transformation rules (3.2.2)-(3.2.4).]

We must now require that Lint is invariant under the supersymmetry transformations, since Lfree was
already invariant by itself. This immediately requires that the candidate term U(φi,φ∗i) must vanish. If
there were such a term, then under a supersymmetry transformation eq. (3.2.2) it would transform into
another function of the scalar fields only, multiplied by εψi or ε†ψ†i, and with no spacetime derivatives
or Fi, F ∗i fields. It is easy to see from eqs. (3.2.2)-(3.2.5) that nothing of this form can possibly be
canceled by the supersymmetry transformation of any other term in the Lagrangian. Similarly, the
dimensionless coupling xij must be zero, because its supersymmetry transformation likewise cannot
possibly be canceled by any other term. So, we are left with

Lint =
(
−1

2
W ijψiψj +W iFi

)
+ c.c. (3.2.6)

as the only possibilities. At this point, we are not assuming that W ij and W i are related to each other
in any way. However, soon we will find out that they are related, which is why we have chosen to use
the same letter for them. Notice that eq. (2.16) tells us that W ij is symmetric under i ↔ j.
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W’s, x, and U are functions of φ and φ†.

SUSY requires 

It is easiest to divide the variation of Lint into several parts, which must cancel separately. First,
we consider the part that contains four spinors:

δLint|4−spinor =

[

−1

2

δW ij

δφk
(εψk)(ψiψj)−

1

2

δW ij

δφ∗k
(ε†ψ†k)(ψiψj)

]

+ c.c. (3.2.7)

The term proportional to (εψk)(ψiψj) cannot cancel against any other term. Fortunately, however, the
Fierz identity eq. (2.20) implies

(εψi)(ψjψk) + (εψj)(ψkψi) + (εψk)(ψiψj) = 0, (3.2.8)

so this contribution to δLint vanishes identically if and only if δW ij/δφk is totally symmetric under
interchange of i, j, k. There is no such identity available for the term proportional to (ε†ψ†k)(ψiψj).
Since that term cannot cancel with any other, requiring it to be absent just tells us that W ij cannot
contain φ∗k. In other words, W ij is holomorphic (or complex analytic) in the complex fields φk.

Combining what we have learned so far, we can write

W ij = M ij + yijkφk (3.2.9)

where M ij is a symmetric mass matrix for the fermion fields, and yijk is a Yukawa coupling of a scalar
φk and two fermions ψiψj that must be totally symmetric under interchange of i, j, k. It is therefore
possible, and it turns out to be convenient, to write

W ij =
δ2

δφiδφj
W (3.2.10)

where we have introduced a useful object

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk, (3.2.11)

called the superpotential. This is not a scalar potential in the ordinary sense; in fact, it is not even
real. It is instead a holomorphic function of the scalar fields φi treated as complex variables.

Continuing on our vaunted quest, we next consider the parts of δLint that contain a spacetime
derivative:

δLint|∂ =
(
iW ij∂µφj ψiσ

µε† + iW i ∂µψiσ
µε†
)
+ c.c. (3.2.12)

Here we have used the identity eq. (2.18) on the second term, which came from (δFi)W i. Now we can
use eq. (3.2.10) to observe that

W ij∂µφj = ∂µ

(
δW

δφi

)
. (3.2.13)

Therefore, eq. (3.2.12) will be a total derivative if

W i =
δW

δφi
= M ijφj +

1

2
yijkφjφk , (3.2.14)

which explains why we chose its name as we did. The remaining terms in δLint are all linear in Fi or
F ∗i, and it is easy to show that they cancel, given the results for W i and W ij that we have already
found.
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and x = 0, U = 0.

Actually, we can include a linear term in the superpotential without disturbing the validity of the
previous discussion at all:

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk. (3.2.15)

Here Li are parameters with dimensions of [mass]2, which affect only the scalar potential part of the
Lagrangian. Such linear terms are only allowed when φi is a gauge singlet, and there are no such gauge
singlet chiral supermultiplets in the MSSM with minimal field content. I will therefore omit this term
from the remaining discussion of this section. However, this type of term does play an important role
in the discussion of spontaneous supersymmetry breaking, as we will see in section 7.1.

To recap, we have found that the most general non-gauge interactions for chiral supermultiplets
are determined by a single holomorphic function of the complex scalar fields, the superpotential W .
The auxiliary fields Fi and F ∗i can be eliminated using their classical equations of motion. The part
of Lfree + Lint that contains the auxiliary fields is FiF ∗i +W iFi +W ∗

i F
∗i, leading to the equations of

motion

Fi = −W ∗
i , F ∗i = −W i . (3.2.16)

Thus the auxiliary fields are expressible algebraically (without any derivatives) in terms of the scalar
fields.

After making the replacement† eq. (3.2.16) in Lfree + Lint, we obtain the Lagrangian density

L = −∂µφ∗i∂µφi + iψ†iσµ∂µψi −
1

2

(
W ijψiψj +W ∗

ijψ
†iψ†j

)
−W iW ∗

i . (3.2.17)

Now that the non-propagating fields Fi, F ∗i have been eliminated, it follows from eq. (3.2.17) that the
scalar potential for the theory is just given in terms of the superpotential by

V (φ,φ∗) = W kW ∗
k = F ∗kFk =

M∗
ikM

kjφ∗iφj +
1

2
M iny∗jknφiφ

∗jφ∗k +
1

2
M∗

iny
jknφ∗iφjφk +

1

4
yijny∗klnφiφjφ

∗kφ∗l . (3.2.18)

This scalar potential is automatically bounded from below; in fact, since it is a sum of squares of
absolute values (of the W k), it is always non-negative. If we substitute the general form for the
superpotential eq. (3.2.11) into eq. (3.2.17), we obtain for the full Lagrangian density

L = −∂µφ∗i∂µφi − V (φ,φ∗) + iψ†iσµ∂µψi −
1

2
M ijψiψj −

1

2
M∗

ijψ
†iψ†j

−1

2
yijkφiψjψk −

1

2
y∗ijkφ

∗iψ†jψ†k. (3.2.19)

Now we can compare the masses of the fermions and scalars by looking at the linearized equations
of motion:

∂µ∂µφi = M∗
ikM

kjφj + . . . , (3.2.20)

iσµ∂µψi = M∗
ijψ

†j + . . . , iσµ∂µψ
†i = M ijψj + . . . . (3.2.21)

One can eliminate ψ in terms of ψ† and vice versa in eq. (3.2.21), obtaining [after use of the identities
eqs. (2.24) and (2.25)]:

∂µ∂µψi = M∗
ikM

kjψj + . . . , ∂µ∂µψ
†j = ψ†iM∗

ikM
kj + . . . . (3.2.22)

†Since Fi and F ∗i appear only quadratically in the action, the result of instead doing a functional integral over them
at the quantum level has precisely the same effect.
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Thus, the interactions are determined by a holomorphic 
function W (=superpotential )

δW

δφ∗
i

= 0



　　

Supersymmetric Field Theory
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†
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Non-propagating

Lint = yφ1ψ2ψ3 + yφ2ψ1ψ3 + yφ3ψ2ψ1

ex) W = yφ1φ2φ3

+yF1φ2φ3 + yF2φ1φ3 + yF3φ1φ2

[Yukawa-interaction]
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ψ2
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Quark, Lepton, Higgs, Gauge boson are embedded into 
supermultiplets.

Q = ( q,  q,  F )

squark quark F-term

~

Wα = ( λα,  Fμν,  D )

ex) quark

q q~
squark

fermion boson

gaugino
gauge
boson D-term

λαFμν

gauge
boson gaugino

boson fermion

It generates spacetime translations on the fields X according to

[Pµ,X] = i∂µX. (3.27)

Rearranging the terms in eq. (3.24) using the Jacobi identity, we therefore have
[
[ε2Q + ε†2Q

†, ε1Q + ε†1Q
†], X

]
= 2(ε2σµε

†
1 − ε1σµε

†
2) [Pµ,X], (3.28)

for any X, up to terms that vanish on-shell, so it must be that

[ε2Q + ε†2Q
†, ε1Q + ε†1Q

†] = 2(ε2σµε
†
1 − ε1σµε

†
2)Pµ. (3.29)

Now by expanding out eq. (3.29), one obtains the precise form of the supersymmetry algebra relations

{Qα, Q†
α̇} = 2σµ

αα̇Pµ, (3.30)

{Qα, Qβ} = 0, {Q†
α̇, Q†

β̇
} = 0, (3.31)

as promised in the Introduction. [The commutator in eq. (3.29) turns into anticommutators in
eqs. (3.30) and (3.31) in the process of extracting the anticommuting spinors ε1 and ε2.] The results

[Qα, Pµ] = 0, [Q†
α̇, Pµ] = 0 (3.32)

follow immediately from eq. (3.27) and the fact that the supersymmetry transformations are global
(independent of position in spacetime). This demonstration of the supersymmetry algebra in terms of
the canonical generators Q and Q† requires the use of the Hamiltonian equations of motion, but the
symmetry itself is valid off-shell at the level of the Lagrangian, as we have already shown.

3.2 Interactions of chiral supermultiplets

In a realistic theory like the MSSM, there are many chiral supermultiplets, with both gauge and non-
gauge interactions. In this subsection, our task is to construct the most general possible theory of
masses and non-gauge interactions for particles that live in chiral supermultiplets. In the MSSM these
are the quarks, squarks, leptons, sleptons, Higgs scalars and higgsino fermions. We will find that the
form of the non-gauge couplings, including mass terms, is highly restricted by the requirement that
the action is invariant under supersymmetry transformations. (Gauge interactions will be dealt with
in the following subsections.)

Our starting point is the Lagrangian density for a collection of free chiral supermultiplets labeled
by an index i, which runs over all gauge and flavor degrees of freedom. Since we will want to construct
an interacting theory with supersymmetry closing off-shell, each supermultiplet contains a complex
scalar φi and a left-handed Weyl fermion ψi as physical degrees of freedom, plus a complex auxiliary
field Fi, which does not propagate. The results of the previous subsection tell us that the free part of
the Lagrangian is

Lfree = −∂µφ∗i∂µφi − iψ†iσµ∂µψi + F ∗iFi, (3.33)

where we sum over repeated indices i (not to be confused with the suppressed spinor indices), with
the convention that fields φi and ψi always carry lowered indices, while their conjugates always carry
raised indices. It is invariant under the supersymmetry transformation

δφi = εψi, δφ∗i = ε†ψ†i, (3.34)

δ(ψi)α = i(σµε†)α ∂µφi + εαFi, δ(ψ†i)α̇ = −i(εσµ)α̇ ∂µφ
∗i + ε†α̇F

∗i, (3.35)

δFi = iε†σµ∂µψi, δF ∗i = −i∂µψ
†iσµε . (3.36)

20

Aµ λ D

on-shell (nB = nF = 2) 2 2 0

off-shell (nB = nF = 4) 3 4 1

Table 3.2: Counting of real degrees of freedom for each gauge supermultiplet.

one real bosonic auxiliary field, traditionally called Da, in order for supersymmetry to be consistent
off-shell. This field also transforms as an adjoint of the gauge group [i.e., like eq. (3.56) with λa replaced
by Da] and satisfies (Da)∗ = Da. Like the chiral auxiliary fields Fi, the gauge auxiliary field Da has
dimensions of [mass]2 and no kinetic term, so it can be eliminated on-shell using its algebraic equation
of motion. The counting of degrees of freedom is summarized in Table 3.2.

Therefore, the Lagrangian density for a gauge supermultiplet ought to be

Lgauge = −1

4
F a

µνF
µνa − iλ†aσµDµλ

a +
1

2
DaDa, (3.57)

where

F a
µν = ∂µAa

ν − ∂νA
a
µ + gfabcAb

µAc
ν (3.58)

is the usual Yang-Mills field strength, and

Dµλ
a = ∂µλ

a + gfabcAb
µλ

c (3.59)

is the covariant derivative of the gaugino field. To check that eq. (3.57) is really supersymmetric,
one must specify the supersymmetry transformations of the fields. The forms of these follow from
the requirements that they should be linear in the infinitesimal parameters ε, ε† with dimensions of
[mass]−1/2, that δAa

µ is real, and that δDa should be real and proportional to the field equations for
the gaugino, in analogy with the role of the auxiliary field F in the chiral supermultiplet case. Thus
one can guess, up to multiplicative factors, that†

δAa
µ =

1√
2

(
ε†σµλ

a + λ†aσµε
)

, (3.60)

δλa
α =

i

2
√

2
(σµσνε)α F a

µν +
1√
2
εα Da, (3.61)

δDa =
i√
2

(
ε†σµDµλ

a − Dµλ
†aσµε

)
. (3.62)

The factors of
√

2 are chosen so that the action obtained by integrating Lgauge is indeed invariant, and
the phase of λa is chosen for future convenience in treating the MSSM.

It is now a little bit tedious, but straightforward, to also check that

(δε2δε1 − δε1δε2)X = i(ε1σ
µε†2 − ε2σ

µε†1)DµX (3.63)

for X equal to any of the gauge-covariant fields F a
µν , λ

a, λ†a, Da, as well as for arbitrary covariant
derivatives acting on them. This ensures that the supersymmetry algebra eqs. (3.30)-(3.31) is realized

†The supersymmetry transformations eqs. (3.60)-(3.62) are non-linear for non-Abelian gauge symmetries, since there
are gauge fields in the covariant derivatives acting on the gaugino fields and in the field strength F a

µν . By adding even
more auxiliary fields besides Da, one can make the supersymmetry transformations linear in the fields. The version here,
in which those extra auxiliary fields have been removed by gauge transformations, is called “Wess-Zumino gauge” [52].
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(F, D components are auxiliary "eld)
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Quick review of superspace formalism

Spacetime = coset space of [Poincare group]/[Lorentz group]

Coordinate xμ : parametrize the coset space

Poincare symmetry  :  g  = exp[i aμ Pμ + i ωμν Jμν] = exp[i aμ Pμ ]h

Quantum "eld :   φ(x) = L(x) φ(0) L-1(x) 

L(x) = exp[i xμ Pμ ]

Poincare transformation : φ’(x’) = g φ(x) g-1 
                                                              = L(x’) h φ(0) h-1 L-1(x’) 

h φ(0) h-1 = exp[i ωμν Σμν]φ(0)

x’= x + a +2ωx



　　

Quick review of superspace formalism

Superpacetime 
= coset space of [Super Poincare group]/[Lorentz group]

Coordinate xμ , θ, θ† : parametrize the coset space

Super Poincare : symmetry:  
      g  = exp[i aμ Pμ + ξQ + ξ†Q† + i ωμν Jμν] 
           = exp[i aμ Pμ + ξQ + ξ†Q†]h

Quantum super"eld :   φ(x,θ,θ†) = L(x,θ,θ†) φ(0) L-1(x, θ,θ†) 
L(x,θ,θ†) = exp[i xμ Pμ +θQ +θ†Q†]

Superpoincare transformation : φ’(x’,θ’,θ’†) = g φ(x,θ,θ†) g-1 
                                                               = L(x’,θ’,θ’†) h φ(0) h-1 L-1(x’,θ’,θ’†) 

For h =1, 
x’= x + a + iξσμθ† - iθσμξ† θ’ = θ + ξ θ†’ = θ† + ξ†



　　

Quick review of superspace formalism

Superpoincare transformation : φ’(x’,θ’,θ’†) = g φ(x,θ,θ†) g-1 
                                                             = L(x’,θ’,θ’†) h φ(0) h-1 L-1(x’,θ’,θ’†) 

For h =1, 
x’= x + a + iξσμθ† - iθσμξ† θ’ = θ + ξ θ†’ = θ† + ξ†

SUSY transformation can be expressed as derivative operators!                                                 

The Dirac delta functions with respect to integrations d2θ and d2θ† are:

δ(2)(θ − θ′) = (θ − θ′)(θ − θ′), δ(2)(θ† − θ′†) = (θ† − θ′†)(θ† − θ′†), (4.1.23)

so that
∫

d2θ δ(2)(θ)S(x, θ, θ†) = S(x, 0, θ†) = a(x) + θ†χ†(x) + θ†θ†c(x) (4.1.24)
∫

d2θ† δ(2)(θ†)S(x, θ, θ†) = S(x, θ, 0) = a(x) + θξ(x) + θθb(x) (4.1.25)
∫

d2θd2θ† δ(2)(θ)δ(2)(θ†)S(x, θ, θ†) = S(x, 0, 0) = a(x). (4.1.26)

The integrals of total derivatives with respect to the fermionic coordinates vanish:

∫
d2θ

∂

∂θα
(anything) = 0,

∫
d2θ†

∂

∂θ†α̇
(anything) = 0, (4.1.27)

just as in eq. (4.1.8). This allows for integration by parts.

4.2 Supersymmetry transformations the superspace way

To formulate supersymmetry transformations in terms of superspace, define the following differential
operators that act on superfields:

Q̂α = i
∂

∂θα
− (σµθ†)α∂µ, Q̂α = −i

∂

∂θα
+ (θ†σµ)α∂µ, (4.2.1)

Q̂†α̇ = i
∂

∂θ†α̇
− (σµθ)α̇∂µ, Q̂†

α̇ = −i
∂

∂θ†α̇
+ (θσµ)α̇∂µ. (4.2.2)

Then the supersymmetry transformation parametrized by infinitesimal ε, ε† for any superfield S is
given by‡

√
2 δεS = −i(εQ̂+ ε†Q̂†)S =

(
εα
∂

∂θα
+ ε†α̇

∂

∂θ†α̇
+ i[εσµθ† + ε†σµθ]∂µ

)
S (4.2.3)

= S(xµ + iεσµθ† + iε†σµθ, θ + ε, θ† + ε†)− S(xµ, θ, θ†). (4.2.4)

Equation (4.2.4) shows that a supersymmetry transformation can be viewed as a translation in super-
space. Since Q̂, Q̂† are linear differential operators, the product or linear combination of any superfields
satisfying eq. (4.2.3) is again a superfield with the same transformation law.

It is instructive and useful to work out the supersymmetry transformations of all of the component
fields of the general superfield eq. (4.1.11). They are:

√
2 δεa = εξ + ε†χ†, (4.2.5)√
2 δεξα = 2εαb− (σµε†)α(vµ + i∂µa), (4.2.6)

√
2 δεχ

†α̇ = 2ε†α̇c+ (σµε)α̇(vµ − i∂µa), (4.2.7)
√
2 δεb = ε†ζ† − i

2
ε†σµ∂µξ, (4.2.8)

√
2 δεc = εη − i

2
εσµ∂µχ

†, (4.2.9)

‡The factor of
√
2 is a convention, not universally chosen in the literature, but adopted here in order to avoid

√
2

factors in the supersymmetry transformations of section 3.1.
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S’(x’,θ’,θ’†) - φ(x,θ,θ†) = ( ξQα + ξ†Q†α ) S(x,θ,θ†)^ ^

√
2 δεv

µ = εσµζ† − ε†σµη − i

2
εσνσµ∂νξ +

i

2
ε†σνσµ∂νχ

†, (4.2.10)

√
2 δεηα = 2εαd− i(σµε†)α∂µc−

i

2
(σνσµε)α∂µvν , (4.2.11)

√
2 δεζ

†α̇ = 2ε†α̇d− i(σµε)α̇∂µb+
i

2
(σνσµε†)α̇∂µvν , (4.2.12)

√
2 δεd = − i

2
ε†σµ∂µη −

i

2
εσµ∂µζ

†. (4.2.13)

It is probably not obvious yet that the supersymmetry transformations as just defined coincide
with those found in section 3. This will become clear below when we discuss the specific form of chiral
and vector superfields and the Lagrangians that govern their dynamics. Meanwhile, however, we can
compute the anticommutators of Q̂, Q̂† from eqs. (4.2.1), (4.2.2), with the result:

{
Q̂α, Q̂

†
β̇

}
= 2iσµ

αβ̇
∂µ = −2σµ

αβ̇
P̂µ, (4.2.14)

{
Q̂α, Q̂β

}
= 0,

{
Q̂†
α̇, Q̂

†
β̇

}
= 0. (4.2.15)

Here, the differential operator generating spacetime translations is

P̂µ = −i∂µ. (4.2.16)

Eqs. (4.2.14)-(4.2.15) have the same form as the supersymmetry algebra given in eqs. (3.1.30), (3.1.31).

It is important to keep in mind the conceptual distinction between the unhatted objects Qα, Q
†
α̇, P

µ

appearing in section 3.1, which are operators acting on the Hilbert space of quantum states, and
the corresponding hatted objects Q̂α, Q̂

†
α̇, P̂

µ, which are differential operators acting on functions in
superspace. For any superfield quantum mechanical operator X in the Heisenberg picture, the two
kinds of operations are related by

[X, εQ+ ε†Q†] = (εQ̂+ ε†Q̂†)X, (4.2.17)

[X, Pµ] = P̂µX. (4.2.18)

4.3 Chiral covariant derivatives

To construct Lagrangians in superspace, we will later want to use derivatives with respect to the
anticommuting coordinates, just as ordinary Lagrangians are built using spacetime derivatives ∂µ. We
will also use such derivatives to impose constraints on the general superfield in a way consistent with

the supersymmetry transformations. However,
∂

∂θα
is not appropriate for this purpose, because it is

not supersymmetric covariant:

δε

(
∂S

∂θα

)
#= ∂

∂θα
(δεS), (4.3.1)

and similarly for
∂

∂θ†α̇
. Therefore, it is useful to define the chiral covariant derivatives:

Dα =
∂

∂θα
− i(σµθ†)α∂µ, Dα = − ∂

∂θα
+ i(θ†σµ)α∂µ, (4.3.2)

D†α̇ =
∂

∂θ†α̇
− i(σµθ)α̇∂µ, D†

α̇ = − ∂

∂θ†α̇
+ i(θσµ)α̇∂µ. (4.3.3)

One may now check that
{
Q̂α, Dβ

}
=
{
Q̂†
α̇, Dβ

}
=
{
Q̂α, D

†
β̇

}
=
{
Q̂†
α̇, D

†
β̇

}
= 0. (4.3.4)
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Quick review of superspace formalism

Relation between super"eld and component "eld (φ,ψ,F) ?

components of θα and likewise for θ†α̇, the expansion always terminates, with each term containing at
most two θ’s and two θ†’s. A general superfield is therefore:

S(x, θ, θ†) = a+ θξ + θ†χ† + θθb+ θ†θ†c+ θ†σµθvµ + θ†θ†θη + θθθ†ζ† + θθθ†θ†d. (4.1.11)

To see that there are no other independent contributions, note the identities

θαθβ =
1

2
εαβθθ, θ†α̇θ

†
β̇

=
1

2
εβ̇α̇θ

†θ†, θαθ
†
β̇

=
1

2
σµ
αβ̇

(θ†σµθ), (4.1.12)

derived from eqs. (2.13) and (2.21). These can be used to rewrite any term into the forms given in
eq. (4.1.11). Some other identities involving the anticommuting coordinates that are useful in checking
results below are:

(θξ)(θχ) = −1

2
(θθ)(ξχ), (θ†ξ†) (θ†χ†) = −1

2
(θ†θ†)(ξ†χ†), (4.1.13)

(θξ)(θ†χ†) =
1

2
(θ†σµθ)(ξσµχ

†), (4.1.14)
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These follow from identities already given in section 2.
The general superfield S could be either commuting or anticommuting, and could carry additional

Lorentz vector or spinor indices. For simplicity, let us assume for the rest of this subsection that it
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the chiral or vector supermultiplets encountered in the previous section. This means that the general
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Derivatives with respect to the anticommuting coordinates are defined by

∂

∂θα
(θβ) = δβα,

∂

∂θα
(θ†
β̇
) = 0,

∂

∂θ†α̇
(θ†
β̇
) = δα̇

β̇
,

∂

∂θ†α̇
(θβ) = 0. (4.1.17)

Thus, for example, ∂
∂θα (ψθ) = ψα and ∂

∂θα
(ψθ) = −ψα for an anticommuting spinor ψα, and

∂
∂θα (θθ) =

2θα and ∂
∂θα

(θθ) = −2θα.
To integrate over superspace, define

d2θ = −1

4
dθαdθβεαβ , d2θ† = −1

4
dθ†α̇dθ

†
β̇
εα̇β̇, (4.1.18)

so that, using eq. (4.1.5),
∫

d2θ θθ = 1,
∫

d2θ† θ†θ† = 1. (4.1.19)

Integration of a general superfield therefore just picks out the relevant coefficients of θθ and/or θ†θ† in
eq. (4.1.11):

∫
d2θ S(x, θ, θ†) = b(x) + θ†ζ†(x) + θ†θ†d(x), (4.1.20)

∫
d2θ† S(x, θ, θ†) = c(x) + θη(x) + θθd(x), (4.1.21)

∫
d2θd2θ† S(x, θ, θ†) = d(x). (4.1.22)

31

Taylor expansion:

a, b, c, d : complex scalar "elds ( 8 real degrees)

ξ, χ, η, ζ : Wely fermions ( 16 real degrees)

vμ : complex vector ( 8 real degrees)

too many components compared with (φ,ψ,F)

→ We need constraints to reduce the extra components.



　　

Quick review of superspace formalism
SUSY covariant derivatives:

√
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It is probably not obvious yet that the supersymmetry transformations as just defined coincide
with those found in section 3. This will become clear below when we discuss the specific form of chiral
and vector superfields and the Lagrangians that govern their dynamics. Meanwhile, however, we can
compute the anticommutators of Q̂, Q̂† from eqs. (4.2.1), (4.2.2), with the result:
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Here, the differential operator generating spacetime translations is

P̂µ = −i∂µ. (4.2.16)

Eqs. (4.2.14)-(4.2.15) have the same form as the supersymmetry algebra given in eqs. (3.1.30), (3.1.31).

It is important to keep in mind the conceptual distinction between the unhatted objects Qα, Q
†
α̇, P

µ

appearing in section 3.1, which are operators acting on the Hilbert space of quantum states, and
the corresponding hatted objects Q̂α, Q̂

†
α̇, P̂

µ, which are differential operators acting on functions in
superspace. For any superfield quantum mechanical operator X in the Heisenberg picture, the two
kinds of operations are related by

[X, εQ+ ε†Q†] = (εQ̂+ ε†Q̂†)X, (4.2.17)

[X, Pµ] = P̂µX. (4.2.18)

4.3 Chiral covariant derivatives

To construct Lagrangians in superspace, we will later want to use derivatives with respect to the
anticommuting coordinates, just as ordinary Lagrangians are built using spacetime derivatives ∂µ. We
will also use such derivatives to impose constraints on the general superfield in a way consistent with

the supersymmetry transformations. However,
∂

∂θα
is not appropriate for this purpose, because it is

not supersymmetric covariant:

δε

(
∂S

∂θα

)
#= ∂

∂θα
(δεS), (4.3.1)

and similarly for
∂

∂θ†α̇
. Therefore, it is useful to define the chiral covariant derivatives:

Dα =
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=
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=
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33

√
2 δεv

µ = εσµζ† − ε†σµη − i

2
εσνσµ∂νξ +

i

2
ε†σνσµ∂νχ

†, (4.2.10)

√
2 δεηα = 2εαd− i(σµε†)α∂µc−

i

2
(σνσµε)α∂µvν , (4.2.11)

√
2 δεζ

†α̇ = 2ε†α̇d− i(σµε)α̇∂µb+
i

2
(σνσµε†)α̇∂µvν , (4.2.12)

√
2 δεd = − i

2
ε†σµ∂µη −

i

2
εσµ∂µζ

†. (4.2.13)

It is probably not obvious yet that the supersymmetry transformations as just defined coincide
with those found in section 3. This will become clear below when we discuss the specific form of chiral
and vector superfields and the Lagrangians that govern their dynamics. Meanwhile, however, we can
compute the anticommutators of Q̂, Q̂† from eqs. (4.2.1), (4.2.2), with the result:

{
Q̂α, Q̂

†
β̇

}
= 2iσµ

αβ̇
∂µ = −2σµ

αβ̇
P̂µ, (4.2.14)

{
Q̂α, Q̂β

}
= 0,

{
Q̂†
α̇, Q̂

†
β̇

}
= 0. (4.2.15)

Here, the differential operator generating spacetime translations is

P̂µ = −i∂µ. (4.2.16)

Eqs. (4.2.14)-(4.2.15) have the same form as the supersymmetry algebra given in eqs. (3.1.30), (3.1.31).

It is important to keep in mind the conceptual distinction between the unhatted objects Qα, Q
†
α̇, P

µ

appearing in section 3.1, which are operators acting on the Hilbert space of quantum states, and
the corresponding hatted objects Q̂α, Q̂

†
α̇, P̂
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kinds of operations are related by
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4.3 Chiral covariant derivatives

To construct Lagrangians in superspace, we will later want to use derivatives with respect to the
anticommuting coordinates, just as ordinary Lagrangians are built using spacetime derivatives ∂µ. We
will also use such derivatives to impose constraints on the general superfield in a way consistent with

the supersymmetry transformations. However,
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is not appropriate for this purpose, because it is

not supersymmetric covariant:
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(
∂S

∂θα

)
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∂θα
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and similarly for
∂

∂θ†α̇
. Therefore, it is useful to define the chiral covariant derivatives:

Dα =
∂

∂θα
− i(σµθ†)α∂µ, Dα = − ∂

∂θα
+ i(θ†σµ)α∂µ, (4.3.2)

D†α̇ =
∂

∂θ†α̇
− i(σµθ)α̇∂µ, D†

α̇ = − ∂

∂θ†α̇
+ i(θσµ)α̇∂µ. (4.3.3)

One may now check that
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}
=
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SUSY covariant derivatives commute with SUSY transformation!

Using the definition eq. (4.2.3), it follows that

δε (DαS) = Dα (δεS) , δε
(
D†
α̇S
)
= D†

α̇ (δεS) . (4.3.5)

Thus the derivatives Dα and D†
α̇ are indeed supersymmetric covariant; acting on superfields, they

return superfields. This makes them useful both for defining constraints on superfields in a covariant
way, and for defining superspace Lagrangians involving anticommuting spinor coordinate derivatives.

The chiral and antichiral covariant derivatives also satisfy the useful anticommutation identities:
{
Dα, D

†
β̇

}
= 2iσµ

αβ̇
∂µ, (4.3.6)

{
Dα, Dβ

}
= 0,

{
D†
α̇, D

†
β̇

}
= 0. (4.3.7)

This has exactly the same form as the supersymmetry algebra in eqs. (4.2.14) and (4.2.15), but D,D†

should not be confused with the differential operators for supersymmetry transformations, Q̂, Q̂†. It is
also useful to note that, from eq. (4.1.27),

∫
d2θDα(anything) and

∫
d2θ†D†

α̇(anything) (4.3.8)

are each total derivatives with respect to xµ.

4.4 Chiral superfields

To describe a chiral supermultiplet, consider the superfield Φ(x, θ, θ†) obtained by imposing the con-
straint

D†
α̇Φ = 0. (4.4.1)

A field satisfying this constraint is said to be a chiral (or left-chiral) superfield, and its complex conjugate
Φ∗ is called antichiral (or right-chiral) and satisfies

DαΦ
∗ = 0. (4.4.2)

These constraints are consistent with the transformation rule for general superfields because of eq. (4.3.5).
To solve the constraint eq. (4.4.1) in general, it is convenient to define

yµ ≡ xµ + iθ†σµθ, (4.4.3)

and change coordinates on superspace to the set:

yµ, θα, θ†α̇. (4.4.4)

In terms of these variables, the chiral covariant derivatives have the representation:

Dα =
∂

∂θα
− 2i(σµθ†)α

∂

∂yµ
, Dα = − ∂

∂θα
+ 2i(θ†σµ)α

∂

∂yµ
, (4.4.5)

D†α̇ =
∂

∂θ†α̇
, D†

α̇ = − ∂

∂θ†α̇
. (4.4.6)

Equation (4.4.6) makes it clear that the chiral superfield constraint eq. (4.4.1) is solved by any function
of yµ and θ only and not θ†. Therefore, one can expand:

Φ = φ(y) +
√
2θψ(y) + θθF (y), (4.4.7)
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This is what we want, i.e. (φ,ψ,F)!



　　

Quick review of superspace formalism

SUSY Invariant action

The SUSY transformation of the highest components of the 
general supermultiplets (θ4-term) and the chiral multiplet (θ2-
term) are given by total derivative!

δ S|θ4 = δ D = i ξ†σμ∂μη + i ξσμ∂μζ†

δ Φ|θ2 = δ F = i ξ†σμ∂μψ

(in Q’s, increment of θ is accompanied by ∂μ)

∫d4x [ general multiplet ]|θ4 
                  + ∫d4x [ chiral multiplet ]|θ2 + h.c.

SUSY Invariant action



　　

　　

Quick review of superspace formalism

Holomorphic Function of chiral super"elds are also chiral 
super"elds!

(chiral)x(chiral)=(chiral)
W(Φ) = m2 Φi + m Φi Φj + y Φi Φj Φk 

(chiral)†x(chiral)=(general)

using eq. (4.1.22) and the form of V in eq. (4.5.3) for the last equality. This is referred to as a D-term
contribution to the Lagrangian (note that the ∂µ∂µa part will vanish upon integration

∫
d4x).

Another type of contribution to the action can be inferred from the fact that the F -term of a
chiral superfield also transforms into a total derivative under a supersymmetry transformation, see
eq. (4.4.18). This implies that one can have a contribution to the Lagrangian density of the form

[Φ]F ≡ Φ
∣∣∣
θθ
=
∫

d2θΦ
∣∣∣
θ†=0

=
∫

d2θd2θ† δ(2)(θ†)Φ = F, (4.6.3)

using the form of Φ in eq. (4.4.11) for the last equality. This satisfies δε(
∫
d4x[Φ]F ) = 0. The F -term

of a chiral superfield is complex in general, but the action must be real, which can be ensured if this
type of contribution to the Lagrangian is accompanied by its complex conjugate:

[Φ]F + c.c. =
∫

d2θd2θ†
[
δ(2)(θ†)Φ + δ(2)(θ)Φ∗

]
. (4.6.4)

Note that the identification of the F -term component of a chiral superfield is the same in the (xµ, θ, θ†)
and (yµ, θ, θ†) coordinates, in the sense that in both cases, one simply isolates the θθ component.
This follows because the difference between xµ and yµ is higher order in θ†. It is useful because some
calculations involving chiral superfields are simpler to carry out in terms of yµ.

When building a Lagrangian, the real superfield V used in eq. (4.6.2) and the chiral superfield
Φ used in eq. (4.6.4) are usually composites, built out of more fundamental superfields. However,
contributions from fundamental fields V and Φ are allowed, when V is the vector superfield for an
Abelian gauge symmetry and when Φ is a singlet under all symmetries.

It is always possible to rewrite a D term contribution to a Lagrangian as an F term contribution,
by the trick of noticing that

D†D†(θ†θ†) = DD(θθ) = −4, (4.6.5)

and using the fact that δ(2)(θ†) = θ†θ† from eq. (4.1.23). Thus, by integrating by parts twice with
respect to θ†:

[V ]D = −1

4

∫
d2θd2θ† V D†D†(θ†θ†) = −1

4

∫
d2θd2θ† δ(2)(θ†)D†D†V + . . . (4.6.6)

= −1

4
[D†D†V ]F + . . . . (4.6.7)

The . . . indicates total derivatives with respect to xµ, coming from the two integrations by parts. As
noted in section 4.4, D†D†V is always a chiral superfield. If V is real, then the imaginary part of
eq. (4.6.7) is a total derivative, and the result can be rewritten as −1

8 [D
†D†V ]F + c.c.

4.7 Superspace Lagrangians for chiral supermultiplets

In section 4.4, we verified that the chiral superfield components have the same supersymmetry trans-
formations as the Wess-Zumino model fields. We now have the tools to complete the demonstration of
equivalence by reconstructing the Lagrangian in superspace language. Consider the composite super-
field

Φ∗iΦj = φ∗iφj +
√
2θψjφ

∗i +
√
2θ†ψ†iφj + θθφ∗iFj + θ†θ†φjF

∗i

+θ†σµθ
[
iφ∗i∂µφj − iφj∂µφ

∗i − ψ†iσµψj

]

+
i√
2
θθθ†σµ(ψj∂µφ

∗i − ∂µψjφ
∗i) +

√
2θθθ†ψ†iFj
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i√
2
θ†θ†θσµ(ψ†i∂µφj − ∂µψ

†iφj) +
√
2θ†θ†θψjF

∗i

+θθθ†θ†
[
F ∗iFj −

1

2
∂µφ∗i∂µφj +

1

4
φ∗i∂µ∂µφj +

1

4
φj∂

µ∂µφ
∗i

+
i

2
ψ†iσµ∂µψj +

i

2
ψjσ

µ∂µψ
†i
]
. (4.7.1)

where all fields are evaluated as functions of xµ (not yµ or yµ∗). For i = j, eq. (4.7.1) is a real (vector)
superfield, and the massless free-field Lagrangian for each chiral superfield is just obtained by taking
the θθθ†θ† component:

[Φ∗Φ]D =
∫

d2θd2θ†Φ∗Φ = −∂µφ∗∂µφ+ iψ†σµ∂µψ + F ∗F + . . . . (4.7.2)

The . . . indicates a total derivative part, which may be dropped since this is destined to be integrated∫
d4x. Equation (4.7.2) is exactly the Lagrangian density obtained in section 3.1 for the massless free

Wess-Zumino model.
To obtain the superpotential interaction and mass terms, recall that products of chiral superfields

are also superfields. For example,

ΦiΦj = φiφj +
√
2θ(ψiφj + ψjφi) + θθ(φiFj + φjFi − ψiψj), (4.7.3)

ΦiΦjΦk = φiφjφk +
√
2θ(ψiφjφk + ψjφiφk + ψkφiφj)

+ θθ(φiφjFk + φiφkFj + φjφkFi − ψiψjφk − ψiψkφj − ψjψkφi), (4.7.4)

where the presentation has been simplified by taking the component fields on the right sides to be
functions of yµ as given in eq. (4.4.3). More generally, any holomorphic function of a chiral superfields
is a chiral superfields So, one may form a complete Lagrangian as

L(x) = [Φ∗iΦi]D + ([W (Φi)]F + c.c.) , (4.7.5)

where W (Φi) can be any holomorphic function of the chiral superfields (but not antichiral superfields)
taken as complex variables, and coincides with the superpotential W (φi) that was treated above as
a function of the scalar components. For W = 1

2M
ijΦiΦj +

1
6y

ijkΦiΦjΦk, the result of eq. (4.7.5) is
exactly the same as eq. (3.2.19), after writing in component form using eqs. (4.7.2), (4.7.3), (4.7.4) and
integrating out the auxiliary fields.

It is instructive to obtain the superfield equations of motion from the Lagrangian eq. (4.7.5). In
general, consider a Lagrangian density V on the full superspace, so that the action is

A =
∫

d4x
∫

d2θd2θ† V, (4.7.6)

with V (Si, DαSi, D
†
α̇Si) a function of general dynamical superfields Si and their chiral and antichiral

first derivatives. Then the superfield equations of motion obtained by variation of the action are

0 =
∂V

∂Si
−Dα

(
∂V

∂(DαSi)

)
−D†

α̇

(
∂V

∂(D†
α̇Si)

)

. (4.7.7)

In the case of the Lagrangian for chiral superfields eq. (4.7.5), Lagrange multipliers Λ∗iα̇ and Λαi can be
introduced to enforce the chiral and antichiral superfield constraints on Φi and Φ∗i respectively. The
Lagrangian density on superspace is then:

V = Λ∗iα̇D†
α̇Φi + Λαi DαΦ

∗i + Φ∗iΦi + δ(2)(θ†)W (Φi) + δ(2)(θ)[W (Φi)]
∗. (4.7.8)

39



　　

Quick review of superspace formalism

∫d4x L = ∫d4x [ Φi†Φi ]|θ4 + ∫d4x W(Φ) |θ2 + h.c.

            = ∫d4x d4θ  Φi†Φi + ∫d4x d2θ W(Φ)+ h.c.            

+
i√
2
θ†θ†θσµ(ψ†i∂µφj − ∂µψ

†iφj) +
√
2θ†θ†θψjF

∗i

+θθθ†θ†
[
F ∗iFj −

1

2
∂µφ∗i∂µφj +

1

4
φ∗i∂µ∂µφj +

1

4
φj∂

µ∂µφ
∗i

+
i

2
ψ†iσµ∂µψj +

i

2
ψjσ

µ∂µψ
†i
]
. (4.7.1)

where all fields are evaluated as functions of xµ (not yµ or yµ∗). For i = j, eq. (4.7.1) is a real (vector)
superfield, and the massless free-field Lagrangian for each chiral superfield is just obtained by taking
the θθθ†θ† component:

[Φ∗Φ]D =
∫

d2θd2θ†Φ∗Φ = −∂µφ∗∂µφ+ iψ†σµ∂µψ + F ∗F + . . . . (4.7.2)

The . . . indicates a total derivative part, which may be dropped since this is destined to be integrated∫
d4x. Equation (4.7.2) is exactly the Lagrangian density obtained in section 3.1 for the massless free

Wess-Zumino model.
To obtain the superpotential interaction and mass terms, recall that products of chiral superfields

are also superfields. For example,

ΦiΦj = φiφj +
√
2θ(ψiφj + ψjφi) + θθ(φiFj + φjFi − ψiψj), (4.7.3)

ΦiΦjΦk = φiφjφk +
√
2θ(ψiφjφk + ψjφiφk + ψkφiφj)

+ θθ(φiφjFk + φiφkFj + φjφkFi − ψiψjφk − ψiψkφj − ψjψkφi), (4.7.4)

where the presentation has been simplified by taking the component fields on the right sides to be
functions of yµ as given in eq. (4.4.3). More generally, any holomorphic function of a chiral superfields
is a chiral superfields So, one may form a complete Lagrangian as

L(x) = [Φ∗iΦi]D + ([W (Φi)]F + c.c.) , (4.7.5)

where W (Φi) can be any holomorphic function of the chiral superfields (but not antichiral superfields)
taken as complex variables, and coincides with the superpotential W (φi) that was treated above as
a function of the scalar components. For W = 1

2M
ijΦiΦj +

1
6y

ijkΦiΦjΦk, the result of eq. (4.7.5) is
exactly the same as eq. (3.2.19), after writing in component form using eqs. (4.7.2), (4.7.3), (4.7.4) and
integrating out the auxiliary fields.

It is instructive to obtain the superfield equations of motion from the Lagrangian eq. (4.7.5). In
general, consider a Lagrangian density V on the full superspace, so that the action is

A =
∫

d4x
∫

d2θd2θ† V, (4.7.6)

with V (Si, DαSi, D
†
α̇Si) a function of general dynamical superfields Si and their chiral and antichiral

first derivatives. Then the superfield equations of motion obtained by variation of the action are

0 =
∂V

∂Si
−Dα

(
∂V

∂(DαSi)

)
−D†

α̇

(
∂V

∂(D†
α̇Si)

)

. (4.7.7)

In the case of the Lagrangian for chiral superfields eq. (4.7.5), Lagrange multipliers Λ∗iα̇ and Λαi can be
introduced to enforce the chiral and antichiral superfield constraints on Φi and Φ∗i respectively. The
Lagrangian density on superspace is then:

V = Λ∗iα̇D†
α̇Φi + Λαi DαΦ

∗i + Φ∗iΦi + δ(2)(θ†)W (Φi) + δ(2)(θ)[W (Φi)]
∗. (4.7.8)

39

∫
d2θW (Φ) = −1

2
W ijψiψj + W iFi

SUSY Invariant action

ex)

φ1

ψ2

ψ3

F1

φ2

φ3

W = yΦ1Φ2Φ3
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∫
d2θW (Φ) = −1

2
W ijψiψj + W iFi

Scalar potential 

By solving the equation of motion of  “F” :  Fi = - Wi*

V = - F*F + WiFi + h.c. = Fi*Fi = Wi*Wi  ≧ 0

ex) W = m/2 Φ2 + y/3 Φ3 
FΦ = - m Φ + y Φ2

V =  |m Φ + y Φ2|2
V=0 @ minima

→  V = - F*F + WiFi + h.c. 
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Gauge theory 

Theory is invariant under “local” symmetry : 

φ’(x)  = eiα(x)Tφ(x)

How about in the superspace?

Φ’(x,θ,θ†)  = eiα(x)T Φ(x,θ,θ†) ?

α(x) is not super"eld → the left hand side is no 
more super"eld...

“local” symmetry should be “local” in superspace!

Φ’(x,θ,θ†)  = eiΛ(x,θ,θ)T Φ(x,θ,θ†) !

Λ(x,θ,θ†) : chiral super"eld (minimal construction)
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∫d4x d4θ  Φi†Φi 

In SUSY, the kinetic term is given by,

This is “not” invariant under the gauge transformation Φ’ = eiΛTΦ 

∫d4x d4θ  Φi’†Φi’= ∫d4x d4θ  Φi†e-iΛ TeiΛT Φi’†

Real super"elds ( V† = V ) provide connection "elds if they shift :

eV’ = eiΛ T eV e-iΛ T†

→ We need connection (gauge) "elds!

Then, ∫d4x d4θ  Φi† eV Φi is invariant !

U(1) → V is one real super"eld 
Non-Abelian → V : real super"elds in adjoint representation



　　

Quick review of superspace formalism

Real super"elds  V† = V :

in turn follows from eq. (4.3.7)], and similarly forD. The converse is also true; for every chiral superfield
Φ, one can find a superfield S such that eq. (4.4.19) is true.

Another way to build a chiral superfield is as a function W (Φi) of other chiral superfields Φi but
not antichiral superfields; in other words, W is holomorphic in chiral superfields treated as complex
variables. This fact follows immediately from the linearity and product rule properties of the differential
operator D†

α̇ appearing in the constraint eq. (4.4.1). It will be useful below for constructing superspace
Lagrangians.

4.5 Vector superfields

A vector (or real) superfield V is obtained by imposing the constraint V = V ∗. This is equivalent to
imposing the following constraints on the components of the general superfield eq. (4.1.11):

a = a∗, χ† = ξ†, c = b∗, vµ = v∗µ, ζ† = η†, d = d∗. (4.5.1)

It is also convenient and traditional to redefine:

ηα = λα − i

2
(σµ∂µξ

†)α, vµ = Aµ, d =
1

2
D +

1

4
∂µ∂

µa. (4.5.2)

The component expansion of the vector superfield is then

V (x, θ, θ†) = a+ θξ + θ†ξ† + θθb+ θ†θ†b∗ + θ†σµθAµ + θ†θ†θ(λ− i

2
σµ∂µξ

†)

+θθθ†(λ† − i

2
σµ∂µξ) + θθθ†θ†(

1

2
D +

1

4
∂µ∂

µa). (4.5.3)

The supersymmetry transformations of these components can be obtained either from
√
2δεV =

−i(εQ̂+ ε†Q̂†)V , or by plugging eqs. (4.5.1)-(4.5.2) into the results for a general superfield, eqs. (4.2.5)-
(4.2.13). The results are:

√
2 δεa = εξ + ε†ξ† (4.5.4)√
2 δεξα = 2εαb− (σµε†)α(Aµ + i∂µa), (4.5.5)
√
2 δεb = ε†λ† − iε†σµ∂µξ, (4.5.6)

√
2 δεA

µ = iε∂µξ − iε†∂µξ† + εσµλ† − ε†σµλ, (4.5.7)
√
2 δελα = εαD +

i

2
(σµσνε)α(∂µAν − ∂νAµ), (4.5.8)

√
2 δεD = −iεσµ∂µλ

† − iε†σµ∂µλ (4.5.9)

A superfield cannot be both chiral and real at the same time, unless it is identically constant (i.e.,
independent of xµ, θ, and θ†). This follows from eqs. (4.4.13)-(4.4.15), and (4.5.1). However, if Φ is a
chiral superfield, then Φ+ Φ∗ and i(Φ− Φ∗) and ΦΦ∗ are all real (vector) superfields.

As the notation chosen in eq. (4.5.3) suggests, a vector superfield that is used to represent a gauge
supermultiplet contains gauge boson, gaugino, and gauge auxiliary fields Aµ, λ, D as components.
(Such a vector superfield V must be dimensionless in order for the component fields to have the
canonical mass dimensions.) However, there are other component fields in V that did not appear in
sections 3.3 and 3.4. They are: a real scalar a, a two-component fermion ξ, and a complex scalar b,
with mass dimensions respectively 0, 1/2, and 1. These are additional auxiliary fields, which can be
“supergauged” away. To see this, suppose V is the vector superfield for a U(1) gauge symmetry, and
consider the transformation

V → V + i(Ω∗ − Ω), (4.5.10)
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We have gauge boson and gaugino!

Fields other than Aμ, λ, D can be gauged away!whereΩ is a chiral superfield gauge transformation parameter, Ω = φ+
√
2θψ+θθF+. . .. In components,

this transformation is

a → a+ i(φ∗ − φ), (4.5.11)

ξα → ξα − i
√
2ψα, (4.5.12)

b → b− iF, (4.5.13)

Aµ → Aµ + ∂µ(φ+ φ∗), (4.5.14)

λα → λα, (4.5.15)

D → D. (4.5.16)

Equation (4.5.14) shows that eq. (4.5.10) provides the vector boson field with the usual gauge trans-
formation, with parameter 2Re(φ). By requiring the gauge transformation to take a supersymmetric
form, it follows that appropriate independent choices of Im(φ), ψα, and F can also change a, ξα, and
b arbitrarily. Thus the supergauge transformation eq. (4.5.10) has ordinary gauge transformations as
a special case.

In particular, supergauge transformations can eliminate the auxiliary fields a, ξα, and b completely.
A superspace Lagrangian for a vector superfield must be invariant under the supergauge transformation
eq. (4.5.10) in the Abelian case, or a suitable generalization given below for the non-Abelian case. After
making a supergauge transformation to eliminate a, ξ, and b, the vector superfield is said to be in Wess-
Zumino gauge, and is simply given by

VWZ gauge = θ†σµθAµ + θ†θ†θλ+ θθθ†λ† +
1

2
θθθ†θ†D. (4.5.17)

The restriction of the vector superfield to Wess-Zumino gauge is not consistent with the linear super-
space version of supersymmetry transformations. This is because

√
2δε(VWZ gauge) contains θ†σµεAµ −

θσµε†Aµ + θθε†λ† + θ†θ†ελ, and so the supersymmetry transformation of the Wess-Zumino gauge vec-
tor superfield is not in Wess-Zumino gauge. However, a supergauge transformation can always restore
δε(VWZ gauge) to Wess-Zumino gauge. Adopting Wess-Zumino gauge is equivalent to partially fixing the
supergauge, while still maintaining the full freedom to do ordinary gauge transformations.

4.6 How to make a Lagrangian in superspace

So far, we have been concerned with the kinematic features of fields in superspace. We now turn to
the dynamical issue of how to construct manifestly supersymmetric actions. A key observation is that
the integral of a general superfield over all of superspace is automatically invariant:

δεA = 0, for A =
∫

d4x
∫

d2θd2θ† S(x, θ, θ†). (4.6.1)

This follows immediately from the fact that Q̂ and Q̂† as defined in eqs. (4.2.1), (4.2.2) are sums of
total derivatives with respect to the superspace coordinates xµ, θ, θ†, so that (εQ̂ + ε†Q̂†)S vanishes
upon integration. As a check, eq. (4.2.13) shows that the θθθ†θ† component of a superfield transforms
into a total derivative.

Therefore, the action governing the dynamics of a theory can have contributions of the form of
eq. (4.6.1), with reality of the action demanding that S is some real (vector) superfield V . From
eq. (4.2.4), we see that the principle of global supersymmetric invariance is embodied in the requirement
that the action should be an integral over superspace which is unchanged under rigid translations of the
superspace coordinates. To obtain the Lagrangian density L(x), one integrates over only the fermionic
coordinates. This is often written in the notation:

[V ]D ≡
∫

d2θd2θ† V (x, θ, θ†) = V (x, θ, θ†)
∣∣∣
θθθ†θ†

=
1

2
D +

1

4
∂µ∂

µa (4.6.2)
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ex) U(1) gauge theory 

V ′ = V − iΛ + iΛ†

Λ(y, θ) = φ(y) + θψ(y) + θ2F (y)
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chiral superfield, then Φ+ Φ∗ and i(Φ− Φ∗) and ΦΦ∗ are all real (vector) superfields.

As the notation chosen in eq. (4.5.3) suggests, a vector superfield that is used to represent a gauge
supermultiplet contains gauge boson, gaugino, and gauge auxiliary fields Aµ, λ, D as components.
(Such a vector superfield V must be dimensionless in order for the component fields to have the
canonical mass dimensions.) However, there are other component fields in V that did not appear in
sections 3.3 and 3.4. They are: a real scalar a, a two-component fermion ξ, and a complex scalar b,
with mass dimensions respectively 0, 1/2, and 1. These are additional auxiliary fields, which can be
“supergauged” away. To see this, suppose V is the vector superfield for a U(1) gauge symmetry, and
consider the transformation

V → V + i(Ω∗ − Ω), (4.5.10)

36

We have gauge boson and gaugino!

Fields other than Aμ, λ, D can be gauged away!

whereΩ is a chiral superfield gauge transformation parameter, Ω = φ+
√
2θψ+θθF+. . .. In components,

this transformation is

a → a+ i(φ∗ − φ), (4.5.11)

ξα → ξα − i
√
2ψα, (4.5.12)

b → b− iF, (4.5.13)

Aµ → Aµ + ∂µ(φ+ φ∗), (4.5.14)

λα → λα, (4.5.15)

D → D. (4.5.16)

Equation (4.5.14) shows that eq. (4.5.10) provides the vector boson field with the usual gauge trans-
formation, with parameter 2Re(φ). By requiring the gauge transformation to take a supersymmetric
form, it follows that appropriate independent choices of Im(φ), ψα, and F can also change a, ξα, and
b arbitrarily. Thus the supergauge transformation eq. (4.5.10) has ordinary gauge transformations as
a special case.

In particular, supergauge transformations can eliminate the auxiliary fields a, ξα, and b completely.
A superspace Lagrangian for a vector superfield must be invariant under the supergauge transformation
eq. (4.5.10) in the Abelian case, or a suitable generalization given below for the non-Abelian case. After
making a supergauge transformation to eliminate a, ξ, and b, the vector superfield is said to be in Wess-
Zumino gauge, and is simply given by

VWZ gauge = θ†σµθAµ + θ†θ†θλ+ θθθ†λ† +
1

2
θθθ†θ†D. (4.5.17)

The restriction of the vector superfield to Wess-Zumino gauge is not consistent with the linear super-
space version of supersymmetry transformations. This is because

√
2δε(VWZ gauge) contains θ†σµεAµ −

θσµε†Aµ + θθε†λ† + θ†θ†ελ, and so the supersymmetry transformation of the Wess-Zumino gauge vec-
tor superfield is not in Wess-Zumino gauge. However, a supergauge transformation can always restore
δε(VWZ gauge) to Wess-Zumino gauge. Adopting Wess-Zumino gauge is equivalent to partially fixing the
supergauge, while still maintaining the full freedom to do ordinary gauge transformations.

4.6 How to make a Lagrangian in superspace

So far, we have been concerned with the kinematic features of fields in superspace. We now turn to
the dynamical issue of how to construct manifestly supersymmetric actions. A key observation is that
the integral of a general superfield over all of superspace is automatically invariant:

δεA = 0, for A =
∫

d4x
∫

d2θd2θ† S(x, θ, θ†). (4.6.1)

This follows immediately from the fact that Q̂ and Q̂† as defined in eqs. (4.2.1), (4.2.2) are sums of
total derivatives with respect to the superspace coordinates xµ, θ, θ†, so that (εQ̂ + ε†Q̂†)S vanishes
upon integration. As a check, eq. (4.2.13) shows that the θθθ†θ† component of a superfield transforms
into a total derivative.

Therefore, the action governing the dynamics of a theory can have contributions of the form of
eq. (4.6.1), with reality of the action demanding that S is some real (vector) superfield V . From
eq. (4.2.4), we see that the principle of global supersymmetric invariance is embodied in the requirement
that the action should be an integral over superspace which is unchanged under rigid translations of the
superspace coordinates. To obtain the Lagrangian density L(x), one integrates over only the fermionic
coordinates. This is often written in the notation:

[V ]D ≡
∫

d2θd2θ† V (x, θ, θ†) = V (x, θ, θ†)
∣∣∣
θθθ†θ†

=
1

2
D +

1

4
∂µ∂

µa (4.6.2)
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Matter kinetic functions are gauge symmetric!

−i
√

2φ†iλψi + i
√

2ψ†
iλφi − φ∗i Dφi

= (Dµφi)†(Dµφi) + ψ†iσDµψi + F †
i Fi − φ∗i DφiLkin

The kinetic term also leads to new interactions
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Figure 3.3: Supersymmetric gauge interaction vertices.

tion of Figure 3.1c is exactly of the special type needed to cancel the quadratic divergences in quantum
corrections to scalar masses, as discussed in the Introduction [compare Figure 1.1, and eq. (1.11)].

Figure 3.2 shows the only interactions corresponding to renormalizable and supersymmetric vertices
with coupling dimensions of [mass] and [mass]2. First, there are (scalar)3 couplings in Figure 3.2a,b,
which are entirely determined by the superpotential mass parameters M ij and Yukawa couplings yijk,
as indicated by the second and third terms in eq. (3.50). The propagators of the fermions and scalars
in the theory are constructed in the usual way using the fermion mass M ij and scalar squared mass
M∗

ikM
kj. The fermion mass terms M ij and Mij each lead to a chirality-changing insertion in the

fermion propagator; note the directions of the arrows in Figure 3.2c,d. There is no such arrow-reversal
for a scalar propagator in a theory with exact supersymmetry; as depicted in Figure 3.2e, if one treats
the scalar squared-mass term as an insertion in the propagator, the arrow direction is preserved.

Figure 3.3 shows the gauge interactions in a supersymmetric theory. Figures 3.3a,b,c occur only
when the gauge group is non-Abelian, for example for SU(3)C color and SU(2)L weak isospin in the
MSSM. Figures 3.3a and 3.3b are the interactions of gauge bosons, which derive from the first term
in eq. (3.57). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.59) and (3.65)-(3.67) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.72)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
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Field Strength chiral super"eld

so that one can write

Φi → (eiΩ)i
jΦj, Φ∗i → Φ∗j(e−iΩ†

)j
i, (4.9.4)

and

L =
[
Φ∗i(eV )i

jΦj

]

D
. (4.9.5)

For this to be supergauge invariant, the non-Abelian gauge transformation rule for the vector superfields
must be

eV → eiΩ
†
eV e−iΩ. (4.9.6)

[Here chiral supermultiplet representation indices i, j, . . . are suppressed; V and Ω with no indices stand
for the matrices defined in eq. (4.9.3).] Equation (4.9.6) can be expanded, keeping terms linear in Ω,
Ω†, using the Baker-Campbell-Hausdorff formula, to find

V → V + i(Ω† − Ω)− i

2
[V, Ω+ Ω†] + i

∞∑

k=1

B2k

(2k)!

[
V,
[
V, . . .

[
V, Ω† −Ω

]
. . .
]]

, (4.9.7)

where the kth term in the sum involves k matrix commutators of V , and B2k are the Bernoulli numbers
defined by

x

ex − 1
=

∞∑

n=0

Bn

n!
xn.

Equation (4.9.7) is equivalent to

V a → V a + i(Ωa∗ − Ωa) + gaf
abcV b(Ωc∗ + Ωc)− i

3
g2af

abcf cdeV bV d(Ωe∗ − Ωe) + . . . (4.9.8)

where eq. (4.9.3) and [T a, T b] = ifabcT c have been used. This supergauge transformation includes
ordinary gauge transformations as the special case Ωa∗ = Ωa.

Because the second term on the right side of eq. (4.9.8) is independent of V a, one can always do a
supergauge transformation to Wess-Zumino gauge by choosing Ωa∗ − Ωa appropriately, just as in the
Abelian case, so that

(V a)WZ gauge = θ†σµθAa
µ + θ†θ†θλa + θθθ†λ†a +

1

2
θθθ†θ†Da. (4.9.9)

After fixing the supergauge to Wess-Zumino gauge, one still has the freedom to do ordinary gauge
transformations. In the Wess-Zumino gauge, the Lagrangian contribution eq. (4.9.5) is polynomial, in
agreement with what was found in component language in section 3.4:

[
Φ∗i(eV )i

jΦj

]

D
= F ∗iFi −∇µφ

∗i∇µφi + iψ†iσµ∇µψi −
√
2ga(φ

∗T aψ)λa −
√
2gaλ

†(ψ†T aφ)

+ga(φ
∗T aφ)Da, (4.9.10)

where ∇µ is the gauge-covariant derivative defined in eqs. (3.4.2)-(3.4.4).
To make kinetic terms and self-interactions for the vector supermultiplets in the non-Abelian case,

define a field-strength chiral superfield

Wα = −1

4
D†D†

(
e−V Dαe

V
)
, (4.9.11)
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D†

α̇Wα = 0

W ′
α = eiΛWαe−iΛ

generalizing the Abelian case. Using eq. (4.9.6), one can show that it transforms under supergauge
transformations as

Wα → eiΩWαe
−iΩ. (4.9.12)

(The proof makes use of the fact that Ω is chiral and Ω† is antichiral, so that D†
α̇Ω = 0 and DαΩ† = 0.)

This implies that Tr[WαWα] is a supergauge-invariant chiral superfield. The factors in parentheses in
eq. (4.9.11) can be expanded as

e−V Dαe
V = DαV − 1

2
[V,DαV ] +

1

6
[V, [V,DαV ]] + . . . , (4.9.13)

where again the commutators apply in the matrix sense, and only the first two terms contribute in
Wess-Zumino gauge.

The field strength chiral superfield Wα defined in eq. (4.9.11) is matrix-valued in the representation
R. One can recover an adjoint representation field strength superfield Wa

α from the matrix-valued one
by writing

Wα = 2gaT
aWa

α, (4.9.14)

leading to

Wa
α = −1

4
D†D†

(
DαV

a − igaf
abcV bDαV

c + . . .
)
. (4.9.15)

The terms shown explicitly are enough to evaluate this in components in Wess-Zumino gauge, with the
result

(Wa
α)WZ gauge = λaα + θαD

a − i

2
(σµσνθ)αF

a
µν + iθθ(σµ∇µλ

†a)α, (4.9.16)

where F a
µν is the non-Abelian field strength of eq. (3.3.4) and ∇µ is the usual gauge covariant derivative

from eq. (3.3.5).
The kinetic terms and self-interactions for the gauge supermultiplet fields are obtained from

1

4kag2a
Tr[WαWα]F = [WaαWa

α]F , (4.9.17)

which is invariant under both supersymmetry and supergauge transformations. Here the normalization
of generators is assumed to be Tr[T aT b] = kaδab, with ka usually set to 1/2 by convention for the
defining representations of simple groups. Equation (4.9.17) is most easily evaluated in Wess-Zumino
gauge using eq. (4.9.16), yielding

[WaαWa
α]F = DaDa + 2iλaσµ∇µλ

†a − 1

2
F aµνF a

µν +
i

4
εµνρσF a

µνF
a
ρσ , (4.9.18)

Since eq. (4.9.18) is supergauge invariant, the same expression is valid even outside of Wess-Zumino
gauge.

Now we can write the general renormalizable Lagrangian for a supersymmetric gauge theory (in-
cluding superpotential interactions for the chiral supermultiplets when allowed by gauge invariance):

L =

(
1

4
− i

g2aΘa

32π2

)

[WaαWa
α]F + c.c.+

[
Φ∗i(e2gaT

aV a
)i
jΦj

]

D
+ ([W (Φi)]F + c.c.) . (4.9.19)
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= φ†1(x)φ2 +
√

2θα̇φ
†
1χ

α̇
2 +
√

2θ†αχ†
1αφ2 + (θθ)φ†1F2 + (θ†θ†)F †

1φ2

−(θσµ
+θ

†)
(
i[φ†1(∂µφ2)− (∂µφ

†
1)φ2] + 2φ†1Aµφ2 − [χ†

1σ
µ
−χ2]

)

+
i√
2
(θθ)

(
− i
√

2θ†χ†
1F2 + ∂µφ

†
1θ

†σµ
−χ2 − φ†1θ†σ

µ
−∂µχ2

+2iφ†1θ
†σµ

−Aµχ2 − 2
√

2φ†1θ
†λ†φ2

)

+
i√
2
(θ†θ†)

(
− i
√

2F †
1 θχ2 + θσµ

+χ
†
1∂µφ2 − θσµ

+∂µχ
†
1φ2

−2iθσµ
+χ

†
1Aµφ2 + 2

√
2φ†1θλφ2

)

+(θθθ†θ†)
(1

2
∂µφ

†
1∂

µφ2 −
1
4
φ†1 φ2 −

1
4
φ†1φ2

+iφ†1Aµ∂
µφ2 − i∂µφ†1Aµφ2 − φ†1(D −AµAµ)φ2

+i
√

2φ†1λχ2 − i
√

2χ†
1λ

†φ2

+
i

2
(χ†

1σ
µ
−∂µχ2 − ∂µχ

†
1σ

µ
−χ2) + χ†

1σ
µ
−Aµχ2 + F †

1F2

)
. (2.100)

Thus, we obtain

Φ†
1e

−2V Φ2 = φ†1(x)φ2 +
√

2θα̇φ
†
1χ

α̇
2 +
√

2θ†αχ†
1αφ2 + (θθ)φ†1F2 + (θ†θ†)F †

1φ2

−(θσµ
+θ

†)
(
i[φ†1(Dµφ2)− (Dµφ1)†φ2]− [χ†

1σ
µ
−χ2]

)

+
i√
2
(θθ)

(
− i
√

2θ†χ†
1F2 + Dµφ

†
1θ

†σµ
−χ2 − φ†1θ†σ

µ
−Dµχ2 − 2

√
2φ†1θ

†λ†φ2

)

+
i√
2
(θ†θ†)

(
− i
√

2F †
1 θχ2 + θσµ

+χ
†
1Dµφ2 − θσµ

+Dµχ
†
1φ2 + 2

√
2φ†1θλφ2

)

+(θθθ†θ†)
(

(Dµφ1)†Dµφ2 + χ†
1iσ

µ
−Dµχ2 + F †

1F2

−i
√

2φ†1λχ2 + i
√

2χ†
1λ

†φ2 − φ†1Dφ2

)
. (2.101)

2.4 Supersymmetric field theory

By using the ingredients developed above, we can construct a supersymmetric Yang-Mills theory:

L = Re[−τ tr[Wα̇W α̇]]
∣∣∣∣
θθ

+ Φ†
ie

−2V Φi

∣∣∣∣
θθθ†θ†

+ W (Φi)
∣∣∣∣
θθ

+ W †(Φ†
i )
∣∣∣∣
θ†θ†

, (2.102)

where W denotes the superpotential which is a holomorphic function of Φi’s.
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Gauge Kinetic Function

In terms of the component fields, the supersymmetric Yang-Mills theory is given by,

L = − 1
4g2

F a
µνF

aµν +
θg

64π2
εµνρσF a

µνF
a
ρσ +

1
g2
λ†ai(σµ

−)Dµλ
a +

1
2g2

DaDa

+(Dµφi)†(Dµφi) + χ†
iiσ

µ
−Dµχi + F †

i Fi − i
√

2φ†iλχi + i
√

2χ†
iλ

†φi − φ†iDφi

+
∂W

∂Ai
Fi +

∂W †

∂A†
i

F †
i −

1
2

∂W

∂Ai∂Aj
χiχj −

1
2

∂W †

∂A†
i∂A†

j

χ†
iχ

†
j , (2.103)

F a
µν = ∂µAa

ν − ∂νA
a
µ + fabcAb

µAc
ν ,

Dµλ
a = (∂µλ

a + fabcAb
µλ

c),

Dµφi = (∂µφ
i − i(ta)ijAa

µφj),

Dµχi = (∂µχ
i − i(ta)ijAa

µχj).

2.4.1 Conversion to the 4-components spinors

In some cases, it is more convenient to use the 4-components spinors. When we concern the calcu-
lations where mass-insertion approximation is valid, the Majorana spinors are most convenient,

ψχ =
(
χα̇

χ†
α

)

. (2.104)

By using Majorana spinors, we can rewrite the above Lagrangean as,

L = − 1
4g2

F a
µνF

aµν +
θg

64π2
εµνρσF a

µνF
a
ρσ +

1
2g2

ψ̄a
λiγµDµψ

a
λ +

1
2g2

DaDa

+(Dµφi)†(Dµφi) +
1
2
ψ̄i

χiγµDµψ
i
χ + F †

i Fi − φ†iD
ataφi

−i
1√
2
φ†i ψ̄

a
λtaij

(1− γ5

2

)
ψj

χ − i
1√
2
φ†i t

a
ijψ̄

j
χ

(1− γ5

2

)
ψa

λ

+i
1√
2
ψ̄i

χ

(1 + γ5

2

)
ψa

λtaijφj + i
1√
2
ψ̄a

λ

(1 + γ5

2

)
ψi

χtaijφj

+
∂W

∂Ai
Fi +

∂W †

∂A†
i

F †
i

−1
2

∂W

∂Ai∂Aj

(
ψ̄i

χ

(1− γ5

2

)
ψj

χ + ψ̄j
χ

(1− γ5

2

)
ψi

χ

)
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Auxiliary "eld!

From the field strength, we can find supersymmetric gauge kinetic terms,

−ND

2
tr[Wα̇W α̇]

∣∣∣∣
θθ

= − i

2
λa

α̇ε
α̇γ̇Dµλ

†aβ(σµ
−)βγ̇ −

i

2
Dµλ

†aβ(σµ
−)βα̇ε

α̇γ̇λa
γ̇ +

1
2
DaDa (2.93)

−1
4
F a

µνF
aµν − i

8
εµνρσF a

µνF
a
ρσ, (2.94)

= λ†ai(σµ
−)Dµλ

a +
1
2
DaDa − 1

4
F a

µνF
aµν − i

8
εµνρσF a

µνF
a
ρσ. (2.95)

Thus, by introducing complex gauge coupling constant

τ =
1
g2

+ i
θg

8π2
, (2.96)

we obtain the Lagrangean of the gauge fields,

L =
ND

2
Re[τ tr[Wα̇W α̇]]

∣∣∣∣
θθ

, (2.97)

= − 1
4g2

F a
µνF

aµν +
θg

64π2
εµνρσF a

µνF
a
ρσ +

1
g2
λ†ai(σµ

−)Dµλ
a +

1
2g2

DaDa, (2.98)

where we use ND = 2.
The chiral matter superfields Φ1,2 couple to the gauge fields via Φ†

1e
−2V Φ2. To expand it in

terms of the component fields, we first compute e2V Φ2,

e−2V Φ2 =
(

1− 2θα̇(σµ
+)α̇βθ†βAµ − 2i(θθ)θ†αλ†α + 2i(θ†θ†)θα̇λ

α̇ − (θθ)(θ†θ†)(D −AµAµ)
)

×
(
φ2 +

√
2θχ2 − iθσµ

+θ
†∂µφ2 + (θθ)F2 −

i√
2
(θθ)θ†σµ

−∂µχ2 −
1
4
(θθ)(θ†θ†) φ2

)

= φ2 +
√

2θχ2 − i(θσµ
+θ

†)(∂µφ2 − 2iAµφ2) + (θθ)F2

− i√
2
(θθ)((θ†σµ

−)[∂µχ2 − 2iAµχ2] + 2
√

2θ†λ†φ2) + 2i(θ†θ†)(θλφ2)

+(θθθ†θ†)(−1
4
φ2 + iAµ∂

µφ2 − (D −AµAµ)φ2 − i
√

2λχ2). (2.99)

Then we find that,

Φ†
1e

−2V Φ2 =
(
φ†1 +

√
2θ†αχ†

1α − iθ†σµ
−θ∂µφ

†
1 + (θ†θ†)F †

1

− i√
2
(θ†θ†)θβ̇(σµ

+)β̇γ∂µχ
†
1γ −

1
4
(θθ)(θ†θ†) φ†1

)

×
(
φ2 +

√
2θχ2 − i(θσµ

+θ
†)(∂µφ2 − 2iAµφ2) + (θθ)F2

− i√
2
(θθ)((θ†σµ

−)[∂µχ2 − 2iAµχ2] + 2
√

2θ†λ†φ2) + 2i(θ†θ†)(θλφ2)

+(θθθ†θ†)(−1
4
φ2 + iAµ∂

µφ2 + (AµAµ −D)φ2 − i
√

2λχ2)
)
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Quick review of superspace formalism

Scalar potential

  V = - F*F  + (WiFi + h.c. ) - DD/2g2 + φ*Dφ

By solving the equation of motion of  F and D

 Fi = - Wi*

D = g2Σ φ*φ

  V = F*F  + DD/2  = Wi*Wi + g2(Σ φ*φ)2 /2 ≧ 0

The positive de!niteness of the energy is an important 
feature of the global supersymmetry!



Supersymmetric Standard Model

Rp

-
-
-
-
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+
+
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SU(3) SU(2) U(1)
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3
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1
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2

1

1

1

2

2
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1/3

-1/2

1

1/2
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Two Higgs doublets are required!

W = yuHuQLŪR + ydHdQD̄R + yeHdLLĒR

U(1)-SU(2) anomaly cancelation

Interactions are given by an analytic 
function (superpotential)

All the SM interactions are easily extended!
In particular, the SM top Yukawa can appear as in the SM!

The minimal Supersymmetric Standard Model (The MSSM)



Unacceptable B, L breaking interactions

WRPV = αQLLLD̄R + βLLLLĒR + δD̄RD̄RŪR + µ′LLHu

ΔL = 1

ΔB = 1

d

u
u

s, b~ ~ L

Q
u

P These lead to too rapid proton decay...

p→ eπ, νπ, eK,νK,...

Rp = (−)3(B−L)+F

These operators are forbidden by introducing R-parity
( ~ a discrete subgroup of L and B symmetry )

R[SM particles] = +1

R[Superparticles] = -1

Supersymmetric Standard Model



　　

Supersymmetric Standard Model

Under the R-parity, the SM particles are even while the 
superpartners are odd. 
(R-parity is not commute with SUSY)

LSP : the Lightest supersymmetric particle (Rp = -1)

The LSP is stable and a candidate of dark matter!

Who is the LSP? 

The lightest neutralino (Zino, Bino, 2 neutral Higgsino)

Gravitino (superpartner of the gravition)

 It depends on the SUSY breaking, mediations, etc.



Higgs mass in Supersymmetric Standard Model

The most important prediction of the MSSM
 = Higgs quartic coupling is given by the gauge couplings

H

H† H

H†

Auxiliary "eld

λ= (g12+g22)/2 cos22β

H

H†

mhiggs = λ1/2 v  ~ mZ cos2β  

[cf. in the SM, λ is a free parameter]

In the MSSM, the Higgs mass (at the tree-level) is a prediction! 

(tanβ = vu/vd)

→ Is it too light? SUSY breaking effects play important roles!

D
H

H†



To be a realistic model we need SUSY breaking!

We have not seen any superparticles with mass spectrums 
degenerated with the SM counterparts....

We need to make the SUSY particles heavy.
→ Spontaneous Supersymmetry Breaking!

Supersymmetry Breaking



SUSY algebra  :  {Qα, Q†α} =  2 σμαα Pμ

SUSY preserving vacuum : vacuum energy = 0

[supersymmetry is an extension of the spacetime symmetry!]

(  Q1| 0 > = 0 )
SUSY breaking vacuum : vacuum energy > 0 (  Q1| 0 > ≠ 0 )

0 Φ

unbroken SUSY

0 Φ

broken SUSY

We need a model with non-vanishing vacuum energy !

H = (Q1Q1† + Q1†Q1 + Q2Q2† +Q2†Q2)/4

< vac | H | vac > = ( |Q1| vac >|2 + |Q2| vac >|2 )/2

Supersymmetry Breaking



　　

• Simplest example : single "eld perturbative model

The order parameter of SUSY = vacuum energy:  V = Σ | FΦ |2

SUSY

W = Λ2 Φ

V(Φ)
Λ4

0 Φ

SUSY is spontaneously broken!

FΦ = -W†Φ ≠0

Energy is non-vanishing 
for any "eld value.

FΦ = -WΦ† = - Λ2

cf. δSUSY ψ = ξ x F  ≠ 0

SUSY is spontaneously broken!

V

Supersymmetry Breaking



　　

　　

Flat universe?

SUSY breaking vacuum V > 0 ?

In supergravity

V  =  eK  ( F* F - 3 MPL2 |W|2  )

The /at universe is possible even if SUSY is  broken for :

W = F/√3  x MPL

cf. Gravitino Mass
m3/2 = W/MPL2 =  F/√3 MPL

Gravitino Mass ⇆ SUSY breaking scale

Supersymmetry Breaking



• Simplest example : single "eld perturbative model

The order parameter of SUSY = vacuum energy:  V = Σ | FΦ |2

SUSY

W = Λ2 Φ

V(Φ)
Λ4

0 Φ

SUSY is spontaneously broken!

FΦ = -W†Φ ≠0

Energy is non-vanishing 
for any "eld value.

Supersymmetry Breaking

W = Λ2Φ + mΦ2 + λΦ3

0 Φ

SUSY is not broken!

V

V not only depends on Φ 
but has zero energy state.



What is the difference in these models?

W = Λ2 Φ

V(Φ)
Λ4

0 Φ
SUSY is spontaneously broken!

Supersymmetry Breaking

W = Λ2Φ + mΦ2 + λΦ3

0 Φ
SUSY is not broken!

V

R-symmetry (U(1) symmetry which is not commute with SUSY)!
[ R, Q ] = -Q

with

W i =
δW

δΦi

∣∣∣∣
Φi→φi

, W ij =
δ2W

δΦiδΦj

∣∣∣∣
Φi→φi

, (4.10.4)

where the superfields have been replaced by their scalar components after differentiation. [Compare
eqs. (3.2.6), (3.2.10), (3.2.14) and the surrounding discussion.] After integrating out the auxiliary fields
Fi, the part of the scalar potential coming from the superpotential is

V = W iW ∗
j (K

−1)ji , (4.10.5)

where K−1 is the inverse matrix of the Kähler metric:

Ki
j =

δ2K

δΦiδΦ̃∗j

∣∣∣∣
Φi→φi, Φ̃∗i→φ∗i

. (4.10.6)

More generally, the whole component field Lagrangian after integrating out the auxiliary fields is
determined in terms of the functions W , K and fab and their derivatives with respect to the chiral
superfields, with the remaining chiral superfields replaced by their scalar components. The complete
form of this is straightforward to evaluate, but somewhat complicated. In supergravity, there are
additional contributions, some of which are discussed in section 7.6 below.

4.11 R symmetries

Some supersymmetric Lagrangians are also invariant under a global U(1)R symmetry. The defining
feature of a continuous R symmetry is that the anticommuting coordinates θ and θ† transform under
it with charges +1 and −1 respectively, so

θ → eiαθ, θ† → e−iαθ† (4.11.1)

where α parameterizes the global R transformation. It follows that

Q̂ → e−iαQ̂, Q̂† → eiαQ̂†, (4.11.2)

which in turn implies that the supersymmetry generators have R-charges −1 and +1, and so do not
commute with the R symmetry charge:

[R,Q] = −Q, [R,Q†] = Q† (4.11.3)

Thus the distinct components within a superfield always have different R charges.
If the theory is invariant under an R symmetry, then each superfield S(x, θ, θ†) can be assigned an

R charge, denoted rS , defined by its transformation rule

S(x, θ, θ†) → eirSαS(x, e−iαθ, eiαθ†). (4.11.4)

The R charge of a product of superfields is the sum of the individual R charges. For a chiral superfield
Φ with R-charge rΦ, the φ, ψ, and F components transform with charges rΦ, rΦ − 1, and rΦ − 2,
respectively:

φ→ eirΦαφ, ψ → ei(rΦ−1)αψ, F → ei(rΦ−2)αF. (4.11.5)

The components of Φ∗ carry the opposite charges.
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with

W i =
δW

δΦi

∣∣∣∣
Φi→φi

, W ij =
δ2W

δΦiδΦj

∣∣∣∣
Φi→φi

, (4.10.4)

where the superfields have been replaced by their scalar components after differentiation. [Compare
eqs. (3.2.6), (3.2.10), (3.2.14) and the surrounding discussion.] After integrating out the auxiliary fields
Fi, the part of the scalar potential coming from the superpotential is

V = W iW ∗
j (K

−1)ji , (4.10.5)

where K−1 is the inverse matrix of the Kähler metric:

Ki
j =

δ2K

δΦiδΦ̃∗j

∣∣∣∣
Φi→φi, Φ̃∗i→φ∗i

. (4.10.6)

More generally, the whole component field Lagrangian after integrating out the auxiliary fields is
determined in terms of the functions W , K and fab and their derivatives with respect to the chiral
superfields, with the remaining chiral superfields replaced by their scalar components. The complete
form of this is straightforward to evaluate, but somewhat complicated. In supergravity, there are
additional contributions, some of which are discussed in section 7.6 below.

4.11 R symmetries

Some supersymmetric Lagrangians are also invariant under a global U(1)R symmetry. The defining
feature of a continuous R symmetry is that the anticommuting coordinates θ and θ† transform under
it with charges +1 and −1 respectively, so

θ → eiαθ, θ† → e−iαθ† (4.11.1)

where α parameterizes the global R transformation. It follows that

Q̂ → e−iαQ̂, Q̂† → eiαQ̂†, (4.11.2)

which in turn implies that the supersymmetry generators have R-charges −1 and +1, and so do not
commute with the R symmetry charge:

[R,Q] = −Q, [R,Q†] = Q† (4.11.3)

Thus the distinct components within a superfield always have different R charges.
If the theory is invariant under an R symmetry, then each superfield S(x, θ, θ†) can be assigned an

R charge, denoted rS , defined by its transformation rule

S(x, θ, θ†) → eirSαS(x, e−iαθ, eiαθ†). (4.11.4)

The R charge of a product of superfields is the sum of the individual R charges. For a chiral superfield
Φ with R-charge rΦ, the φ, ψ, and F components transform with charges rΦ, rΦ − 1, and rΦ − 2,
respectively:

φ→ eirΦαφ, ψ → ei(rΦ−1)αψ, F → ei(rΦ−2)αF. (4.11.5)

The components of Φ∗ carry the opposite charges.
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Φ = (φ, ψ, F)

QR-1QR QR-2

Wa = (λa, Fμν, D)

01 0

Superpotential W should have R-charge 2!



What is the difference in these models?

W = Λ2 Φ

V(Φ)
Λ4

0 Φ
SUSY is spontaneously broken!

Supersymmetry Breaking

W = Λ2Φ + mΦ2 + λΦ3

0 Φ
SUSY is not broken!

V

This model has R-symmetry! No R-symmetry!

R-charge of Φ = 2.

R-symmetry is a necessary condition for spontaneous SUSY 
breaking when the model has generic superpotential under 
symmetries (Nelson&Seiberg `93)



　　

Supersymmetry Breaking
Nelson&Seiberg `93

SUSY vacuum condition

-Fi* = ∂ W(Φ1, ..., Φn)/∂Φi = 0

1) Assume that superpotential is generic under symmetries.

For generic superpotential, n-conditions for n-variables

In general, there is solutions!
                                                   = SUSY is not broken!



　　

Supersymmetry Breaking
Nelson&Seiberg `93

1) Assume that superpotential is generic under symmetries.
2) Assume that the model possesses R-symmetry
3) Assume that R-symmetry is broken by the "nite VEV of ΦR

W(Φ1, ..., Φn, ΦR) = ΦR2/qR W(X1, ...,Xn,1)
SUSY vacuum condition n variables, n+1 conditions !

∂W(X1, X2, ...,1)/∂Xi = 0
W(X1, X2, ...,1) = 0

There is not always solutions! SUSY could be broken!

cf. non-R U(1) symmetry  :  n variables, n conditions.
W(Φ1, ..., Φn, Φn+1) = W(X1, ...,Xn,1)

generically solvable!

→ R-symmetry is a necessary condition!



O’Reifeartaigh model

W = Λ2 Φ - y Φ X2 + m X Y

This model has R-symmetry : Φ(2),  X(0), Y(2)
Z2  symmetry  : Φ(even),  X(odd), Y(odd)
Under these symmetries the model has a generic potential

SUSY vacuum conditions : Wi = 0

WΦ = Λ2 - y X2,    WX = -2yΦX + mY,    WY =mX

SUSY breaking ( m2 > y Λ2) 

<X> = <Y> = 0 Φ = +at potentialFΦ = Λ2

generic feature of F-term SUSY breaking!

Supersymmetry Breaking



O’Reifeartaigh model

Tree-level scalar potential = Flat!

V(Φ)
Λ4

0 Φ

※ Superpotential is not renormalized 
perturbatively! 

Wrenormalized = Λ2 Φ - y Φ X2 + m X Y 

K ~ Φ†Φ - y2/(16π2m2) |Φ†Φ|2 + ...

※ Kahler potential (= kinetic term) is renormalized!

Φ gets a maass from the second term.
         <Φ> = θ2FΦ :  mΦ2 = y2/16π2 x FΦ2/m2

V(Φ)

Λ4

0 Φ

[SUSY wouldn’t be restored radiatively ]

Supersymmetry Breaking



Supersymmetry Breaking
Strong gauge dynamics

Supersymmetric QCD
SU(Nc) gauge theory with Nf +avors ( qi , qci )

Beta function of the gauge coupling constant 

dg/dt = - (3Nc - Nf) g3/16π2

Asymptotically free for 3Nc > Nf  

                       → Non-trivial thing could happen at IR?

g

Λdyn lnμ

Λdyn ~ exp(-8π2/g02(3Nc -Nf)) M*

Dynamical scale

M*
Dimensional Transmutation!



Supersymmetry Breaking
Strong gauge dynamics

ex) Gaugino condensation for Nf = 0
(non-rigorous effective potential approach)

R-symmetry   :    λa’ = eiα  λa

R-symmetry is anomalous against SU(Nc) :From the field strength, we can find supersymmetric gauge kinetic terms,

−ND

2
tr[Wα̇W α̇]

∣∣∣∣
θθ

= − i

2
λa

α̇ε
α̇γ̇Dµλ

†aβ(σµ
−)βγ̇ −

i

2
Dµλ
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−)βα̇ε

α̇γ̇λa
γ̇ +

1
2
DaDa (2.93)

−1
4
F a

µνF
aµν − i

8
εµνρσF a

µνF
a
ρσ, (2.94)

= λ†ai(σµ
−)Dµλ

a +
1
2
DaDa − 1

4
F a

µνF
aµν − i

8
εµνρσF a

µνF
a
ρσ. (2.95)

Thus, by introducing complex gauge coupling constant

τ =
1
g2

+ i
θg

8π2
, (2.96)

we obtain the Lagrangean of the gauge fields,

L =
ND

2
Re[τ tr[Wα̇W α̇]]

∣∣∣∣
θθ

, (2.97)

= − 1
4g2

F a
µνF

aµν +
θg

64π2
εµνρσF a

µνF
a
ρσ +

1
g2
λ†ai(σµ

−)Dµλ
a +

1
2g2

DaDa, (2.98)

where we use ND = 2.
The chiral matter superfields Φ1,2 couple to the gauge fields via Φ†

1e
−2V Φ2. To expand it in

terms of the component fields, we first compute e2V Φ2,

e−2V Φ2 =
(

1− 2θα̇(σµ
+)α̇βθ†βAµ − 2i(θθ)θ†αλ†α + 2i(θ†θ†)θα̇λ

α̇ − (θθ)(θ†θ†)(D −AµAµ)
)

×
(
φ2 +

√
2θχ2 − iθσµ

+θ
†∂µφ2 + (θθ)F2 −

i√
2
(θθ)θ†σµ

−∂µχ2 −
1
4
(θθ)(θ†θ†) φ2

)

= φ2 +
√

2θχ2 − i(θσµ
+θ

†)(∂µφ2 − 2iAµφ2) + (θθ)F2

− i√
2
(θθ)((θ†σµ

−)[∂µχ2 − 2iAµχ2] + 2
√

2θ†λ†φ2) + 2i(θ†θ†)(θλφ2)

+(θθθ†θ†)(−1
4
φ2 + iAµ∂

µφ2 − (D −AµAµ)φ2 − i
√

2λχ2). (2.99)

Then we find that,

Φ†
1e

−2V Φ2 =
(
φ†1 +

√
2θ†αχ†

1α − iθ†σµ
−θ∂µφ

†
1 + (θ†θ†)F †
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− i√
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(θ†θ†)θβ̇(σµ

+)β̇γ∂µχ
†
1γ −

1
4
(θθ)(θ†θ†) φ†1

)

×
(
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√
2θχ2 − i(θσµ

+θ
†)(∂µφ2 − 2iAµφ2) + (θθ)F2
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(θθ)((θ†σµ

−)[∂µχ2 − 2iAµχ2] + 2
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4
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2λχ2)
)
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θg  → θg  + 2Nc α

= φ†1(x)φ2 +
√

2θα̇φ
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2 +
√
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†
1∂µφ2 − θσµ

+∂µχ
†
1φ2

−2iθσµ
+χ

†
1Aµφ2 + 2

√
2φ†1θλφ2

)

+(θθθ†θ†)
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2
∂µφ

†
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φ†1φ2
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√
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√

2χ†
1λ

†φ2

+
i

2
(χ†

1σ
µ
−∂µχ2 − ∂µχ

†
1σ

µ
−χ2) + χ†

1σ
µ
−Aµχ2 + F †

1F2
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. (2.100)

Thus, we obtain

Φ†
1e

−2V Φ2 = φ†1(x)φ2 +
√

2θα̇φ
†
1χ

α̇
2 +
√

2θ†αχ†
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1φ2

−(θσµ
+θ
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i[φ†1(Dµφ2)− (Dµφ1)†φ2]− [χ†

1σ
µ
−χ2]

)

+
i√
2
(θθ)

(
− i
√

2θ†χ†
1F2 + Dµφ

†
1θ

†σµ
−χ2 − φ†1θ†σ

µ
−Dµχ2 − 2

√
2φ†1θ

†λ†φ2

)

+
i√
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(θ†θ†)

(
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√

2F †
1 θχ2 + θσµ

+χ
†
1Dµφ2 − θσµ

+Dµχ
†
1φ2 + 2

√
2φ†1θλφ2

)

+(θθθ†θ†)
(

(Dµφ1)†Dµφ2 + χ†
1iσ

µ
−Dµχ2 + F †

1F2

−i
√

2φ†1λχ2 + i
√

2χ†
1λ

†φ2 − φ†1Dφ2

)
. (2.101)

2.4 Supersymmetric field theory

By using the ingredients developed above, we can construct a supersymmetric Yang-Mills theory:

L = Re[−τ tr[Wα̇W α̇]]
∣∣∣∣
θθ

+ Φ†
ie

−2V Φi

∣∣∣∣
θθθ†θ†

+ W (Φi)
∣∣∣∣
θθ

+ W †(Φ†
i )
∣∣∣∣
θ†θ†

, (2.102)

where W denotes the superpotential which is a holomorphic function of Φi’s.
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In terms of the component fields, the supersymmetric Yang-Mills theory is given by,

L = − 1
4g2

F a
µνF

aµν +
θg

64π2
εµνρσF a

µνF
a
ρσ +

1
g2
λ†ai(σµ

−)Dµλ
a +

1
2g2
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iiσ

µ
−Dµχi + F †

i Fi − i
√

2φ†iλχi + i
√

2χ†
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†φi − φ†iDφi

+
∂W

∂Ai
Fi +

∂W †

∂A†
i

F †
i −

1
2

∂W

∂Ai∂Aj
χiχj −

1
2

∂W †

∂A†
i∂A†

j

χ†
iχ

†
j , (2.103)

F a
µν = ∂µAa

ν − ∂νA
a
µ + fabcAb

µAc
ν ,

Dµλ
a = (∂µλ

a + fabcAb
µλ

c),

Dµφi = (∂µφ
i − i(ta)ijAa

µφj),

Dµχi = (∂µχ
i − i(ta)ijAa

µχj).

2.4.1 Conversion to the 4-components spinors

In some cases, it is more convenient to use the 4-components spinors. When we concern the calcu-
lations where mass-insertion approximation is valid, the Majorana spinors are most convenient,

ψχ =
(
χα̇

χ†
α

)

. (2.104)

By using Majorana spinors, we can rewrite the above Lagrangean as,
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)
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→

→ Still invariant under a "ctitious R-symmetry   :    
                                 λa’ = eiα  λa,     τ’ = τ + i αNc/4π2

Effective superpotential should have charge 2!



　　

Supersymmetry Breaking
Strong gauge dynamics

ex) Gaugino condensation for Nf = 0

Holomorphic Dynamical Scale

Λdyn ~ exp(-8π2/g02 (3Nc)) M* 

                                      → Λdyn ~ exp(-8π2τ0 /(3Nc)) M*

Under the "ctitious R-symmetry, λa’ = eiα  λa,  τ’ = τ + i αNc/4π2

the dynamical scale rotates 
Λdyn’  = Λdyn e-i 2α/3

Assuming no massless particle exists below Λdyn , 
only allowed effective potential is...

Weff = a Λdyn3 ("ctitious R-charge 2)



　　

Supersymmetry Breaking
Strong gauge dynamics

ex) Gaugino condensation for Nf = 0

→ ∂W/∂τ |θ0 = λaλa / 4 i

Gauge kinetic function : W = -τ WαWα

Wα = λαa  +  O(θ) 

< λaλa > = 4i ∂Weff /∂τ |θ0 

                  = - 32π2 /Nc  a Λdyn3

Gaugino condensation occurs!

Discrete Z2Nc R symmetry is spontanesously broken
to Z2 R symmetry!  We have Nc distinct vacua!



　　

　　

Supersymmetry Breaking
Strong gauge dynamics

ex) Gaugino condensation for Nf = 0

Is SUSY broken?

We have Nc distinct vacua!
Witten index :  Tr( - )F  = Nc

Witten index is non-zero only when there are E = 0 states!
( Q | boson > = E1/2 | fermion > ,  Q | fermion > = E1/2 | boson > )

SQCD with Nf = 0 theory does not break SUSY even by
non-perturbative effects!
(Model does not possess continuous R-symmetry...
and hence, no surprise!)



Supersymmetry Breaking
Strong gauge dynamics

ex) Gaugino condensation for Nf = 0

 a ≠ 0? (more reliable path to show a ≠ 0 )
1) add Nc - 1 +avors ( qi , qci ),

2) At large vevs of q’s, non-perturbative effective superpotential 
is generated by instanton effects (weak coupling!)

3) Add small mass “m” to Nc - 1 +avors 
            → gaugino condensates via Konishi anomaly 
                                                                   ( a ≠ 0  at weak coupling) 

4) Using “exact” holomorphic equation, <λλ> = 2m∂<λλ>/∂m,
we "nd  <λλ> ≠ 0 for m→∞ 



Supersymmetry Breaking

Dynamical SUSY Breaking model 
    (Izawa-Yanagida-Intriligator-Thomas model) 

SU(2) gauge theory :
   4-fundamental representations:  qi ( i = 1,2,3,4 )
   6-gauge singlets                             :   Sij = -Sji ( i = 1,2,3,4 )

W = Sij qi qj

Model has anomaly free R-symmetry : S(2), q(0)

Let us consider Sij = S εij >> Λdyn

all the q’s get heavy and model looks pure SU(2) theory!

Gaugino condensation should occur!



　　

　　

Supersymmetry Breaking

Dynamical SUSY Breaking model 
    (Izawa-Yanagida-Intriligator-Thomas model) 

Gaugino condensation should occur!
The effective dynamical scale depends on “S” !

scaleΛdyn Λeff S

Λeff3 = S Λdyn2

β∝6

β∝4

Weff = a Λeff3

              = a Λdyn2 S

Thus, SUSY is broken by the F-component of S!
FS = ∂Weff /∂S= a Λdyn2 ≠ 0

At S << Λdyn, the Gaugino condensation picture is no more 
valid, but it is known that similar potential is generated!

g



Supersymmetry Breaking
Dynamical SUSY Breaking model 
    (Izawa-Yanagida-Intriligator-Thomas model) 

V(S)
Λ4

0 S

If the kinetic function of S is +at, i.e. minimal [S†S]D,
scalar potential of S is +at.

The kinetic function receives incalculable corrections
from the SU(2) interactions...

[S†S + (S†S)/Λdyn2 +... ]D

V(S)

Λ4

0
S

+ +...

Such a lift of potential is important in cosmology!



Now the time for model building....

We need SUSY breaking sector!

Supersymmetry 
Breaking Sector MSSM

Interaction

The MSSM spectrum depends more on how supersymmetry 
breaking is mediated than on how it is broken!

Supersymmetry Breaking and SUSY spectrum

The superparticles in the MSSM obtain masses via the 
interactions to the SUSY breaking sector.



Supersymmetry Breaking and SUSY spectrum

Useful model independent parametrization = soft parameters

Lsoft = −1
2

(
M3g̃g̃ + M2W̃W̃ + M1B̃B̃

)

−
(
auHuQ̃L

˜̄UR + adHdQ̃L
˜̄DR + aeHdL̃L

˜̄ER

)
+ c.c.

−m2
Q|Q̃L|2 − m2

Ū |
˜̄UR|2 − m2

D̄| ˜̄DR|2 − m2
L|L̃L|2 − m2

Ē |
˜̄ER|2

−m2
Hu

|Hu|2 − m2
Hd

|Hd|2 − (BµHHuHd + c.c.)

Each mediation model gives these soft parameters in terms of 
more fundamental parameters...

M1,2,3, au,d,e, mQ,U,D,E,L,Hu,Hd , B = O(102−3) GeV



　　

　　

Supersymmetry Breaking and SUSY spectrum

In terms of superspace formalism

Gaugino mass term: 

Let us assume that SUSY breaking is provided by a 
F-term of the chiral "eld in a hidden sector :
                                            Z(x,θ) = F θ2

∫d2θ Z/M* WaWa → F/M* λ λ,  
                                                  i.e.  M = F/M*

Soft scalar squared mass :

∫d4θ Z†Z q†q/M* 2 → F†F/M* 2 q†q,  
                                                      i.e. m2squark = F†F/M* 2

Explicit mediation models determine these interactions.



Although we have no experimental evidence of supersymmetry, 
there are already good clues to restrict the model parameters.

SUSY FCNC contributions 

The Supersymmetric Flavor Problem

In a general choice of the soft parameters, the sfermion masses are not always diagonal
in the flavor basis where the quark masses and the gaugino interactions are diagonal.
Then, they give additional sources of flavor mixing in addition to the CKM matrix in
the Standard Model. Thus, an arbitrary choice of parameters leads to unacceptably
large flavor changing neutral currents. This is the supersymmetric flavor problem.

For example, the masses squared of squarks are mostly constrained from the process
of K0-K̄0 mixing. In the mass insertion approximation, the contribution from the
flavor-violating soft mass squared is approximately given by,

.

(3.43)

Here, ∆m2
s̃d̃

denotes the “sdown-sstrange” mixing mass squared evaluated in the basis
where the quark masses are diagonal, and msoft the typical size of soft masses. Since
this contribution must be smaller than the standard model contribution such as

W W

(3.44)

we obtain the bound,

∆m2
s̃d̃

m2
soft

∼ 10−(2−3)
(

msoft

500 GeV

)
, (3.45)

where V denotes CKM matrix. This implies that when we expect msoft = O(100)GeV-
O(1)TeV, ∆m2

s̃d̃
must be much smaller than m2

soft.
Other flavor-violating masses squared are also constrained by processes, for exam-

ple, b → sγ, µ → eγ, and they severely constrain the form of the mass matrices of
squarks and sleptons. The form of the a-terms are also severely constrained by flavor-
changing neutral current limits, since they also contribute off-diagonal squark and
slepton masses squared after the electroweak symmetry breaking. For more detailed
analysis of the supersymmetric problem is found, for example, in Ref. [31].

These dangerous flavor violating effects can be evaded if the soft masses squared are
flavor independent and all a-terms are proportional to corresponding Yukawa coupling
constant by a family independent factor Au,d,l, that is,

au,d,l ∼ yu,d,lAu,d,l, (3.46)
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K0-K0 mixing

m2
s̃d̃

m2
soft

∼ 10−(2−3)
( msoft

500 GeV

)

Flavor-violating soft masses must be suppressed!

(a)

µ e

γ

µ
eB

(b)

d s

s d

g g

d

s

s

d

Figure 12: Diagrams which cause flavor violation in models with arbitrary soft masses.

Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0
mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM

soft contains
(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from

the D0,D
0

and B0, B
0

neutral meson systems, and the decay b → sγ.56 After the Higgs
scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton

(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0
d 〉s̃Ld̃∗R + c.c., etc.], so their form

is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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m2
ẽµ̃

m2
soft

∼ 10−(2−3)
( msoft

100 GeV

)2

Models with ,avor-blind soft parameters are preferred! 

μ→e+γ

Supersymmetry Breaking and SUSY spectrum



　　

　　

Supersymmetry Breaking and SUSY spectrum

Supersymmetry 
Breaking Sector MSSM

Physics
@Gravity Scale

Exapmple 1  : mSUGRA 

∫d4θ Z†Z φ†φ/3MPL 2 → F†F/3MPL 2 φ†φ,  
                                             m2sfermions = m02  =  F†F/3MPL 2

Universal scalar mass (almost by hand)

Universal gaugino mass (GUT)

∫d2θ   cZ /MPL WaWa  → cF/MPL 2 λλ,  
                                                      i.e. mgaugino = m1/2 = cF/MPL 



Supersymmetry Breaking and SUSY spectrum

Supersymmetry 
Breaking Sector MSSM

Physics
@Gravity Scale

Exapmple 1  : mSUGRA 

In the simplest case :

m2
scalar = m2

0, au,d,e = yy,d,e × A0mgaugino = m1/2,

at the Planck scale.

All the soft masses are expected to be around the gravitino 
mass m3/2 = O(1)TeV.

The LSP is usually thought to be the lightest neutralino.



Supersymmetry Breaking and SUSY spectrum

Supersymmetry 
Breaking Sector MSSM

MSSM gauge
interactions

Example 2 : Gauge Mediation 

Messenger particles : usually SU(5)GUT multiplet  

ΨD(3*,1,1/3), ΨDc(3,1,-1/3), ΨL(2,1,-1/2), ΨLc(2,1,1/2), 

W= (Mmess + Z )ΨDΨDc + (Mmess + Z ) ΨLΨLc

Messenger fermions :  Mmess

Messenger scalars :  Mmess2  ± F

Messengers Masses are split due to the SUSY breaking effect!



Supersymmetry Breaking and SUSY spectrum

Supersymmetry 
Breaking Sector MSSM

MSSM gauge
interactions

Example 2 : Gauge Mediation 

Figure 7.5: MSSM scalar squared masses in gauge-mediated supersymmetry breaking models arise in
leading order from these two-loop Feynman graphs. The heavy dashed lines are messenger scalars, the
solid lines are messenger fermions, the wavy lines are ordinary Standard Model gauge bosons, and the
solid lines with wavy lines superimposed are the MSSM gauginos.

a significantly stronger condition than eq. (6.4.5). Again, eqs. (7.7.14) and (7.7.15) should be applied at
an RG scale equal to the average mass of the messenger fields running in the loops. However, evolving
the RG equations down to the electroweak scale generates non-zero au, ad, and ae proportional to the
corresponding Yukawa matrices and the non-zero gaugino masses, as indicated in section 6.5. These
will only be large for the third-family squarks and sleptons, in the approximation of eq. (6.1.2). The
parameter b may also be taken to vanish near the messenger scale, but this is quite model-dependent,
and in any case b will be non-zero when it is RG-evolved to the electroweak scale. In practice, b can be
fixed in terms of the other parameters by the requirement of correct electroweak symmetry breaking,
as discussed below in section 8.1.

Because the gaugino masses arise at one-loop order and the scalar squared-mass contributions
appear at two-loop order, both eq. (7.7.12) and (7.7.14) correspond to the estimate eq. (7.4.3) for
msoft, with Mmess ∼ yI〈S〉. Equations (7.7.12) and (7.7.14) hold in the limit of small 〈FS〉/yI〈S〉2,
corresponding to mass splittings within each messenger supermultiplet that are small compared to the
overall messenger mass scale. The sub-leading corrections in an expansion in 〈FS〉/yI〈S〉2 turn out
[163]-[165] to be quite small unless there are very large messenger mass splittings.

The model we have described so far is often called the minimal model of gauge-mediated supersym-
metry breaking. Let us now generalize it to a more complicated messenger sector. Suppose that q, q
and !, ! are replaced by a collection of messengers ΦI ,ΦI with a superpotential

Wmess =
∑

I

yISΦIΦI . (7.7.16)

The bar is used to indicate that the left-handed chiral superfields ΦI transform as the complex conjugate
representations of the left-handed chiral superfields ΦI . Together they are said to form a “vector-like”
(real) representation of the Standard Model gauge group. As before, the fermionic components of each
pair ΦI and ΦI pair up to get squared masses |yI〈S〉|2 and their scalar partners mix to get squared
masses |yI〈S〉|2 ± |yI〈FS〉|. The MSSM gaugino mass parameters induced are now

Ma =
αa

4π
Λ
∑

I

na(I) (a = 1, 2, 3) (7.7.17)

where na(I) is the Dynkin index for each ΦI+ΦI , in a normalization where n3 = 1 for a 3+3 of SU(3)C
and n2 = 1 for a pair of doublets of SU(2)L. For U(1)Y , one has n1 = 6Y 2/5 for each messenger pair
with weak hypercharges ±Y . In computing n1 one must remember to add up the contributions for each
component of an SU(3)C or SU(2)L multiplet. So, for example, (n1, n2, n3) = (2/5, 0, 1) for q + q and
(n1, n2, n3) = (3/5, 1, 0) for ! + !. Thus the total is

∑
I(n1, n2, n3) = (1, 1, 1) for the minimal model,
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Gaugino mass @ 1-loop scalar mass @ 1-loop

Figure 7.4: Contributions to the MSSM gaugino masses
in gauge-mediated supersymmetry breaking models come
from one-loop graphs involving virtual messenger parti-
cles.

B̃, W̃ , g̃

〈FS〉

〈S〉

with squared mass eigenvalues |y2〈S〉|2 ± |y2〈FS〉|. In just the same way, the scalars q, q get squared
masses |y3〈S〉|2 ± |y3〈FS〉|.

So far, we have found that the effect of supersymmetry breaking is to split each messenger super-
multiplet pair apart:

!, ! : m2
fermions = |y2〈S〉|2 , m2

scalars = |y2〈S〉|2 ± |y2〈FS〉| , (7.7.10)

q, q : m2
fermions = |y3〈S〉|2 , m2

scalars = |y3〈S〉|2 ± |y3〈FS〉| . (7.7.11)

The supersymmetry violation apparent in this messenger spectrum for 〈FS〉 #= 0 is communicated to
the MSSM sparticles through radiative corrections. The MSSM gauginos obtain masses from the 1-loop
Feynman diagram shown in Figure 7.4. The scalar and fermion lines in the loop are messenger fields.
Recall that the interaction vertices in Figure 7.4 are of gauge coupling strength even though they do not
involve gauge bosons; compare Figure 3.3g. In this way, gauge-mediation provides that q, q messenger
loops give masses to the gluino and the bino, and !, ! messenger loops give masses to the wino and
bino fields. Computing the 1-loop diagrams, one finds [162] that the resulting MSSM gaugino masses
are given by

Ma =
αa

4π
Λ, (a = 1, 2, 3), (7.7.12)

in the normalization for αa discussed in section 6.4, where we have introduced a mass parameter

Λ ≡ 〈FS〉/〈S〉 . (7.7.13)

(Note that if 〈FS〉 were 0, then Λ = 0 and the messenger scalars would be degenerate with their
fermionic superpartners and there would be no contribution to the MSSM gaugino masses.) In contrast,
the corresponding MSSM gauge bosons cannot get a corresponding mass shift, since they are protected
by gauge invariance. So supersymmetry breaking has been successfully communicated to the MSSM
(“visible sector”). To a good approximation, eq. (7.7.12) holds for the running gaugino masses at an
RG scale Q0 corresponding to the average characteristic mass of the heavy messenger particles, roughly
of order Mmess ∼ yI〈S〉 for I = 2, 3. The running mass parameters can then be RG-evolved down to
the electroweak scale to predict the physical masses to be measured by future experiments.

The scalars of the MSSM do not get any radiative corrections to their masses at one-loop order.
The leading contribution to their masses comes from the two-loop graphs shown in Figure 7.5, with
the messenger fermions (heavy solid lines) and messenger scalars (heavy dashed lines) and ordinary
gauge bosons and gauginos running around the loops. By computing these graphs, one finds that each
MSSM scalar φi gets a squared mass given by:

m2
φi = 2Λ2

[(
α3

4π

)2

C3(i) +
(
α2

4π

)2

C2(i) +
(
α1

4π

)2

C1(i)

]

, (7.7.14)

with the quadratic Casimir invariants Ca(i) as in eqs. (6.5.5)-(6.5.8). The squared masses in eq. (7.7.14)
are positive (fortunately!).

The terms au, ad, ae arise first at two-loop order, and are suppressed by an extra factor of αa/4π
compared to the gaugino masses. So, to a very good approximation one has, at the messenger scale,

au = ad = ae = 0, (7.7.15)
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Supersymmetry Breaking and SUSY spectrum

Supersymmetry 
Breaking Sector MSSM

MSSM gauge
interactions

Example 2 : Gauge Mediation 

m2
scalar = 2

(αa

4π

)2
CaΛ2

SUSYmgaugino =
αa

4π
ΛSUSY

ΛSUSY =
F

M
F : SUSY parameter M : Messenger scale

at the Messenger scale.

The SUSY breaking is mediated via the MSSM charged “messenger 
"elds“ which couples to the Hidden sector.

For a given SUSY breaking “F”, 
                   (Gauge Mediaiton) ≫ (Gravity Mediaiton)

For a "xed SUSY spectrum → gravitino is much lighter and the LSP!



Supersymmetry Breaking and SUSY spectrum

Supersymmetry 
Breaking Sector MSSMSUGRA Effects

Example 3 : Anomaly Mediation

In SUGRA, all the dimensionful supersymmetric parameters are 
accompanied by soft parameters even in the absence of direct 
couplings to the SUSY breaking sector!

Ex)  Mass term in W = μ Hu Hd   

                           → SUSY breaking bi-linear term : V = μ m3/2 Hu Hd

For a supersymmetric coupling with the mass dimension “n”,  
it is accompanied by  a soft parameter n x m3/2 .



Supersymmetry Breaking and SUSY spectrum

Supersymmetry 
Breaking Sector MSSMSUGRA Effects

Example 3 : Anomaly Mediation

Gauge coupling : mass dimension 0 at the tree-level 
                                     → gaugino mass is zero at the tree-level!

Gauge coupling has anomalous mass dimension at the loop-level!
                                     → gaugino mass is non-zero at the loop-level!

Ma  = βa/ga x m3/2 ( βa : β function of gauge coupling)

SU(2) gauge coupling is less scale dependent →  the wino is the LSP!
Anomaly Mediation effects are subdominant if there are direct 
interactions to the SUSY breaking sector.



Supersymmetry Breaking and SUSY spectrum

The above soft parameters are given at the high energy scale.

We need to evolve the mass parameters down to 
around TeV scale to know the spectrum.

Planck scale
Messenger scale

SUSY effects
are mediatedPhysical Spectrum

Weak scale
~TeV

Renormalization
scale

RGE



Supersymmetry Breaking and SUSY spectrum
Gaugino Masses Running

The RG equation of gaugino masses

each supersymmetric parameter are proportional to the parameter itself. This is actually a
consequence of a general and powerful result known as the supersymmetric nonrenormaliza-
tion theorem.94 This theorem implies that the logarithmically divergent contributions to a
given process can always be written in the form of a wave-function renormalization, without
any vertex renormalization.‡ It is true for any supersymmetric theory, not just the MSSM,
and holds to all orders in perturbation theory. It can be proved most easily using superfield
techniques. In particular, it means that once we have a theory which can explain why µ
is of order 102 or 103 GeV at tree-level, we do not have to worry about µ being infected
(made very large) by radiative corrections involving the masses of some very heavy unknown
particles; all such RG corrections to µ will be directly proportional to µ itself.

The one-loop RG equations for the three gaugino mass parameters in the MSSM are
determined by the same quantities bMSSM

a which appear in the gauge coupling RG eqs. (5.17):

d

dt
Ma =

1

8π2
bag

2
aMa (ba = 33/5, 1,−3) (7.5)

for a = 1, 2, 3. It is therefore easy to show that the three ratios Ma/g2
a are each constant

(RG-scale independent) up to small two-loop corrections. In minimal supergravity models,
we can therefore write

Ma(Q) =
g2
a(Q)

g2
a(Q0)

m1/2 (a = 1, 2, 3) (7.6)

at any RG scale Q < Q0, where Q0 is the input scale which is presumably nearly equal to
MP . Since the gauge couplings are observed to unify at MU ∼ 0.01MP , one expects § that
g2
1(Q0) ≈ g2

2(Q0) ≈ g2
3(Q0). Therefore, one finds that

M1

g2
1

=
M2

g2
2

=
M3

g2
3

(7.7)

at any RG scale, up to small two-loop effects and possibly larger threshold effects near MU

and MP . The common value in eq. (7.7) is also equal to m1/2/g
2
U in minimal supergravity

models, where gU is the unified gauge coupling at the input scale where m1/2 is the common
gaugino mass. Interestingly, eq. (7.7) is also the solution to the one-loop RG equations in
the case of the gauge-mediated boundary conditions eq. (6.40) applied at the messenger
mass scale. This is true even though there is no such thing as a unified gaugino mass m1/2

in the gauge-mediated case, because of the fact that the gaugino masses are proportional
to the g2

a times a constant. So eq. (7.7) is theoretically well-motivated (but certainly not
inevitable) in both frameworks. The prediction eq. (7.7) is particularly useful since the
gauge couplings g2

1 , g2
2 , and g2

3 are already quite well known at the electroweak scale from
experiment. Therefore they can be extrapolated up to at least MU , assuming that the
apparent unification of gauge couplings is not a fake. The gaugino mass parameters feed
into the RG equations for all of the other soft terms, as we will see.

Next we consider the 1-loop RG equations for the analytic soft parameters au, ad, ae.
In models obeying eq. (5.15), these matrices start off proportional to the corresponding
‡Actually, there is vertex renormalization in the field theory in which auxiliary fields have been integrated
out, but the sum of divergent contributions for a given process always has the form of wave-function renor-
malization. See Ref.23 for a discussion of this point.
§In a GUT model, it is automatic that the gauge couplings and gaugino masses are unified at all scales
Q > MU and in particular at Q ≈ MP , because in the unified theory the gauginos all live in the same
representation of the unified gauge group. In many superstring models, this is also known to be a good
approximation.
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inevitable) in both frameworks. The prediction eq. (7.7) is particularly useful since the
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3 are already quite well known at the electroweak scale from
experiment. Therefore they can be extrapolated up to at least MU , assuming that the
apparent unification of gauge couplings is not a fake. The gaugino mass parameters feed
into the RG equations for all of the other soft terms, as we will see.

Next we consider the 1-loop RG equations for the analytic soft parameters au, ad, ae.
In models obeying eq. (5.15), these matrices start off proportional to the corresponding
‡Actually, there is vertex renormalization in the field theory in which auxiliary fields have been integrated
out, but the sum of divergent contributions for a given process always has the form of wave-function renor-
malization. See Ref.23 for a discussion of this point.
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This ensures that only the squarks and sleptons of the third family can have large (scalar)3

couplings. Finally, one can avoid disastrously large CP-violating effects with the assumption
that the soft parameters do not introduce new complex phases. This is automatic for m2

Hu

and m2
Hd

, and for m2
Q, m2

u etc. if eq. (5.14) is assumed; if they were not real numbers, the
lagrangian would not be real. One can also fix µ in the superpotential and b in eq. (5.11)
to be real, by an appropriate phase rotation of Hu and Hd. If one then assumes that

arg(M1), arg(M2), arg(M3), arg(Au0), arg(Ad0), arg(Ae0) = 0 or π, (5.16)

then the only CP-violating phase in the theory will be the ordinary CKM phase found in the
ordinary Yukawa couplings. Together, the conditions eqs. (5.14)-(5.16) make up a rather
weak version of what is often called the assumption of soft-breaking universality.

The soft-breaking universality relations eqs. (5.14)-(5.16) (or stronger versions of them)
are presumed to be the result of some specific model for the origin of supersymmetry break-
ing, even though there is considerable disagreement among theorists as to what the specific
model should actually be. In any case, they are indicative of an underlying simplicity or
symmetry of the lagrangian at some very high energy scale Q0, which we will call the “input
scale”. If we use this lagrangian to compute masses and cross-sections and decay rates for
experiments at ordinary energies near the electroweak scale, the results will involve large
logarithms of order ln(Q0/mZ) coming from loop diagrams. As is usual in quantum field the-
ory, the large logarithms can be conveniently resummed using renormalization group (RG)
equations, by treating the couplings and masses appearing in the lagrangian as “running”
parameters. Therefore, eqs. (5.14)-(5.16) should be interpreted as boundary conditions on
the running soft parameters at the RG scale Q0 which is very far removed from direct ex-
perimental probes. We must then RG-evolve all of the soft parameters, the superpotential
parameters, and the gauge couplings down to the electroweak scale or comparable scales
where humans perform experiments.

At the electroweak scale, eqs. (5.14) and (5.15) will no longer hold. However, RG cor-
rections due to gauge interactions will respect eqs. (5.14) and (5.15), while RG corrections
due to Yukawa interactions are quite small except for couplings involving the top squarks
(stops) and possibly the bottom squarks (sbottoms) and tau sleptons (staus). In particu-
lar, the (scalar)3 couplings should be quite negligible for the squarks and sleptons of the
first two families. Furthermore, RG evolution does not introduce new CP-violating phases.
Therefore, if universality can be arranged to hold at the input scale, supersymmetric con-
tributions to FCNC and CP-violating observables can be acceptably small in comparison to
present limits (although quite possibly measurable in future experiments).

One good reason to be optimistic that such a program can succeed is the celebrated
apparent unification of gauge couplings in the MSSM. 58 The 1-loop RG equations for the
Standard Model gauge couplings g1, g2, g3 are given by

d

dt
ga =

1

16π2
bag

3
a ⇒

d

dt
α−1

a = −
ba

2π
(a = 1, 2, 3) (5.17)

where t = ln(Q/Q0) with Q the RG scale. In the Standard Model, bSM
a = (41/10, −19/6,

−7), while in the MSSM one finds instead bMSSM
a = (33/5, 1, −3). The latter set of coef-

ficients are larger because of the virtual effects of the extra MSSM particles in loops. The
normalization for g1 here is chosen to agree with the canonical covariant derivative for grand
unification of the gauge group SU(3)C × SU(2)L × U(1)Y into SU(5) or SO(10). Thus in
terms of the conventional electroweak gauge couplings g and g′ with e = g sin θW = g′ cos θW ,

39

(                )

at any RG scale

M1 : M2 : M3 = 0.5 : 1 : 3.5 at the TeV range

This ratio is the prediction of the universal gaugino mass! 
[Realized in both the mSUGRA and gauge mediation but 
not in the AMSB]

Checking the gaugino mass universality provides us very 
important hints on the origin of SUSY breaking.



Supersymmetry Breaking and SUSY spectrum
squark/slepton Masses 

("rst 2 generations)

for the first and second family squark and slepton squared masses can be written as ‖

16π2 d

dt
m2

φ = −
∑

a=1,2,3

8g2
aCφ

a |Ma|2 (7.14)

for each scalar φ, where the
∑

a is over the three gauge groups U(1)Y , SU(2)L and SU(3)C ;
Ma are the corresponding running gaugino mass parameters which are known from eq. (7.7);
and the constants Cφ

a are the same quadratic Casimir invariants which appeared in eqs. (6.43)-
(6.45). An important feature of eq. (7.14) is that the right-hand sides are strictly negative,
so that the scalar (mass)2 parameters grow as they are RG-evolved from the input scale
down to the electroweak scale. Even if the scalars have zero or very small masses at the
input scale, as in the “no-scale” boundary condition limit m2

0 = 0, they will obtain large
positive squared masses at the electroweak scale, thanks to the effects of the gaugino masses.

The RG equations for the (mass)2 parameters of the Higgs scalars and third family
squarks and sleptons get the same gauge contributions as in eq. (7.14), but they also have
contributions due to the large Yukawa (yt,b,τ ) and soft (at,b,τ ) couplings. At one-loop order,
these only appear in three combinations:

Xt = 2|yt|2(m2
Hu

+ m2
Q3

+ m2
u3

) + 2|at|2, (7.15)

Xb = 2|yb|2(m2
Hd

+ m2
Q3

+ m2
d3

) + 2|ab|2, (7.16)

Xτ = 2|yτ |2(m2
Hd

+ m2
L3

+ m2
e3

) + 2|aτ |2. (7.17)

In terms of these quantities, the RG equations for the soft Higgs (mass)2 parameters m2
Hu

and m2
Hd

are

16π2 d

dt
m2

Hu
= 3Xt − 6g2

2 |M2|2 −
6

5
g2
1 |M1|2, (7.18)

16π2 d

dt
m2

Hd
= 3Xb + Xτ − 6g2

2 |M2|2 −
6

5
g2
1 |M1|2. (7.19)

Note that Xt, Xb, and Xτ are positive, so their effect is always to decrease the Higgs masses
as one evolves the RG equations downward from the input scale to the electroweak scale.
Since yt is the largest of the Yukawa couplings because of the experimental fact that the
top quark is heavy, Xt is typically expected to be larger than Xb and Xτ . This can cause
the RG-evolved m2

Hu
to run negative near the electroweak scale, helping to destabilize the

point Hu = 0 and so provoking a Higgs VEV which is just what we want.∗∗ Thus a large
top Yukawa coupling favors the breakdown of the electroweak symmetry breaking because
it induces negative radiative corrections to the Higgs (mass)2.

The third family squark and slepton (mass)2 parameters also get contributions which
depend on Xt, Xb and Xτ . Their RG equations are given by

16π2 d

dt
m2

Q3
= Xt + Xb −

32

3
g2
3 |M3|2 − 6g2

2 |M2|2 −
2

15
g2
1 |M1|2 (7.20)

‖There are also terms in the scalar (mass)2 RG equations which are proportional to Tr[Y m2] (the sum of the
weak hypercharge times the soft (mass)2 for all scalars in the theory). However, these contributions vanish
in both the cases of minimal supergravity and gauge-mediated boundary conditions for the soft terms, as
one can see by explicitly calculating Tr[Y m2] in each case. If Tr[Y m2] is zero at the input scale, then it will
remain zero under RG evolution. Therefore we neglect such terms in our discussion, although they can have
an important effect in more general situations.
∗∗One should think of “m2

Hu
” as a parameter unto itself, and not as the square of some mythical real number

mHu
. Thus there is nothing strange about having m2

Hu
< 0. However, strictly speaking m2

Hu
< 0 is neither

necessary nor sufficient for electroweak symmetry breaking; see section 7.2.
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Gaugino mass effects raise the scalar 
masses at the low energy!

low 

messenger 

scale

b.c. 

depends 

on SU(5) 
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universal b.c.
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low 
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b.c. 
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universal b.c.

(“mSUGRA”)

[borrowed from M.Peskin’s lecture]

gluino mass effect

Typically, squarks are much heavier than sleptons.
Typically, squarks are degenerated compared with 
leptons due to large gluino contributions 



O(1)TeV

100GeV

Heavy Higgs bosons
Higgsino

Gluino

Bino

Wino

Higgs boson

Supersymmetry Breaking and SUSY spectrum

Typical Spectrum...

sfermions

Gravitino mass (SUGRA)

Gravitino mass (Gauge Mediation) : O(1)eV - O(1) GeV

Gravitino mass (Anomaly Mediation) : O(10-1000) TeV



SUSY at the LHC
Sparticle production at LHC7 for mq̃ ∼ mg̃
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• 9 × 10−5 fb−1 × 5 × 104 fb ∼ 4 events!

Howie Baer, University of Colorado, July 9, 2010 14

Sparticle Production at LHC7 for mq̃ = 2mg̃
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Production cross section of the SUSY particles @ LHC

gluino and squark are mainly produced

the neutralino NLSP case, the decay !̃ → !G̃ can be either fast or very slow, depending on the scale of
supersymmetry breaking.

If
√
〈F 〉 is larger than roughly 103 TeV (or the gravitino is heavier than a keV or so), then the

NLSP is so long-lived that it will usually escape a typical collider detector. If Ñ1 is the NLSP, then,
it might as well be the LSP from the point of view of collider physics. However, the decay of Ñ1 into
the gravitino is still important for cosmology, since an unstable Ñ1 is clearly not a good dark matter
candidate while the gravitino LSP conceivably could be. On the other hand, if the NLSP is a long-
lived charged slepton, then one can see its tracks (or possibly decay kinks) inside a collider detector
[144]. The presence of a massive charged NLSP can be established by measuring an anomalously long
time-of-flight or high ionization rate for a track in the detector.

9 Experimental signals for supersymmetry

So far, the experimental study of supersymmetry has unfortunately been confined to setting limits.
As we have already remarked in section 5.4, there can be indirect signals for supersymmetry from
processes that are rare or forbidden in the Standard Model but have contributions from sparticle loops.
These include µ → eγ, b → sγ, neutral meson mixing, electric dipole moments for the neutron and the
electron, etc. There are also virtual sparticle effects on Standard Model predictions like Rb (the fraction
of hadronic Z decays with bb pairs) [220] and the anomalous magnetic moment of the muon [221], which
already exclude some otherwise viable models. Extensions of the MSSM (GUT and otherwise) can quite
easily predict proton decay and neutron-antineutron oscillations at low but observable rates, even if
R-parity is exactly conserved. However, it would be impossible to ascribe a positive result for any
of these processes to supersymmetry in an unambiguous way. There is no substitute for the direct
detection of sparticles and verification of their quantum numbers and interactions. In this section we
will give an incomplete and qualitative review of some of the possible signals for direct detection of
supersymmetry. The reader is encouraged to consult references below for reviews that cover the subject
more systematically.

9.1 Signals at hadron colliders

The effort to discovery supersymmetry should come to fruition at hadron colliders operating in the
present and near future. At this writing, the CDF and D∅ detectors at the Fermilab Tevatron pp collider
with

√
s = 1.96 TeV are looking for evidence of sparticles and Higgs bosons. Within the next few years,

the CERN Large Hadron Collider (LHC) will continue the search at
√

s = 14 TeV. If supersymmetry
is the solution to the hierarchy problem discussed in the Introduction, then the Tevatron may [222],
and the LHC almost certainly will [223]-[227], find direct evidence for it.

At hadron colliders, sparticles can be produced in pairs from parton collisions of electroweak
strength:

qq → C̃+
i C̃−

j , ÑiÑj , ud → C̃+
i Ñj, du → C̃−

i Ñj, (9.1)

qq → !̃+
i !̃−j , ν̃!ν̃

∗
! ud → !̃+

L ν̃! du → !̃−L ν̃∗
! , (9.2)

as shown in fig. 9.1, and reactions of QCD strength:

gg → g̃g̃, q̃iq̃
∗
j , (9.3)

gq → g̃q̃i, (9.4)

qq → g̃g̃, q̃iq̃
∗
j , (9.5)

qq → q̃iq̃j, (9.6)

88
If they are within TeV
→ they should have beed discovered...



SUSY at the LHC
How do we look for the SUSY events ?
It depends on the LSP...

In the models with neutralino LSP (e.g. mSUGRA), the decays of 
the produced superparticles result in "nal state with two LSPs 
which escape the detector.

SUSY events : n jets + m leptons + missing ET (n>0,m>0)

ex)

The LSP escapes the detector and 
results in the missing ET.
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SUSY at the LHC

In the models with gravitino LSP (e.g. gauge mediation), the NLSP 
can have a long lifetime.

d/βγNLSP ∼ 6m ×
( mχ0

100 GeV

)−5 ( m3/2

1 keV

)2

Decay length of the NLSP (decaying into gravitino)

[NLSP : The lightest SUSY particle in the MSSM]

Prompt decaying NLSP

SUSY events : 

n jets + m leptons + missing ET (n>0,m>0)

Escaping neutralino NLSP

SUSY events : 

n jets + m leptons + missing ET (n>0,m>0)

Escaping charged NLSP
SUSY events : n jets + m leptons + new charged tracks

(+ photons)



SUSY at the LHC
SM backgrounds

SUSY events : n jets + m leptons + missing ET

QCD multi-jets (ET>100GeV)  ~1μb

Suppressed by large missing ET.

W/Z + jets ~ 10nb [W→τν, lν,  Z→νν]

SUSY events can win with larger ET, more jets
Top pair + jets ~ 800pb

SUSY events : n jets + m leptons + new charged tracks

Collect slow tracks to distinguish the charged tracks from the 
muon tracks.



ATLAS 2012

0-lepton + jets + missing ET

gluino mass > 950GeV
95% exclusion limit

[mgluino ≪ msquark]

gluino mass > 1.6TeV
[mgluino = msquark]

Large portion of the parameter space expected from the 
conventional naturalness has been excluded...
We were too serious about the naturalness?
The light SUSY but more intricate spectrum?

SUSY at the LHC0 Lepton + Jets + ETmiss
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Prospects :

SUSY at the LHC

30
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SUSY Prospect : Squark-Gluino

Squark/gluinoの発見可能性（14 TeV)

Assumed 
‣30% background 

uncertainty
‣massless LSP

~3000 fb-1 : + 300-400 GeV@14TeV run : gluino ~2TeV, squark ~2.3TeV with 300fb-1 

[borrowed from a talk by K.Terasi]



Higgs mass in the MSSM

 V = - mhiggs2/2 h†h + λ/4 (h†h)2  

A combination of the 
SUSY breaking masses
and the Higgsino mass

λ= (g’2+g2)/2 cos22β
related to gauge couplings

mhiggs = λ1/2 v  ~ mZ cos2β

The predicted Higgs boson mass is around Z-boson mass,

at the tree-level.

[tanβ = vu/vd ] 

In the MSSM, the tree-level Higgs boson mass is given by the gauge 
coupling constants.

What does 126GeV Higgs boson mean in SUSY models?

It looks inconsistent with the observed Higgs mass...
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Figure 3: Left) The contour plot of the lightest Higgs boson mass for mgluino ⌅ 2.1 TeV,
tan� = 10, Nmess = 1 and mt = 173.3 GeV. The figure shows that the lightest Higgs mass is
maximized at y⇥t ⌅ 0.98. The blank region is mainly excluded because of tachyonic stop masses.
Right) A plot of the upper bound on the lightest Higgs boson mass for a given gluino mass. The
blue band corresponds to the optimal choice, i.e. y⇥t = 0.98 and x ⌅ 10�1.4. We also show the
upper bound for conventional models of gauge mediation, i.e. y⇥t = 0 (yellow band). The upper
and the lower boundary of the each band corresponds to the upper and the lower limits of the
current world average top mass, mt = 173.3± 1.1 GeV [17].

3.1 The heavy lightest Higgs region

As we have shown in the previous section, an interesting feature of Type-II gauge media-

tion is the relatively large stop A-terms which are generated at the one-loop level. With

a relatively large A-term, the lightest Higgs boson mass, which receives important SUSY

breaking corrections via the top-stop loop diagrams [15], is pushed up to
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Here, mZ and mt are the masses of the Z-boson and top quark, respectively, and tan �

is the ratio of the two vacuum expectation values of the Higgs doublets.11 The above

expression for the Higgs mass is maximized for an A-term of order At ⌅
⇧

6 ⇥ mt̃. By

11In the above expression, we have neglected the stop mixing from the µ-term since it is suppressed for
tan� & 10.
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Tree-level quartic term: One-loop log enhanced:

-
One-loop "nite:

[’91 Haber, Hemp/ing, ’91 Ellis, Ridol", Zwirner, ’91 Okada, Yamaguchi, Yanagida]

λ =
1
4
(g2

1 + g2
2) cos2 2β

2

The heavier Higgs boson mass than mZ can be obtained with large 
SUSY breaking effects!

The radiative corrections to the Higgs boson mass logarithmically 
depends on the stop masses!

Higgs mass in the MSSM



In the simplest case, mhiggs ~ 126 GeV suggests the sfermion (stop) 
masses above O(10-100)TeV !

SUSY-FCNC/CP constraints are relaxed!

Consistent with negative results at the 
LHC experiments.
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[’12, MI, Matsumoto,Yanagida (μH=O(Msusy))] 

 gluino mass >1 TeV for Msusy >>TeV

Gauginos obtain masses automatically through anomaly mediation and hig-

gsino threshold corrections, suppressed compared to the other superpartners by

factors of order 10−3−10−2 [12, 13, 14]. No new assumptions or model building

is required to obtain these masses.

There is only one potentially serious difficulty faced by this scenario: It may

be out of reach of currently planned experimental efforts. Indeed, CP violation in

K0−K̄0 mixing constrains the 1−2 elements of the left and right down squark mass

matrices as follows [6]:
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where m̃A = O(m3/2) is the average of the first and second generation squark masses

of type A. The naive limit on the sfermion mass scale is thus roughly a few thousand

TeV, i.e. m3/2 ! O(103)TeV. Remembering that the anomaly mediated gaugino

masses are of order 10−3−10−2m3/2, this leads to gauginos with masses which might

be expected to be larger than ∼ TeV, and detection of superpartners at the LHC will

be challenging. This issue is exacerbated by the fact that the correct thermal relic

abundance of wino dark matter is obtained for wino masses of about 2.7TeV [15].

Note that for such large wino masses, dark matter direct and indirect detection will

unfortunately be out of reach for the foreseeable future.

In spite of this somewhat pessimistic argument, there are good reasons to be

hopeful. As will be discussed in detail later in this paper, detection of the wino and

gluino at the LHC require roughly mwino "1TeV and mgluino " 2TeV respectively.

There is thus some tension here with the bounds on these masses suggested by K0−
K̄0 mixing, but this tension is clearly very mild. Even minor order 1 suppressions

of the off-diagonal down squark mass matrix elements, or mildly suppressed CP

violating phases, etc, would be sufficient to allow LHC discovery of at least one of

these superpartners.1

1It is also worth noting that if the squarks and quarks share in any flavor symmetries, then this

would also generically lead to suppressions in K0− K̄0 mixing, and lower the allowed superparticle

masses.

3

[’96 Gabbiani, Gabrielli, Masiero, Silvestrini]
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How about the naturalness arguments?

mSUSY = O(10-100)TeV requires "ne-tuning of O(10-4-10-6).

This is not satisfactory at all, but is much better than the SM which 
requires "ne-tuning of O(10-28-10-32).

What "lls the gap between O(10-100)TeV and O(100)GeV?

At this point, I do not know the answer...

The measure of the naturalness should be de"ned on multidimensional 
parameter space with, for example, cosmological parameters...

The naturalness arguments are still motivation for the “low scale” SUSY.

Higgs mass in the MSSM



The gravitino problem is solved for m3/2 = O(10-100)TeV.

This is a good news in cosmology!

The gravitinos are produced by particle 
scattering in thermal bath in the early universe 
(abundance proportional to TR ). [’82 Weinberg]

[’05 Kohri, Moroi, Yotsuyanagi]

Figure 9: Same as Fig. 7 except for the MSSM parameters are evaluated for the Case 3.

gauginos, in particular, into the gluino when kinematically allowed. (See Fig. 4.) We
found that the gluon-gluino final state produces more hadrons (in particular, protons and
neutrons) than the quark-squark final state. Consequently, in the Case 3, upper bound on
TR becomes lower than that for the Case 2. We have also studied the case where masses
of all the squarks and sfermions are pushed to infinity by hand while keeping the gaugino
mass as low as O(100 GeV). In this case, the constraint on TR is almost the same as that
for the Case 3. In addition, in the Case 4, masses of all the superparticles are very large
(∼ a few TeV). Then, lifetime of the gravitino becomes relatively long, which makes the
upper bound less stringent for gravitinos with m3/2 ∼ a few TeV.

Although our main concern is to study the effects of the gravitino decay on the BBN,
it is also important to consider other constraints. One of the important constraints is
from the production of the LSP from the decay of the gravitino. Importantly, the LSP
is produced with the decay of the gravitino, and the present number density of the LSP
is given by the sum of two contributions; thermal relic, which is calculated with the
DarkSUSY package for each cases, and the non-thermally produced LSP from the gravitino
decay. Since one LSP is produced by the decay of one gravitino, the density parameter of

22

Y3/2 = n3/2/s ~ 10-12 x (TR /109 GeV )

[TR : Reheating temperature after in/ation]

m3/2=O(1)TeV → BBN constrains thermal 
history of cosmology...

The model with msfermion = m3/2 = O(10-100)TeV can be consistent with 
simple baryogenesis such as leptogenesis!

[Leptogenesis requires TR > 109GeV, ’86 Fukugita,Yanagida]
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The gravitino problem is solved for m3/2 = O(10-100)TeV.

This is a good news in cosmology!

The gravitino decay rate is suppressed by 
the Planck scale ( Γ3/2 = m3/23/MPL2)

[’05 Kohri, Moroi, Yotsuyanagi]

Figure 9: Same as Fig. 7 except for the MSSM parameters are evaluated for the Case 3.

gauginos, in particular, into the gluino when kinematically allowed. (See Fig. 4.) We
found that the gluon-gluino final state produces more hadrons (in particular, protons and
neutrons) than the quark-squark final state. Consequently, in the Case 3, upper bound on
TR becomes lower than that for the Case 2. We have also studied the case where masses
of all the squarks and sfermions are pushed to infinity by hand while keeping the gaugino
mass as low as O(100 GeV). In this case, the constraint on TR is almost the same as that
for the Case 3. In addition, in the Case 4, masses of all the superparticles are very large
(∼ a few TeV). Then, lifetime of the gravitino becomes relatively long, which makes the
upper bound less stringent for gravitinos with m3/2 ∼ a few TeV.

Although our main concern is to study the effects of the gravitino decay on the BBN,
it is also important to consider other constraints. One of the important constraints is
from the production of the LSP from the decay of the gravitino. Importantly, the LSP
is produced with the decay of the gravitino, and the present number density of the LSP
is given by the sum of two contributions; thermal relic, which is calculated with the
DarkSUSY package for each cases, and the non-thermally produced LSP from the gravitino
decay. Since one LSP is produced by the decay of one gravitino, the density parameter of

22

τ3/2 ~ 0.01sec x (100TeV / m3/2 )3

[ τBBN = O(1)sec ]

The model with msfermion = m3/2 = O(10-100)TeV can be consistent with 
simple baryogenesis such as leptogenesis!

[Leptogenesis requires TR > 109GeV, ’86 Fukugita,Yanagida]

m3/2=O(1)TeV → BBN constrains thermal 
history of cosmology...
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Who is Dark Matter?
The thermal relics of Weakly Interacting Massive Particles (WIMPs) 
are the most motivated candidate.

• DM is in thermal equilibrium for T > M.

• For M < T,  DM is no more created
• DM is still annihilating for M < T for a while...

• DM is also diluted by the cosmic expansion

• DM cannot "nd each other and stop 
annihilating at some point

• DM number in comoving volume is frozen

The WIMPs with the annihilation cross section 〈σv〉 ∼ 10−9GeV−2

at the early universe are very good candidates of Dark Matter.
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M/T

Freeze out

DM

DM

...

D
M

 n
um

be
r i

n 
co

m
ov

in
g 

vo
lu

m
e SM

SM

DM SM

DM SM

DM SM

ΩDMh2 ! 0.1 ×
(

10−9 GeV−2

〈σv〉

)

Increasing 〈σv〉

Dark Matter



0 500 1000 1500 2000

10-43

10-44

10-45

10-46

10-47

0.01

0.1

mc @GeVD
s
p,
n
@cm

2 D

SI

chcc

XENON100

LUX
SuperCDMS

XENON1T

0 500 1000 1500 200010-42

10-41

10-40

10-39

10-38

0.01

0.1

mc @GeVD

s
p,
n
@cm

2 D

SD

cZ
cc

XENON100

XENON1T

IceCube tt

IceCubeW+W-

Figure 1: Present limits (filled or solid) and future reach (dashed) for SI/SD scattering of
DM, shown in terms of the cross-section (left axis) or DM Higgs/Z coupling (right axis). For
SI scattering we show the current limit from XENON100 [1] as well as the projections for
LUX [4], SuperCDMS [5], and XENON1T [3]. For SD scattering we show the current limit
from XENON100 [6] on DM-neutron scattering, as well as the current limit from IceCube [2]
on DM-proton scattering, assuming annihilations into W+W� or tt̄ (estimated). We also show
our estimate for the reach of XENON1T [7] for DM-neutron scattering.

like to ask: what is the characteristic size for the SI and SD cross-sections expected of neutralino
DM which couples through the Higgs and Z bosons? Given the interactions,
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then in the limit in which the DM is heavier than the nucleon, the SI and SD cross-sections are
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While �
SD

is typically considerably larger than �
SI

, SI experimental constraints are commensu-
rately stronger than SD, so these two limits are comparable in strength [21, 22]. Note that �

SI

depends on nuclear form factors, in particular the strange quark content of the nucleon. For our
analysis we adopt the lattice values of [20]. A more technical discussion of the strange quark
content of the nucleon is contained in App. A.

The SI scattering of DM with nucleons is highly constrained by null results from direct
detection experiments. At the forefront of this experimental e↵ort is XENON100 [1], an un-
derground, two-phase DM detection experiment which employs a 62 kg radio-pure liquid Xe
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our estimate for the reach of XENON1T [7] for DM-neutron scattering.

like to ask: what is the characteristic size for the SI and SD cross-sections expected of neutralino
DM which couples through the Higgs and Z bosons? Given the interactions,

L � ch��
2

h(��+ �†�†) + cZ�� �
†�̄µ�Zµ, (2)

then in the limit in which the DM is heavier than the nucleon, the SI and SD cross-sections are

�
SI

= 8⇥ 10�45 cm2

⇣ch��
0.1

⌘
2

�
SD

= 3⇥ 10�39 cm2

⇣cZ��

0.1

⌘
2

. (3)

While �
SD

is typically considerably larger than �
SI

, SI experimental constraints are commensu-
rately stronger than SD, so these two limits are comparable in strength [21, 22]. Note that �

SI

depends on nuclear form factors, in particular the strange quark content of the nucleon. For our
analysis we adopt the lattice values of [20]. A more technical discussion of the strange quark
content of the nucleon is contained in App. A.
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rately stronger than SD, so these two limits are comparable in strength [21, 22]. Note that �

SI

depends on nuclear form factors, in particular the strange quark content of the nucleon. For our
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content of the nucleon is contained in App. A.

The SI scattering of DM with nucleons is highly constrained by null results from direct
detection experiments. At the forefront of this experimental e↵ort is XENON100 [1], an un-
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our estimate for the reach of XENON1T [7] for DM-neutron scattering.
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, SI experimental constraints are commensu-
rately stronger than SD, so these two limits are comparable in strength [21, 22]. Note that �
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depends on nuclear form factors, in particular the strange quark content of the nucleon. For our
analysis we adopt the lattice values of [20]. A more technical discussion of the strange quark
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While �
SD

is typically considerably larger than �
SI

, SI experimental constraints are commensu-
rately stronger than SD, so these two limits are comparable in strength [21, 22]. Note that �

SI

depends on nuclear form factors, in particular the strange quark content of the nucleon. For our
analysis we adopt the lattice values of [20]. A more technical discussion of the strange quark
content of the nucleon is contained in App. A.

The SI scattering of DM with nucleons is highly constrained by null results from direct
detection experiments. At the forefront of this experimental e↵ort is XENON100 [1], an un-
derground, two-phase DM detection experiment which employs a 62 kg radio-pure liquid Xe
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(per nucleon)

σSI ~ A2  >> σSD ~ J(J+1)        (per nucleus) 
σSI ~ (mq / v)2  <<  σSD ~ g2

Spin independent/dependent constraints are comparable
in strength...

(LUX~2013, Xenon1T ~2015...) 

Dark Matter direct detection



Dark Matter indirect detection

DM can be probed as a source of cosmic ray!

DM

DM
p, e, γ, ......

The WIMPS are annihilating even now!

Fermi-LAT

Pamella

Cosmic Ray charged particle (proton, electron, etc...)

Gamma ray, neutrino /uxes : coming straight from the source. 
primary source : DM decay, annihilation 
          → many independent targets (Galactic Center, Cluster, etc...)
secondary source : charged particles from DM decay, annihilation

They change their direction during the propagation. 



Dark Matter indirect detection

DM

DM

Cosmic Ray charged particle (proton, electron, etc...)

Flux :  ψ(E) ~ Q(E) x Min[ tdiff , tloss ]

tdiff = (time scale of diffusion)
       ~ 1017sec x (E/GeV)-δ

tloss = Energy loss rate ~ E-1

For primary proton, tdiff  ≪ tloss

ψp(E) ~ Q(E) tdiff ~ E-2-δ ~ E-2.7

For electron, tdiff  ≪ tloss for low energy, tloss  ≪ tdiff  for high energy

ψprim e(E) ~ Q(E) tloss ~ E-3High energy Primary electron :

High energy secondary electron, positron 
from the proton /ux:  ψsecond e(E) ~ Qp(E) tloss ~ E-3-δ 

→ Good probe for the DM contribution!

Background (Super Nova) : Q(E)~E-2 

Ratio of the Positron/Electron  /ux ~ ψsecond e(E)/ ψprim e(E)  ~ E-δ 



Rough BG-Expectation

Dark Matter indirect detection

The deviation from E-δ in the positron fraction has been observed 
by the Pamella, Fermi and AMS-02!

→ Important Hints on the DM?



Dark Matter indirect detection

The gamma ray /ux from the dwarf Spheroidal galaxies puts
rather severe constraints on the DM annihilation!
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considered in our analysis becomes

L(D|pW,{p}
i

) =
Y

i

LLAT
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i

)

⇥ 1

ln(10) J
i

p
2⇡�

i

e�[log10(Ji)�log10(Ji)]
2
/2�

2
i ,

(1)

where LLAT

i

denotes the binned Poisson likelihood that is
commonly used in a standard single ROI analysis of the
LAT data and takes full account of the point-spread func-
tion, including its energy dependence; i indexes the ROIs;
D represents the binned gamma-ray data; pW represents
the set of ROI-independent DM parameters (h�

ann

vi and
m

W

); and {p}
i

are the ROI-dependent model parame-
ters. In this analysis, {p}

i

includes the normalizations
of the nearby point and di↵use sources and the J factor,
J
i

. log
10

(J
i

) and �
i

are the mean and standard devia-
tions of the distribution of log

10

(J
i

), approximated to be
Gaussian, and their values are given in Columns 5 and
6, respectively, of Table I.

The fit proceeds as follows. For given fixed values of
m

W

and bf , we optimize � lnL, with L given in Eq. 1.
Confidence intervals or upper limits, taking into account
uncertainties in the nuisance parameters, are then com-
puted using the “profile likelihood”technique, which is
a standard method for treating nuisance parameters in
likelihood analyses (see, e.g., [32]), and consists of calcu-
lating the profile likelihood � lnL

p

(h�
ann

vi) for several
fixed masses m

W

, where, for each h�
ann

vi, � lnL is min-
imized with respect to all other parameters. The inter-
vals are then obtained by requiring 2� ln(L

p

) = 2.71 for
a one-sided 95% confidence level. The MINUIT subrou-
tine MINOS [33] is used as the implementation of this
technique. Note that uncertainties in the background fit
(di↵use and nearby sources) are also treated in this way.
To summarize, the free parameters of the fit are h�

ann

vi,
the J factors, and the Galactic di↵use and isotropic back-
ground normalizations as well as the normalizations of
near-by point sources. The coverage of this profile joint
likelihood method for calculating confidence intervals has
been verified using toy Monte Carlo calculations for a
Poisson process with known background and Fermi-LAT
simulations of Galactic and isotropic di↵use gamma-ray
emission. The parameter range for h�

ann

vi is restricted
to have a lower bound of zero, to facilitate convergence of
the MINOS fit, resulting in slight overcoverage for small
signals, i.e., conservative limits.

RESULTS AND CONCLUSIONS

As no significant signal is found, we report upper lim-
its. Individual and combined upper limits on the anni-
hilation cross section for the b

¯

b final state are shown in
Fig. 1; see also [34]. Including the J-factor uncertainties

FIG. 1. Derived 95% C.L. upper limits on a WIMP anni-
hilation cross section for all selected dSphs and for the joint
likelihood analysis for annihilation into the bb̄ final state. The
most generic cross section (⇠ 3 · 10�26 cm3s�1 for a purely s-
wave cross section) is plotted as a reference. Uncertainties in
the J factor are included.

FIG. 2. Derived 95% C.L. upper limits on a WIMP annihila-
tion cross section for the bb̄ channel, the ⌧+⌧� channel, the
µ+µ� channel, and the W+W� channel. The most generic
cross section (⇠ 3 ·10�26 cm3s�1 for a purely s-wave cross sec-
tion) is plotted as a reference. Uncertainties in the J factor
are included.

in the fit results in increased upper limits compared to
using the nominal J factors. Averaged over the WIMP
masses, the upper limits increase by a factor up to 12
for Segue 1, and down to 1.2 for Draco. Combining the
dSphs yields a much milder overall increase of the upper
limit compared to using nominal J factors, a factor of
1.3.
The combined upper limit curve shown in Fig. 1 in-

cludes Segue 1 and Ursa Major II, two ultrafaint satel-
lites with small kinematic data sets and relatively large

http://astronomy.nmsu.edu/tharriso/ast110/class24.html
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χ0χ0 → W+W− (5.6)
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χ0χ0 → ZZ,Zγ, γγ (5.7)
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J-factor : DM pro"le 

Fermi-Lat:1108.3546 (two year data)

http://astronomy.nmsu.edu/tharriso/ast110/class24.html
http://astronomy.nmsu.edu/tharriso/ast110/class24.html


Dark Matter indirect detection

The gamma ray /ux from the dwarf Spheroidal galaxies puts
rather severe constraints on the DM annihilation!
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where LLAT

i

denotes the binned Poisson likelihood that is
commonly used in a standard single ROI analysis of the
LAT data and takes full account of the point-spread func-
tion, including its energy dependence; i indexes the ROIs;
D represents the binned gamma-ray data; pW represents
the set of ROI-independent DM parameters (h�

ann

vi and
m

W

); and {p}
i

are the ROI-dependent model parame-
ters. In this analysis, {p}
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includes the normalizations
of the nearby point and di↵use sources and the J factor,
J
i
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) and �
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are the mean and standard devia-
tions of the distribution of log
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(J
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), approximated to be
Gaussian, and their values are given in Columns 5 and
6, respectively, of Table I.

The fit proceeds as follows. For given fixed values of
m

W

and bf , we optimize � lnL, with L given in Eq. 1.
Confidence intervals or upper limits, taking into account
uncertainties in the nuisance parameters, are then com-
puted using the “profile likelihood”technique, which is
a standard method for treating nuisance parameters in
likelihood analyses (see, e.g., [32]), and consists of calcu-
lating the profile likelihood � lnL

p

(h�
ann

vi) for several
fixed masses m

W

, where, for each h�
ann

vi, � lnL is min-
imized with respect to all other parameters. The inter-
vals are then obtained by requiring 2� ln(L

p

) = 2.71 for
a one-sided 95% confidence level. The MINUIT subrou-
tine MINOS [33] is used as the implementation of this
technique. Note that uncertainties in the background fit
(di↵use and nearby sources) are also treated in this way.
To summarize, the free parameters of the fit are h�

ann

vi,
the J factors, and the Galactic di↵use and isotropic back-
ground normalizations as well as the normalizations of
near-by point sources. The coverage of this profile joint
likelihood method for calculating confidence intervals has
been verified using toy Monte Carlo calculations for a
Poisson process with known background and Fermi-LAT
simulations of Galactic and isotropic di↵use gamma-ray
emission. The parameter range for h�

ann

vi is restricted
to have a lower bound of zero, to facilitate convergence of
the MINOS fit, resulting in slight overcoverage for small
signals, i.e., conservative limits.

RESULTS AND CONCLUSIONS

As no significant signal is found, we report upper lim-
its. Individual and combined upper limits on the anni-
hilation cross section for the b

¯

b final state are shown in
Fig. 1; see also [34]. Including the J-factor uncertainties

FIG. 1. Derived 95% C.L. upper limits on a WIMP anni-
hilation cross section for all selected dSphs and for the joint
likelihood analysis for annihilation into the bb̄ final state. The
most generic cross section (⇠ 3 · 10�26 cm3s�1 for a purely s-
wave cross section) is plotted as a reference. Uncertainties in
the J factor are included.

FIG. 2. Derived 95% C.L. upper limits on a WIMP annihila-
tion cross section for the bb̄ channel, the ⌧+⌧� channel, the
µ+µ� channel, and the W+W� channel. The most generic
cross section (⇠ 3 ·10�26 cm3s�1 for a purely s-wave cross sec-
tion) is plotted as a reference. Uncertainties in the J factor
are included.

in the fit results in increased upper limits compared to
using the nominal J factors. Averaged over the WIMP
masses, the upper limits increase by a factor up to 12
for Segue 1, and down to 1.2 for Draco. Combining the
dSphs yields a much milder overall increase of the upper
limit compared to using nominal J factors, a factor of
1.3.
The combined upper limit curve shown in Fig. 1 in-

cludes Segue 1 and Ursa Major II, two ultrafaint satel-
lites with small kinematic data sets and relatively large
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P (D|
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[
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]
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ͱͳΔɻ

·ͨɺϞσϧύϥϝʔλͷࣄલ෼෍ π(
−→
θ ) ͱͯ͠͸ɺlog(Vmax) ʹ͍ͭͯ flat prior ΛͱΓɺ֤ Vmax ʹର

ͯ͠ NମγϛϡϨʔγϣϯ [42, 44] ͱ߹க͢ΔΑ͏ rs ͷ prior ΛऔΔɻ͜ͷ࣌ɺϕΠζͷఆཧ͔Βɺޙࣄ

෼෍ P (
−→
θ |D) ͸ࣄલ෼෍ͱ໬౓ͷੵʹൺྫ͢Δɻ͢ͳΘͪɺ

P (
−→
θ |D) ∝ π(

−→
θ )P (D|

−→
θ ) (5.38)

͕੒Γཱͭɻ͜ͷࣜʹΑͬͯಘΒΕͨύϥϝʔλͷޙࣄ෼෍ʹରͯ͠ J-factor ͷ෼෍ΛٻΊΔ͜ͱͰɺ

J-factor ͷฏۉ஋ͱ෼͕ࢄਪఆͰ͖Δɻclassical dSph ͓Αͼ ultra-faint dSph ʹର͢Δਪఆ݁Ռ͸ͦΕͧ

Εද 7ɺ8 ͷ௨ΓͰ͋Δɻੵ෼֯ αint ͸ 0.5˃ʹ౷Ұ͞Ε͍ͯΔɻ͜ͷ஋͸ ultra-faint dSph ͷ half-light

radius ͱಉఔ౓΋͘͠͸΍΍খ͍͞஋Ͱ͋Δɻ

dSph long. lat. d log10[J(0.5˃)]

[deg] [deg] [kpc] [GeV2cm−5]

Ursa Minor 105.0 +44.8 66 18.5± 0.18

Sculptor 287.5 -83.2 79 18.4± 0.13

Draco 86.4 +34.7 82 18.8± 0.13

Sextans 243.5 +42.3 86 17.8± 0.23

Carina 260.1 -22.2 101 18.0± 0.13

Fornax 237.1 -65.7 138 17.7± 0.23

ද 7 classical dSph ʹର͢Δ ϕΠζ๏ͷ݁ՌɻJ-factor ͸தԝ஋ͱ 68%ͷ৴པ۠ؒΛ͍ࣔͯ͠Δɻ [43] ΑΓҾ༻ɻ

dSph long. lat. d log10[J(0.5˃)]

[deg] [deg] [kpc] [GeV2cm−5]

Bootes I 358.08 +69.62 60 17.7± 0.34

Coma Berenices 241.9 +83.6 44 19.0± 0.37

Segue 1 220.48 +50.42 23 19.6± 0.53

Ursa Major II 152.46 +37.44 32 19.6± 0.40

ද 8 ultra-faint dSph ʹର͢Δ ϕΠζ๏ͷ݁ՌɻJ-factor ͸தԝ஋ͱ 68%ͷ৴པ۠ؒΛ͍ࣔͯ͠Δɻ [43] ΑΓҾ༻ɻ

[43]Ͱ͸ɺclassical dSph ͱ ultra-faint dSph ͷ྆ऀʹରͯ͠ϕΠζ๏Λద༻͠ J-factor Λਪఆ͍ͯ͠Δɻ

ͳ͓ɺsub-structure ͷد༩͸ແ͍ͯ͠ࢹΔɻclassical dSph ʹ͍ͭͯ͸े෼ʹ੕ͷ؍ଌσʔλ͕ಘΒΕ͓ͯ

Γɺ prior ͷऔΓํΛ flat log(rs) ʹมͨ͠ߋΓɺVmax Λ subhalo prior [45] ʹมͯ͠ߋ΋ɺ J-factor ͷ

ਪఆ݁Ռ͸༗ҙʹ͸มΘΒͳ͔ͬͨɻ·ͨɺclassical dSph ͷ J-factor ͷਪఆ݁Ռ͸ɺੵ෼֯ͷҧ͍΋ྀߟ

͢Ε͹ɺલड़ͨ͠ද 6 ͷ݁ՌͱࠩޡͷൣғͰҰக͍ͯ͠ΔɻҰํɺಛʹ੕ͷ଎౓ͷ؍ଌσʔλͷগͳ͍ Ursa

Major II ΍ Segue 1 Ͱ͸ɺprior ͷऔΓํΛม͢ߋΔͱɺJ-factor ʹ 2 ഒఔ౓ͷมԽ͕ݟΒΕͨɻຊ࿦จ
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P (D|
−→
θ ) =

N∏

i=1

1√
2π(σ2

l.o.s,i + σ2
m,i)

exp

[
−1

2

(vi − u)2

σ2
l.o.s,i + σ2

m,i

]
(5.37)

ͱͳΔɻ

·ͨɺϞσϧύϥϝʔλͷࣄલ෼෍ π(
−→
θ ) ͱͯ͠͸ɺlog(Vmax) ʹ͍ͭͯ flat prior ΛͱΓɺ֤ Vmax ʹର

ͯ͠ NମγϛϡϨʔγϣϯ [42, 44] ͱ߹க͢ΔΑ͏ rs ͷ prior ΛऔΔɻ͜ͷ࣌ɺϕΠζͷఆཧ͔Βɺޙࣄ

෼෍ P (
−→
θ |D) ͸ࣄલ෼෍ͱ໬౓ͷੵʹൺྫ͢Δɻ͢ͳΘͪɺ

P (
−→
θ |D) ∝ π(

−→
θ )P (D|

−→
θ ) (5.38)

͕੒Γཱͭɻ͜ͷࣜʹΑͬͯಘΒΕͨύϥϝʔλͷޙࣄ෼෍ʹରͯ͠ J-factor ͷ෼෍ΛٻΊΔ͜ͱͰɺ

J-factor ͷฏۉ஋ͱ෼͕ࢄਪఆͰ͖Δɻclassical dSph ͓Αͼ ultra-faint dSph ʹର͢Δਪఆ݁Ռ͸ͦΕͧ

Εද 7ɺ8 ͷ௨ΓͰ͋Δɻੵ෼֯ αint ͸ 0.5˃ʹ౷Ұ͞Ε͍ͯΔɻ͜ͷ஋͸ ultra-faint dSph ͷ half-light

radius ͱಉఔ౓΋͘͠͸΍΍খ͍͞஋Ͱ͋Δɻ

dSph long. lat. d log10[J(0.5˃)]

[deg] [deg] [kpc] [GeV2cm−5]

Ursa Minor 105.0 +44.8 66 18.5± 0.18

Sculptor 287.5 -83.2 79 18.4± 0.13

Draco 86.4 +34.7 82 18.8± 0.13

Sextans 243.5 +42.3 86 17.8± 0.23

Carina 260.1 -22.2 101 18.0± 0.13

Fornax 237.1 -65.7 138 17.7± 0.23

ද 7 classical dSph ʹର͢Δ ϕΠζ๏ͷ݁ՌɻJ-factor ͸தԝ஋ͱ 68%ͷ৴པ۠ؒΛ͍ࣔͯ͠Δɻ [43] ΑΓҾ༻ɻ

dSph long. lat. d log10[J(0.5˃)]

[deg] [deg] [kpc] [GeV2cm−5]

Bootes I 358.08 +69.62 60 17.7± 0.34

Coma Berenices 241.9 +83.6 44 19.0± 0.37

Segue 1 220.48 +50.42 23 19.6± 0.53

Ursa Major II 152.46 +37.44 32 19.6± 0.40

ද 8 ultra-faint dSph ʹର͢Δ ϕΠζ๏ͷ݁ՌɻJ-factor ͸தԝ஋ͱ 68%ͷ৴པ۠ؒΛ͍ࣔͯ͠Δɻ [43] ΑΓҾ༻ɻ

[43]Ͱ͸ɺclassical dSph ͱ ultra-faint dSph ͷ྆ऀʹରͯ͠ϕΠζ๏Λద༻͠ J-factor Λਪఆ͍ͯ͠Δɻ

ͳ͓ɺsub-structure ͷد༩͸ແ͍ͯ͠ࢹΔɻclassical dSph ʹ͍ͭͯ͸े෼ʹ੕ͷ؍ଌσʔλ͕ಘΒΕ͓ͯ

Γɺ prior ͷऔΓํΛ flat log(rs) ʹมͨ͠ߋΓɺVmax Λ subhalo prior [45] ʹมͯ͠ߋ΋ɺ J-factor ͷ

ਪఆ݁Ռ͸༗ҙʹ͸มΘΒͳ͔ͬͨɻ·ͨɺclassical dSph ͷ J-factor ͷਪఆ݁Ռ͸ɺੵ෼֯ͷҧ͍΋ྀߟ

͢Ε͹ɺલड़ͨ͠ද 6 ͷ݁ՌͱࠩޡͷൣғͰҰக͍ͯ͠ΔɻҰํɺಛʹ੕ͷ଎౓ͷ؍ଌσʔλͷগͳ͍ Ursa

Major II ΍ Segue 1 Ͱ͸ɺprior ͷऔΓํΛม͢ߋΔͱɺJ-factor ʹ 2 ഒఔ౓ͷมԽ͕ݟΒΕͨɻຊ࿦จ
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classical

Faint

Constraint from faint dSg has a large ambiguities...

Fermi-Lat:1108.3546 (two year data)

J-factor : DM pro"le 



Dark Matter indirect detection

All sky survey of the gamma ray /ux also puts constraints 
on the DM properties.

FIG. 18. As in Fig. 17, but for dark matter annihilation to W -bosons or e+e�. The annihilation to

e

+

e

� only includes prompt photons from final states radiation and none from high-energy leptons

inverse Compton scattering o↵ starlight or Cosmic Microwave Background photons The green and

red shaded regions can explain the PAMELA and Fermi CR data, respectively. They are taken

from [57], but we have rescaled their regions by (3/4)2 to a local density of ⇢� = 0.4 GeV cm�3

from 0.3 GeV cm�3 used in [57].
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FIG. 21. Lifetime lower limits for dark matter decay to b-quarks, gluons, W -bosons, or e+e� from

the di↵use gamma-ray background spectrum for the region |b| > 10� plus a 20� ⇥ 20� at the GC,

assuming the NFW dark matter halo profile (Einasto and isothermal give very similar constraints).

No photons from astrophysical background sources have been included, making these limits very

conservative.
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ex) annihilating DM  decaying DM

[Fermi-Lat 1205.2739, two year data]

Further constraints or hints on the DM properties will be provided 
with more data taking!

(More precise estimation of the J-factors are also important)



Summary

Supersymmetric Standard Model is now more motivated by the 
discovery of the Higgs boson.

 In the MSSM, the Higgs boson is an elementary scalar particles
whose mass parameters are controlled by a “chiral” symmetry!

The MSSM gives us an calculable model all the way up to the GUT 
scale!

So far, no SUSY events were observed at the LHC...
SUSY particles could be a little heavier than the naive expectations.

About 126GeV Higgs boson mass also suggests heavy SUSY particles.

DM detection experiments may give us hints on SUSY before 
collider experiments...?


