GMSB extensions in light of recent Higgs searches

Motoi ENDO (Tokyo)

in collaboration with K.Hamaguchi, S.Iwamoto, K.Nakayama and N.Yokozaki

Toyama workshop, 2012.2.21

Higgs around 125GeV(?)

Event excesses may indicate Higgs mass around 125GeV

What is implied for physics beyond SM?

Today's Talk

- Why extended GMSB?
 - low energy phenomena and cosmology
 - Higgs mass & muon g-2
- GMSB + large A_t term
- GMSB + vector-like matters (talk by Iwamoto)
- GMSB + extra U(1) gauge symmetry
- Summary

Physics beyond SM

- Hints of New Physics
 - neutrino oscillation (right-handed neutrino)
 - early universe (e.g. dark matter)
 - hierarchy problem (weak scale « Planck)
 - GUT $(g_1 \simeq g_2 \simeq g_3 @ \sim 10^{16} \text{GeV})$
 - muon g-2

>3σ deviation between SM and experiment

c.f. talk by Nomura

proof

mply

Muon g-2

c.f. talk by Nomura

g-factor: deviation from 2 due to radiative corrections

$$\mathcal{L} = e\bar{\psi}\gamma^{\mu}\psi A_{\mu}$$
$$\rightarrow \frac{e}{4m}\bar{\psi}\sigma^{\mu\nu}\psi F_{\mu\nu}\times F_{2}$$

$$F_2^{\mathrm{rad.}} = \frac{g-2}{2} \equiv a_\mu$$

$$\left[a_{\mu}^{\exp} - a_{\mu}^{\rm SM} = (26.1 \pm 8.0) \cdot 10^{-10}\right]$$

 $> 3\sigma$ deviation

cf. $a_{\mu}(\text{EW}) = 1.5 \times 10^{-9}$

Muon g-2 in NP

challenge to explain the deviation:

note: muon mass due to chirality flip

- current discrepancy is as large as $a_{\mu}(EW)$
- light new particle or large coupling cf. talk by Tsumura
- enhancement required for NP in TeV scale

SUSY is natural

$$\Delta a_{\mu}(\chi^{\pm}) \simeq \frac{\alpha_2 m_{\mu}^2}{8\pi m_{\rm soft}^2} \operatorname{sgn}(M_2 \mu) \tan \beta$$

What is unnatural?

Flavor/CP violations

$$\delta_{ij} = \frac{(\tilde{m}^2)_{ij}}{\tilde{m}^2} \lesssim O(10^{-(2-4)}), \ \delta_{\rm CP} \lesssim O(10^{-(2-3)})$$

• gravitino problems (m_{3/2} ~ 1TeV)

 $T_R \lesssim O(10^{(5-6)}) \text{GeV}, \ E_{\text{inf}} \lesssim O(10^{11}) \text{GeV}$

tension bet. Higgs mass ~125GeV & muon g-2

Limit on Gravitino Abundance

massive and long-lived

 $\tau_{3/2} \sim 10^{(4-5)} \mathrm{sec} \left(\frac{m_{3/2}}{1 \mathrm{TeV}}\right)^{-3}$

- generate energetic showers at decay
 - change abundance of light nuclei
- gravitino abundance is tightly limited

[Kawasaki,Kohri,Moroi]

Gravitino Productions

thermal production

$$Y_{3/2}^{(th)} \sim 10^{-12} \left(\frac{T_R}{10^{10} \text{GeV}} \right)$$

up to corrections

Gravitino Productions

thermal production

$$Y_{3/2}^{(th)} \sim 10^{-12} \left(\frac{T_R}{10^{10} \text{GeV}} \right)$$

up to corrections

Gravitino Productions

thermal production

$$Y_{3/2}^{(th)} \sim 10^{-12} \left(\frac{T_R}{10^{10} \text{GeV}} \right)$$

up to corrections

non-thermal production

$$Y_{3/2}^{(nt)} \propto T_R^{-1} \left(\frac{E_{\text{inf}}}{M_P}\right)^4$$

 E_{inf} : inflation scale

Bound on T_R and E_{inf}

- abundance is given by T_R and E_{inf}
- exclude high T_R or low T_R for given E_{inf}
- exclude too high Einf

Bound on Inflation

tight constraint on inflation models from thermal and direct gravitino productions

figure: Bino LSP $M_{1/2} = 300 \text{GeV}$ $m_{3/2} = 1 \text{TeV}$

[ME, Takahashi, Yanagida]

What is unnatural?

Flavor/CP violations

$$\delta_{ij} = \frac{(\tilde{m}^2)_{ij}}{\tilde{m}^2} \lesssim O(10^{-(2-4)}), \ \delta_{\rm CP} \lesssim O(10^{-(2-3)})$$

• gravitino problems (m_{3/2} ~ 1TeV)

 $T_R \lesssim O(10^{(5-6)}) \text{GeV}, \ E_{\text{inf}} \lesssim O(10^{11}) \text{GeV}$

tension bet. Higgs mass ~125GeV & muon g-2

- muon g-2:
 - small soft mass
 - large tanβ
- Higgs mass:
 - large soft mass
 - large At term

cf. m_h~125GeV is too large for muon g-2 in CMSSM

soft mass [GeV]

- muon g-2:
 - small soft mass
 - large tanβ
- Higgs mass:
 - large soft mass
 - large At term

cf. m_h~125GeV is too large for muon g-2 in CMSSM

- muon g-2:
 - small soft mass
 - large tanβ
- Higgs mass:
 - large soft mass
 - large At term

cf. m_h~125GeV is too large for muon g-2 in CMSSM

$$\Delta m_h \sim \frac{3m_t^4}{2\pi^2 v^2} \left[\ln \frac{m_t^2}{m_t^2} + \left(\frac{A_t^2}{m_t^2} - \frac{1}{12} \frac{A_t^4}{m_t^4} \right) \right]$$

$$\int_{0.5}^{2} \frac{1}{100} \int_{0.5}^{1} \frac{1}{100} \int_{$$

- muon g-2:
 - small soft mass
 - large tanβ
- Higgs mass:
 - large soft mass
 - large At term

cf. m_h~125GeV is too large for muon g-2 in CMSSM

[ME,Hamaguchi,Iwamoto,Nakayama,Yokozaki]

- muon g-2:
 - small soft mass
 - large tanβ
- Higgs mass:
 - large soft mass
 - large At term

cf. m_h~125GeV is too large for muon g-2 in CMSSM

[ME,Hamaguchi,Iwamoto,Nakayama,Yokozaki]

What is unnatural?

Flavor/CP violations

$$\delta_{ij} = \frac{(\tilde{m}^2)_{ij}}{\tilde{m}^2} \lesssim O(10^{-(2-4)}), \ \delta_{\rm CP} \lesssim O(10^{-(2-3)})$$

gravitino problems (m_{3/2} ~ 1TeV)

 $T_R \lesssim O(10^{(5-6)}) \text{GeV}, \ E_{\text{inf}} \lesssim O(10^{11}) \text{GeV}$

tension bet. Higgs mass ~125GeV & muon g-2

- Flavor/CP violations
 - large soft mass or GMSB (light gravitino)
- gravitino problems (m_{3/2} ~ 1TeV)
 - heavy gravitino (SUSY scale) or light gravitino
- tension bet. Higgs mass ~125GeV & muon g-2

- Flavor/CP violations
 - large soft mass or GMSB (light gravitino)
- gravitino problems (m_{3/2} ~ 1TeV)
 - heavy gravitino (SUSY scale) or light gravitino
- tension bet. Higgs mass ~125GeV & muon g-2

- Flavor/CP violations
 - large soft mass or GMSB (light gravitino)
- gravitino problems (m_{3/2} ~ 1TeV)
 - heavy gravitino (SUSY scale) or light gravitino
- tension bet. Higgs mass ~125GeV & muon g-2

Gravitino Problems

heavy soft mass or light gravitino relaxes constraints

- Flavor/CP violations
 - large soft mass or GMSB (light gravitino)
- gravitino problems (m_{3/2} ~ 1TeV)
 - heavy gravitino (SUSY scale) or light gravitino
- tension bet. Higgs mass ~125GeV & muon g-2

Extended GMSB

• large At term

[Evans,Ibe,Yanagida;Evans,Ibe,Shirai,Yanagida ;ME,Hamaguchi,Iwamoto,Yokozaki]

- messenger-top coupling
- extra vector-like matter
 - coupling with Higgs
- extra gauge symmetry
 - charge for Higgs
- singlet Higgs
- triplet Higgs

[ME,Hamaguchi,Iwamoto,Yokozaki ;Evans,Ibe,Yangida]

[Asano,Moroi,Sato,Yanagida;Moroi ,Sato,Yanagida]

[ME,Hamaguchi,Iwamoto,Nakayama ,Yokozaki]

"price" to be paid will be summarized later

Large At term

Large At term

vacuum is destabilized

[ME,Hamaguchi,Iwamoto,Yokozaki]

- $\mathcal{L} \simeq \frac{gm_{\tau}}{2M_W} \mu \tan \beta \tilde{\tau}_L^* \tilde{\tau}_R h^0 + \text{h.c.}$
- upper bound on gluino mass

 $m_{\tilde{g}} \lesssim 0.9 \text{ or } 1.3 \,\text{TeV}$ (Nmess=1)

- neutralino NLSP (Nmess=1)
- LHC discovery expected for 14TeV O(1-10)fb⁻¹

according to Baer, Barger, Lessa & Tata

Large At term

[ME,Hamaguchi,Iwamoto,Yokozaki]

c.f. talk by Iwamoto

extra matter coupling to Higgs

 $W = Y'H_uQ'U' + M'(Q'\bar{Q}' + U'\bar{U}')$

Higgs mass raised by U', Q' loop

$$\Delta m_h \simeq \frac{3v^2}{4\pi^2} Y^{\prime 4} \ln \frac{m_S^2}{m_F^2} + \dots$$

m_{S(F)}: vector scalar(fermion) mass

 A' is suppressed by RG running and irrelevant for Higgs mass

- muon g-2 region is covered by varying M_{Q,U}
- vacuum is destabilized by large µ
- stau NLSP is excluded by LHC if it is long-lived
- upper bound on gluino mass

 $m_{\tilde{g}} \lesssim 1.2 \text{ or } 1.7 \,\text{TeV} \ (\tilde{\chi}^0)$ $m_{\tilde{g}} \lesssim 1.5 \,\text{TeV} \ (\tilde{\tau})$

c.f. talk by Iwamoto

[ME,Hamaguchi,Iwamoto,Yokozaki]

... contd.

- regions are in reach of 14TeV LHC w/ ~10fb⁻¹
- severer for larger M_{mess}
- relatively light ext matter

 $M_V \lesssim 1.5 \,\mathrm{TeV}$

 need study on discovery potential of extra matter

cf. talk by Harigaya

c.f. talk by Iwamoto

[ME,Hamaguchi,Iwamoto,Yokozaki]

c.f. talk by Iwamoto

... contd.

- regions are in reach of 14TeV LHC w/ ~10fb⁻¹
- severer for larger M_{mess}
- relatively light ext matter

 $M_V \lesssim 1.5 \,\mathrm{TeV}$

 need study on discovery potential of extra matter

cf. talk by Harigaya

Extra Gauge [U(1)']

- Higgs is charged under U(1)'
- Higgs mass raised by D-term

 $\Delta m_h^2 \simeq 2g_X^2 x^2 (v_{H_u}^2 + v_{H_d}^2) \cos^2(2\beta) \frac{2m_S^2}{2m_S^2 + m_{Z'}^2}$

- unsuppressed by $tan\beta$
- decoupled if $m_S \ll m_{Z'}$
- messenger needs to be charged

$$m_S^2 = m_{\bar{S}}^2 \simeq \left(\frac{g_X^2}{16\pi^2}\right)^2 10y^2\Lambda^2$$

y: U(1)' charge of messenger

S: SSB of U(1)' m_s: soft mass of S

Extra Gauge [U(1)]

- Higgs is charged under U(1)'
- Higgs mass raised by D-term

 $\Delta m_h^2 \simeq 2g_X^2 x^2 (v_{H_u}^2 + v_{H_d}^2) \cos^2(2\beta) \frac{2m_S^2}{2m_S^2 + m_{Z'}^2} \qquad \begin{array}{l} \text{GUT-inspired charge assignment} \\ \text{U(1)}_{\text{x}}: \text{SO(10), U(1)}_{\text{T}}: \text{Pati-Salam} \end{array}$

- unsuppressed by tanβ
- decoupled if $m_{\rm S} \ll m_{Z'}$
- messenger needs to be charged

 $m_S^2 = m_{\bar{S}}^2 \simeq \left(\frac{g_X^2}{16\pi^2}\right)^2 10y^2\Lambda^2$

y: U(1)' charge of messenger

		-		
	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_{B-L}$	$2\sqrt{10} \times \mathrm{U}(1)_{\chi}$	$U(1)_T$
Q	1/6	1/3	-1	0
\bar{U}	-2/3	-1/3	-1	-1
\bar{D}	1/3	-1/3	3	1
L	-1/2	-1	3	0
\bar{E}	1	1	-1	1
\bar{N}	0	1	-5	-1
H_u	1/2	0	2	1
H_d	-1/2	0	-2	-1
S	0	0	-y	+y
\bar{S}	0	0	+y	-y

Table 1: Anomaly-free U(1) charge assignments on the fields

Extra Gauge [U(1)']

- muon g-2 region is covered by varying mz[,]
- SUSY mass is in reach of 14TeV LHC
- EWSB is spoiled:
 - smaller M_{mess}
 - too large g_x
- light Z' is favored (<3TeV)
- Z' discovery is expected for LHC

"Prices"

There is no "perfect" model from my perspective...

Model	Flavor/CP	gravitino problems	Higgs mass muon g-2	perturbativity	LHC
GMSB	OK	OK NOT		OK	hopeless for m _h ~125GeV
A _t term	model [EIY]	OK	OK	up to M _{mess}	SUSY
vector-like matter	need model	OK	ок ок		SUSY ext matter
extra U(1)'	OK	OK	OK	up to M _{mess}	SUSY Z'

µ problem

The "best" model is expected to be selected by LHC.

Summary

- Extended GMSB is implied by
 - low energy phenomena and cosmology
 - Higgs mass of ~125GeV & muon g-2
- GMSB + large A_t term
- GMSB + vector-like matters
- GMSB + extra U(1) gauge symmetry
- gluino mass is bounded by muon g-2
- introductions of light extra matters or Z'
- LHC search is interesting!!

Backup Slides

Higgs Local p-value

Neutralino NLSP in LHC

_						
[Signal Region	≥ 2-jet	≥ 3-jet	≥ 4-jet	High mass	
ſ	$E_{ m T}^{ m miss}$	> 130	> 130	> 130	> 130	
	Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130	
	Second jet $p_{\rm T}$	> 40	> 40	> 40	> 80	
	Third jet $p_{\rm T}$	_	> 40	> 40	> 80	
	Fourth jet $p_{\rm T}$	_	_	> 40	> 80	
ATA / MC Entries / 150 GeV	$\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4	
	$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.3	> 0.25	> 0.25	> 0.2	
	$m_{\rm eff}$	> 1000	> 1000	> 500/1000	> 1100	
	$10^{4} \int L dt = 1.04 \text{ fb}^{-1}$ Four Jet High Mass $10^{3} \int L dt = 1.04 \text{ fb}^{-1}$ Four Jet High Mass $10^{3} \int L dt = 1.04 \text{ fb}^{-1}$ Four Jet High Mass $10^{3} \int L dt = 1.04 \text{ fb}^{-1}$ Four Jet High Mass $10^{4} \int L dt = 1.04 \text{ fb}^{-1}$ Four Jet High Mass 2 + jets The four Jet High Mass 2 + jets The four Jet High Mass $10^{4} \int L dt = 1.04 \text{ fb}^{-1}$ Four Jet High Mass 2 + jets The four Jet High Mass 3 + SU(660, 240, 0, 10) Four Jet High Mass $10^{4} \int L dt = 1.04 \text{ fb}^{-1}$ Four Jet High Mass $10^{4} \int L dt = 1.04 $					
Ď	0 500 10	00 150	0 2000	2500 300		

m_{eff} [GeV]

 $pp \rightarrow \tilde{g}\tilde{q}, \ \tilde{q}\tilde{q}, \ \tilde{g}\tilde{g}$

$$pp \to \chi^{\pm} \chi^0, \ \chi_1^0 \to \gamma \tilde{G}$$

diphoton + MET

cf. similar analysis by CMS

Long-Lived Stau

Discovery Potential

[Baer,Barger,Lessa,Tata]

Discovery Potential

[Baer,Barger,Lessa,Tata]

Discovery Potential of GMSB

(a) $\tan \beta = 10$

[Shirai,Nakamura]

Discovery Potential of Z'

 5σ discovery of Z' \rightarrow e⁺e⁻

[[]ATLAS-CSC]

Flavor Violations

- new sources: $(\tilde{m}^2)_{ij}, A_{ij}$
- quark sector

$$K^0 - \overline{K}^0, \ \epsilon_K, \ B_d - \overline{B}_d, \ \ldots$$

lepton sector

$$\mu \to e\gamma, \ \tau \to \mu(e)\gamma, \ \dots$$

• constraints

$$(\delta_{\tilde{q},\tilde{\ell}})_{12} \equiv \frac{(m_{\tilde{q},\tilde{\ell}}^2)_{12}}{\tilde{m}_{\tilde{q},\tilde{\ell}}^2} \lesssim O(10^{-(2-4)})$$

CP Violations

- new phases: M_i , $B(\mu)$, A_{ij} , $F_{\phi}(\simeq \langle W \rangle / M_P^2)$
- EDMs: electron, neutron, mercury, ...
- constraints

 $\tilde{\nu}_e$

e

e