Unstable Stau at the LHC

Takumi Ito

University of Tokyo, Tohoku University

2012.2.21 @ University of Toyama

Unstable Stau at the LHC

Takumi Ito

University of Tokyo, Tohoku University 2012.2.21 @ University of Toyama

Unstable Stau at the LHC ↓ Unstable Stau with Light Gravitino at the LHC

Takumi Ito

University of Tokyo, Tohoku University

2012.2.21 @ University of Toyama

Based on : Asano, Ito, Matsumoto and Moroi, arXiv:1111.3725 [hep-ph] (accepted in JHEP) Supersymmetry is an attractive candidate of

- TeV scale new physics.
- \rightarrow What is the signature of SUSY at the LHC $\ref{subscription}$

It's important to "optimize" our analysis to study the underlying model deeply.

I. Supergravity model ... (This has been widely studied !)

IIa. Gauge-mediation model with neutralino-NLSP

- (If gravitino is light)
- Multi jets
- Multi leptons
- Large missing energy
- Energetic photons

IIa. Gauge-mediation model with neutralino-NLSP

Q

 \widetilde{o}

 \tilde{q}

6

 N_{2}

ĩ

7

 N_1

- (If gravitino is light)
- Multi jets
- Multi leptons
- Large missing energy
- Energetic photons

OK !

IIc. Gauge-mediation model with stau-NLSP

SUSY model with gravitino mass of O(10) eV

• The most interesting case among the light gravitino scenarios, because the model is cosmologically favored.

Kawasaki, Kohri, Moroi, * BBN Yotsuyanagi (2008)

* large structure formation in the Universe Ma

Viel, Lesgourgues, Haehnelt, Matarrese, Riotto (2005)

Gravitino mass of O(10) eV $\rightarrow c\tau_{stau} = O(100) \ \mu m$

Stau decay before hitting the inner detector. Hence, similar to SUGRA cases...

$$\widetilde{\mathbf{\tau}} \rightarrow \mathbf{\tau} + \widetilde{\mathbf{G}} \\ \tau_{\widetilde{\tau}} = 48\pi M_{\rm pl}^2 \left(\frac{m_{3/2}^2}{m_{\widetilde{\tau}}^5}\right)$$

However, we show that impact parameter of tau is useful in this case !

Impact parameter

(3-dimensional) impact parameter $b_I \equiv \left| \vec{b}_I \right|$ $\delta \left(b_I \right) \simeq 100 \ \mu \mathrm{m}$

Transverse impact parameter

$$d_I \equiv \left| \left(\vec{b}_I \right)_T \right|$$

 $\delta\left(d_{I}\right)\simeq10\ \mu\mathrm{m}$

Better resolution. (c.f., arXiv:0901.0512[hep-ex])

Hence, we use d_l in the following.

 τ -decay product with large impact parameter is

a characteristic signature of the model. * Notice that typically, $d_l \sim c\tau$

Monte Carlo study

* Sample spectrum (GMSB)

gluino	1096 GeV		
squark _R	920 GeV		
neutralino ₁	197 GeV		
stau ₁	126 GeV		
gravitino	$ \sim 0 \text{GeV}$		

* Total SUSY cross section: 2.7 pb

- * Event generation : HERWIG6.510* Detector simulation : PGS4
- * Resolution of d_l :

δ	(d_I)	—	10	$\mu \mathrm{m}$
----------	---------	---	----	------------------

Basic cut	SUSY	$t\overline{t}$
(Integrated luminosity of 100 fb ⁻¹)	273,600	49,610,000
$p_T > 150 \text{ GeV}$	190,504	1,644,160
The number of lepton-like objects ≥ 4	70,641	$55,\!537$
The number of b -jets = 0	56,228	$41,\!673$
The first jet with $p_T > 200 \text{ GeV}$	49,819	5,915
The second jet with $p_T > 100 \text{ GeV}$	41,007	1,984

After cut

Distribution of the transverse impact parameter, di

- 10^{5} Entries / 50 μm / 100 fb⁻¹ 01 01 01 01 01 01 — signal (900 μm) signal (500 μ m) •••••• signal (100 μm) * Backgrounds (here, ttbar) •••• signal $(-1 \,\mu m)$ •••• ttbar are reduced sufficiently by the kinematical cuts. 10^{2} * The distribution depends 10 = on the stau lifetime. 200Λ 100300400500600700800 900 1000d_τ [μm]
- First, we show that impact parameter information is useful to measure the SUSY masses in this scenario.
- Then, we discuss the determination of the stau-NLSP lifetime.

Mass Measurement of Msquark, Mbino and Mstau

SUSY cascade decay chain :

* $\tau^{(\text{near})}$ and $\tau^{(\text{far})}$ can be distinguished by $d_{I}(\tau^{(\text{near})}) < d_{I}(\tau^{(\text{far})}).$

Then, we can study $M_{j\tau(near)}$ (or $M_{j\tau(far)}$)

$$M_{T2}(\tilde{q}) = \min_{\mathbf{k}_T + \mathbf{k}'_T = \mathbf{P}_T^{\text{eff}}} \left[\max \left\{ M_T(\mathbf{p}_T, \mathbf{k}_T), M_T(\mathbf{p}'_T, \mathbf{k}'_T) \right\} \right]$$

* We regards all particles as "missing particle", except for leading 2-jets.

RESULT : Mass Measurement

Stau Lifetime Determination

• *d_l* distribution reflects

the NLSP lifetime.

- Inner bins are dominated by mainly (QCD-) fake taus.
- Outer bins do not dump;
 fakes from heavy mesons
- The shape of d_l distribution

is NOT simple exponential function. (more complex one)

Stau Lifetime Determination

We use templates of the simulated stau decay events.

Templates of the *d*_l distribution

- Take some lifetime, $c\tau_{NLSP}^{(\text{test})}$ (= 10, 20, 30, ..., 1100 µm).
- Lorentz boost factor of the stau is fixed, $\beta (= \beta_{ave})$.
- Stau's production direction is assumed to be isotropic.
 (Notice : our simulation is "simplified")

 $\rightarrow d_I$ distribution of the "signal" is tested with the templates.

- We use events with $0.5 \times c\tau^{(\text{test})} < d_1 < 2 \times c\tau^{(\text{test})}$, in order to overcome backgrounds (i.e., fake-taus).

RESULT : Lifetime Determination

- * "Signal" MC (all SUSY events) ctau (stau) = 100, 300, 500, 700, 900 μm
- * Even though our study is very simplified, the lifetime of the stau can be well estimated.

The stau lifetime is estimated with the accuracy of O(10) %. Also, the gravitino mass can be calculated from the results. $\delta(m_{3/2}) = O(10)$ %; we can confirm that $m_{3/2} = O(10)$ eV.

Summary

The model that NLSP is stau and LSP is light gravitino is studied.

- * Important event signature is tau with large impact parameter.
- \rightarrow We have proposed analyses utilizing d_l of tau.

- Mass measurement (squark, neutralino, stau)
- Stau lifetime determination
- Gravitino mass determination

Remark :

 d_l information may improve a discovery/exclusion reach of this kind of models.

backup

SUSY model with gravitino mass of O(10) eV

Gravitino mass of O(10) eV $\rightarrow c\tau_{stau} = O(100) \ \mu m$