Higgs Mass and Muon g-2 in SUSY Models with Vector-Like Matters

Sho IWAMOTO (岩本 祥)

The University of Tokyo, JAPAN

20th Feb. 2012

@ U. Toyama; Kan-buri Conference

Talk Plan

- 1. Background
- 2. The extension we propose
- 3. LHC phenomenology

Based on

Higgs mass, muon g-2, and LHC prospects in gauge mediation models with vector-like matters M. Endo, K. Hamaguchi, S.I., N. Yokozaki. [1112.5653]

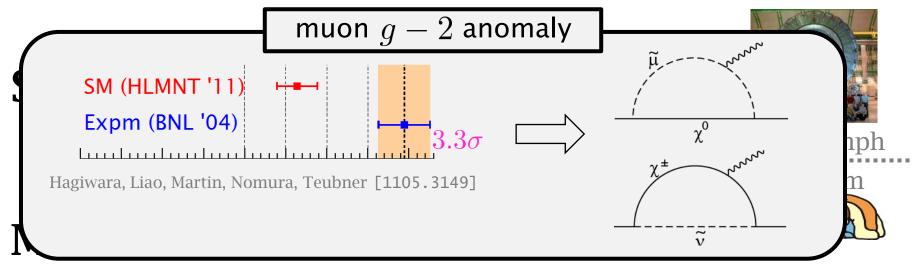
Also See: Endo, Hamaguchi, SI, Yokozaki. [1108.3071] [1202.2751] Endo, Hamaguchi, SI, Nakayama, Yokozaki. [1112.6412]

summary

To explain

 $(g-2)_{\mu}$ & 125GeV Higgs simultaneously, Extending the MSSM with vector-like quarks is a Very attractive way.

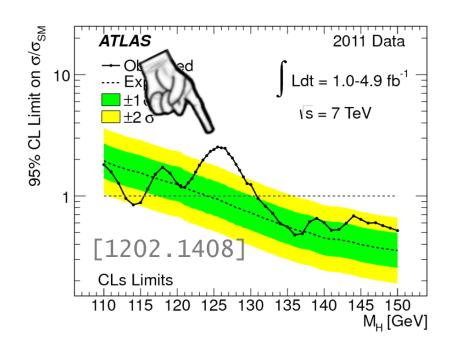
Standard Model

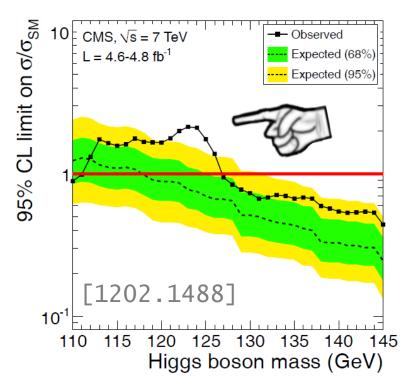


MSSM [Minimal Supersymmetric Standard Model]

- e fermion/boson unification
- **©** GUTs, dark matter(?)
- \bigcirc nicely explain muon g-2 anomaly
- must be broken ... too many SUSY parameters

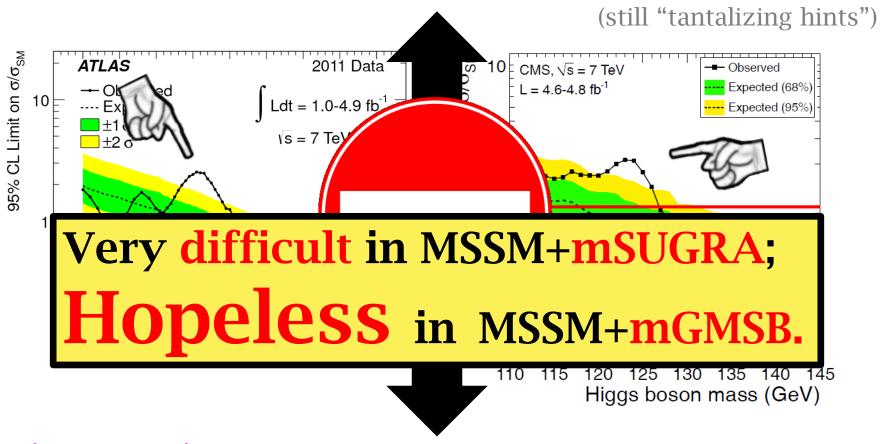
mSUGRA / GMSB frameworks


- termion/boson unification
- **U** GUTs, dark matter(?)
- \bigcirc nicely explain muon g-2 anomaly
- w must be broken ... too many SUSY parameters


mSUGR / GMSB frameworks However

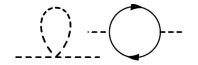
Now this "dream" is threatened by

The ~125Gev Higgs boson


(still "tantalizing hints")

 $(g-2)_{\mu}$ explanation in SUSY

The ~125Gev Higgs boson



 $(g-2)_{\mu}$ explanation in SUSY

125GeV in MSSM

$$\begin{split} m_h^2 &\lesssim m_Z^2 + \frac{3g_W^2 m_t^4}{8\pi^2 m_W^2} \left[\ln \frac{M_S^2}{m_t^2} + \alpha^2 \left(1 - \frac{\alpha^2}{12} \right) \right] \\ \text{(1-loop level)} \quad \text{where} \quad M_S^2 &:= \frac{M_{\tilde{t}_1}^2 + M_{\tilde{t}_2}^2}{2}, \quad \alpha := \frac{A_t - \mu \cot \beta}{M_S}. \end{split}$$

- heavy \tilde{t}
- large $(A_t \mu \cot \beta)$ $(\text{roughly} \approx -\sqrt{6}m_{\widetilde{t}})$

$(g-2)_{\mu}$ in MSSM

$$\Delta\left(\widetilde{\chi}^{\pm}, \widetilde{\nu}\right) \approx \frac{\alpha_w m_{\mu}^2}{m_{\rm soft}^2} \operatorname{sgn}(\mu M_2) \tan \beta,$$

$$\Delta\left(\widetilde{\chi}^0, \widetilde{\mu}\right) \approx \frac{\alpha_Y m_{\mu}^2}{m_{\rm soft}^2} \operatorname{sgn}(\mu M_1) \tan \beta + \cdots$$

- light $(\widetilde{\nu}_{\mu}, \widetilde{\chi}^{\pm})$ or $(\widetilde{\mu}, \widetilde{\chi}^{0})$
- large $\tan \beta$

125GeV in MSSM

$$\begin{split} m_h^2 &\lesssim m_Z^2 + \frac{3g_W^2 m_t^4}{8\pi^2 m_W^2} \left[\ln \frac{M_S^2}{m_t^2} + \alpha^2 \left(1 - \frac{\alpha^2}{12} \right) \right] \\ \text{(1-loop level)} \quad \text{where} \quad M_S^2 &:= \frac{M_{\tilde{t}_1}^2 + M_{\tilde{t}_2}^2}{2}, \quad \alpha := \frac{A_t - \mu \cot \beta}{M_S}. \end{split}$$

$(g-2)_{\mu}$ in MSSM

$$\Delta\left(\widetilde{\chi}^{\pm}, \widetilde{\nu}\right) \approx \frac{\alpha_w m_{\mu}^2}{m_{\rm soft}^2} \operatorname{sgn}(\mu M_2) \tan \beta,$$

$$\Delta\left(\widetilde{\chi}^0, \widetilde{\mu}\right) \approx \frac{\alpha_Y m_{\mu}^2}{m_{\rm soft}^2} \operatorname{sgn}(\mu M_1) \tan \beta + \cdots$$

• heavy t

dilemma (GUT)

• light $(\widetilde{\nu}_{\mu}, \widetilde{\chi}^{\pm})$ or $(\widetilde{\mu}, \widetilde{\chi}^{0})$

• large $(A_t - \mu \cot \beta)$ • large $\tan \beta$ (roughly $\approx -\sqrt{6}m_{\widetilde{\tau}}$)

GMSB \cdots small A-terms \Longrightarrow impossible!

mSUGRA

- $b \rightarrow s \gamma$ forbids a huge A-term [1112.6412]
- large $\mu \tan \beta + \text{small } m_{\widetilde{\tau}} \Longrightarrow \text{instable vacuum}$
 - ⇒ Possible with parameter splitting & tuning.

e.g. "Non-Universal Gaugino Model" or to split M0 for 1,2 / 3 gen.

For 125GeV & g-2, we must...

- tune the parameter in \$\text{SUSY} models
- ignore $(g-2)_{\mu}$ anomaly.
 - "It is just from hadronical uncertainty, theorists' fault!!"
- wish a lighter Higgs.
- extend the MSSM.
 - > NMSSM
 - \triangleright add $\mathbf{5} + \overline{\mathbf{5}}$
 - \triangleright add $\mathbf{10} + \overline{\mathbf{10}}$
 - ➤ add a new gauge symmetry.

For 125GeV & g-2, we must...

- tune the parameter in SUSY models
- ignore $(g-2)_{\mu}$ anomaly.
 - "It is just from hadronical uncertainty, theorists' fault!!"
- Wish a lighter Higgs.
- extend the MSSM.
 - > NMSSM $g-2 \Rightarrow \text{large } \tan \beta \Rightarrow \text{NMSSM not contribute.}$
 - \triangleright add 5 + 5 is still inadequate. Martin [0910.2732]
 - \triangleright add $10 + \overline{10}$ Today's topic. [1112.5653]
 - ➤ add a new gauge symmetry See: Endo, Hamaguchi, SI, Nakayama, Yokozaki [1112.6412]

2. The Extension We Propose

Extension w. Vector-like Matters

$$\mathrm{MSSM} + (\mathbf{10} \hspace{1cm}), \text{ i.e. } \left\{ \begin{array}{l} \mathbf{10} = (Q', U', E') \\ \end{array} \right.$$

$$m_h \uparrow$$
 $W_{\mathrm{add}} = Y'Q'H_{\mathrm{u}}U'$

IDEA

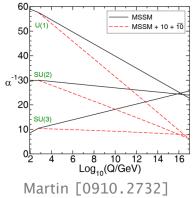
MSSM: top (s)quark lifts up higgs. Okay, then...

Add another top quark!

Extension w. Vector-like Matters

MSSM+
$$(\mathbf{10} + \overline{\mathbf{10}})$$
, i.e. $\begin{cases} \mathbf{10} = (Q', U', E') \\ \overline{\mathbf{10}} = (\bar{Q}', \bar{U}', \bar{E}') \end{cases}$

$$m_h \uparrow \qquad m_h \downarrow \longrightarrow \text{we assume } Y'' \ll 1.$$


$$W_{\text{add}} = Y'Q'H_{\text{u}}U' + Y''\bar{Q}'H_{\text{d}}\bar{U}' + M_VQ'\bar{Q}' + M_VU'\bar{U}' + M_VE'\bar{E}'$$

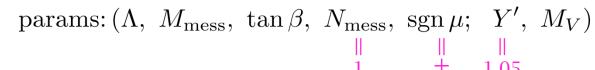
$$W_{\text{mix}} = \epsilon_i Q_i H_{\text{u}} U' + \epsilon'_i Q' H_{\text{u}} \bar{U}_i + \epsilon''_i Q' H_{\text{d}} \bar{D}_i$$

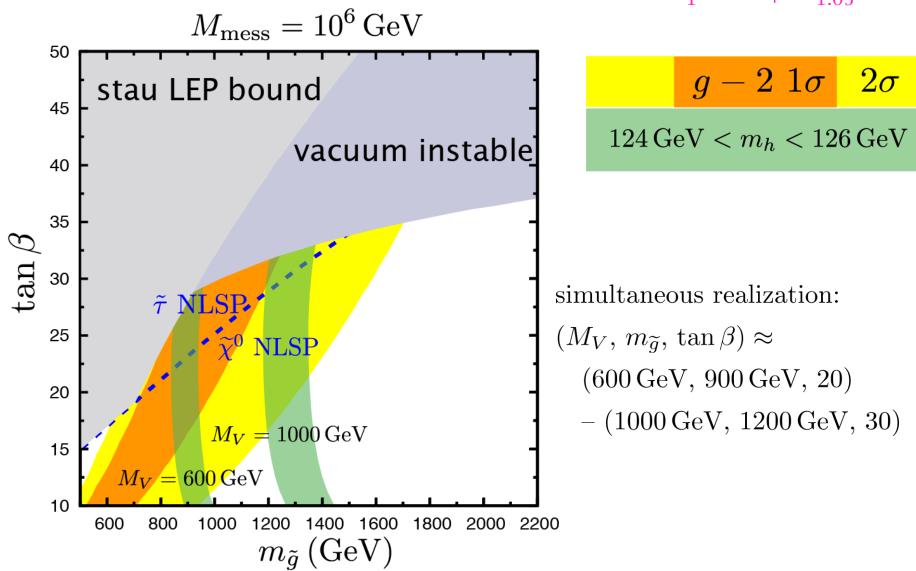
Mixing between SM- & vector-like quark

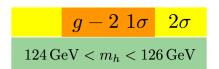
- \rightarrow Too large \rightarrow flavor problem?
- ➤ No mixing → stable colored particle.

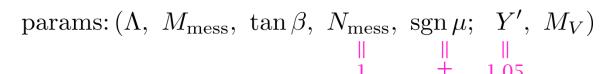
- No gauge anomaly.
- Gauge couplings unification.

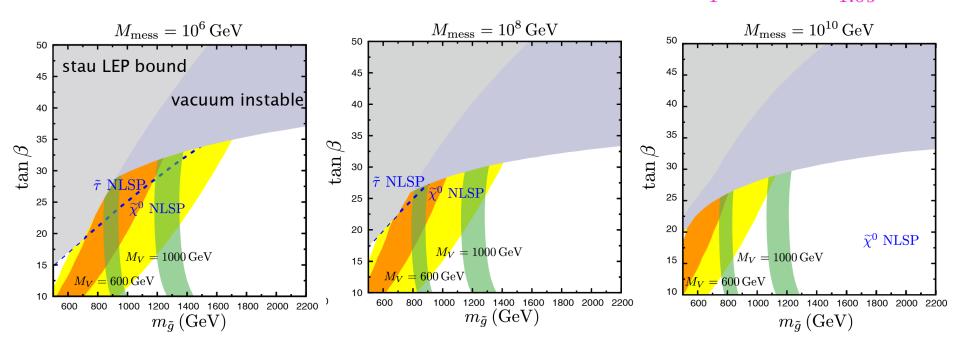
> assumed very small.

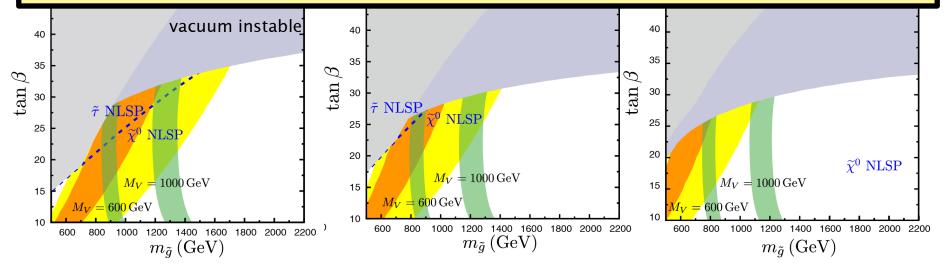

params: $(\Lambda, M_{\text{mess}}, \tan \beta, N_{\text{mess}}, \operatorname{sgn} \mu; Y', M_V)$


(GMSB framework)


- $N_{\text{mess}} = 1$ to keep perturbative up to M_{GUT} .
- $\operatorname{sgn} \mu = + \operatorname{to explain} g 2$.
- $\mathbf{Y}' = \mathbf{1.05}$: infrared fixed point \Rightarrow nice for 125 GeV (also A_t and A' go to IR fixed point.)


RESULT


in this talk



- $(g-2)_{\mu}$ expm. tells us $(2\sigma\text{-level})$, $M_V \lesssim 1.5 \,\mathrm{TeV}, \ m_{\widetilde{q}} \lesssim 1.6 \,\mathrm{TeV}$
- If we take $(g-2)_{\mu}$ seriously (1 σ -level), $M_V \lesssim 1.0 \, {\rm TeV}, \ m_{\widetilde{g}} \lesssim 1.2 \, {\rm TeV}$

3. LHC Phenomenology

Sparticle mass = lighter (:: g - 2)

⇒ Parameter space would be covered by LHC.

	prompt decay	long-lived
	$(M_{ m mess} \lesssim 10^5 { m GeV})$	$(M_{ m mess} \gtrsim 10^6 { m GeV})$
$\widetilde{\chi}^0$	curr. (1fb ⁻¹) $m_{\widetilde{g}} \gtrsim 1.2 \text{TeV}$ $2\gamma + \cancel{E}$: ATLAS[1111.4116]	curr. (1fb ⁻¹) $m_{\widetilde{g}} \gtrsim 700 \text{GeV}$ $4j + \cancel{E}$: ATLAS1109.6575, CMSsus11-008
	$Z\gamma + \psi$. ALLAS[IIII.4110]	$4j + \psi$. ATLASTI09.6575, CNISSUSTI-008
$\widetilde{ au}$	will easily be covered by	already excluded
	multi-lepton search	(CMS hvy-stbl chrgd prtcl; Seminar Jan. '12)

Vector-like Quark Search proof

ullet New "vector-like" quark (t_1',b',t_2')

$$\mathbf{10} = (Q', U', E')$$

$$\overline{\bf 10} = (\bar{Q}', \bar{U}', \bar{E}')$$

btw. vec-like/SM quark.

Mass

$$m_{t'} \sim M_V \pm (174 \,\text{GeV}/2),$$

 $m_{b'} = M_V$

$$egin{aligned} W_{
m add} &= Y'Q'H_{
m u}U' + Y''ar{Q}'H_{
m d}ar{U}' \ &+ M_VQ'ar{Q}' + M_VU'ar{U}' + M_VE'ar{E}' \ W_{
m mix} &= \epsilon_iQ_iH_{
m u}U' + \epsilon_i'Q'H_{
m u}ar{U}_i + \epsilon_i''Q'H_{
m d}ar{D}_i \end{pmatrix}$$

depending on mixing

Production

$$pp \to t_1' \bar{t}_1'$$
 etc. (pair production)

Vector-like Quark Search

• New "vector-like" quark (t_1', b', t_2')

Current bound

 $pp \to t'_1 \bar{t}'_1; \quad t'_1 \Longrightarrow_{qh}^{qW} \stackrel{qW}{\underset{(d \to qb\bar{b})}{\longleftrightarrow}}$

if it decays exclusively as

$$t_1' \to bW :: m_{t_1'} > 552 \, {\rm GeV} \quad {\rm CMS} \, 4.7 {\rm fb}^{-1} \, {\rm [exo-11-050]}$$

$$t_1' \to q_d W :: m_{t_1'} > 340 \, {\rm GeV} \quad {\rm CDF} \; 5.6 {\rm fb}^{-1} \; \hbox{[1107.3875]}$$

$$t_1' \to tZ$$
 :: $m_{t_1'} > 475\,\mathrm{GeV}$ CMS 1.14fb⁻¹ [1109.4985]

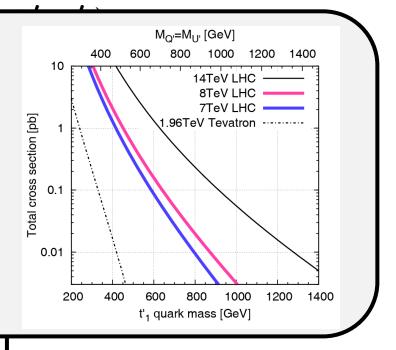
$$t_1' \to q_u Z ::$$
No bound yet

$$t_1' \to th$$
 :: No bound yet

$$(t_1' o q_u h \ :: \mathbf{No} \ \mathbf{bound} \ \mathbf{yet})$$

 $t'_1 \rightarrow q_u Z ::$ No bound yet $t'_1 \rightarrow th ::$ No bound yet $t'_1 \rightarrow q_u h ::$ No bound yet because of these possibility.

$$\geq 4 \text{ b-quarks} \quad (h \to b\bar{b})$$


Interesting channel after Higgs discovery. [K. Harigaya's talk]

Vector-like Quark Search

At LHC 8TeV, production doubles!

More severe bounds, or...?

 $egin{array}{ll} t'_1
ightarrow th & :: \mathbf{No} \ \mathbf{bound} \ \mathbf{yet} \ t'_1
ightarrow q_u h & :: \mathbf{No} \ \mathbf{bound} \ \mathbf{yet} \ \end{array}$

No general bound on t'_1 yet because of these possibility.

 $\geq 4 \text{ b-quarks} \quad (h \rightarrow bb)$

Interesting channel after Higgs discovery. [K. Harigaya's talk]

4. Conclusion

Conclusion

125GeV higgs?
$$+ (g-2)_{\mu}$$

MSSM $+ \mathbf{10} + \overline{\mathbf{10}}$: vector-like quarks

Our delusion dream will be smashed/proved by

- SUSY search $(\widetilde{\chi}_1^0 (N)LSP / \widetilde{\tau} (N)LSP)$
- 4th gen. quark search

$$\circ t' \to qW$$

$$\circ t' \rightarrow qZ$$

$$\circ t' \to qh(\to q_u b\bar{b})$$
 at the LHC