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1. Introduction



Early universe: environment with high-energy particles

High temperature ∼ high energy

How “deep” can we probe with various objects?

• Last scattering of photon: ∼ 1 eV

• Last scattering of neutrino: ∼ 1 MeV

• “Last scattering” of GWs: inflation

The history of our universe is imprinted in GWs

⇒ We may be able to extract information about high energy
physics which cannot be probed by colliders

⇒ GW spectrum may be precisely measured in (far) future
by, for e.g., DECIGO



Today’s subject: phase transition (or SSB)

• QCD phase transition

• EW symmetry breaking

• Peccei-Quinn symmetry

• GUT

• · · ·

In models with SSB, cosmic phase transition may occur

⇒ Is there any effect on observables?

⇒ If yes, what can we learn?



The spectrum of GWs is affected by cosmic phase transition

1. Primordial GWs are produced during inflation (via quan-
tum fluctuation)

2. Spectrum of GWs is deformed during the cosmic phase
transition
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2. GWs: Production and Evolution



Story:

1. Primordial GWs are produced during inflation (via quan-
tum fluctuation)

2. Evolution of the amplitudes of GWs depends how the
universe expands

3. Spectrum of GWs is deformed during the cosmic phase
transition

Gravitational wave:

• Fluctuation of the metric (propagating mode)

• Its evolution is governed by the Einstein equation



Metric: ds2 = −dt2 + a2(t)(δij + 2hij)dxidxj

Physical mode: transverse and traceless (hi
i = hij

,j = 0)

Fourier amplitude (using comoving wave-number ~k)
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Gravitational wave in de Sitter background: a ∝ eHinft
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behaves as massless scalar field

Quantum fluctuation generated during inflation
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The primordial GW amplitude is proportional to Hinf

⇒ The effects of GWs become observable when the energy
scale of the inflation is high



The tensor-to-scalar ratio

r ≡ ∆2
h

∆2
R

(= 16ε)

R: curvature perturbation (∆2
R ' 2.42 × 10−9)

ε: Slow-roll parameter

• WMAP 7 years

⇒ r < 0.24

• PLANCK / Future CMB interferometric observations

⇒ r as small as 0.1 − 0.01 will be detected

• Future experiments to detect GWs (DECIGO, · · ·)

⇒ GW spectrum will be observed if r >∼ ∼ 10−3



GW evolution after inflation
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Before the horizon-in: k � aH
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Amplitude of GWs

⇒ k >∼ aH: h̃~k ∼ const.

⇒ k <∼ aH: 〈h̃2
~k
〉osc ∼ a−2
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Energy density: ρGW(t) ≡
∫

d ln k ρGW(t; k)
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For modes which enter the horizon at the RD epoch:
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ρrad(t)



Present GW spectrum:

Ω
(tot)
GW =

ρ
(tot)
GW (tNOW)

ρcrit
≡
∫

d ln k ΩGW(k)

In the case without phase transition (i.e., standard case):

Ω
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GW (k) ' 1.7 × 10−15r0.1γ : kEW � k � kRH.

r0.1: the tensor-to-scalar ratio in units of 0.1
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In future, GW spectrum may be measured

⇒ BBO / DECIGO

Expected sensitivity



3. Phase Transition



The spectrum of GWs is affected by phase transitions

⇔ There may exist significant entropy production at the time
of phase transition

Model: two real scalar fields φ and χ

V (φ) =
g

24
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φ)
2 +

h

2
χ2φ2

φ: scalar field responsible for symmetry breaking

χ: degrees of freedom in thermal bath

“Thermal mass” is generated for φ in the thermal bath

⇒ Cosmic phase transition occurs



Potential of φ surrounded by the thermal bath (at φ ∼ 0)
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Critical temperature: temperature for V ′′
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h
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Approximately, the phase transition occurs when V ′′
T (φ = 0) = 0

⇔ Tunneling rate is suppressed when g � 1

Expectation value of φ:

〈φ〉 =

0 : T > Tc

vφ: T < Tc

Entropy is produced due to the phase transition

• Temperature just before the phase transition: Tc

• Temperature just after the phase transition: TPT > Tc

⇒ ρrad(TPT) = ρrad(Tc) + V0



Expansion rate at the phase transition:

HPT ≡

√√√√√ρrad(Tc) + V0

3M 2
Pl

The mode which enters the horizon at the phase transition:

kPT ≡ a(tPT)HPT

⇒ k < kPT: out-of-horizon at t = tPT

Present frequency: fPT = kPT/2πaNOW

fPT ' 2.7 Hz ×
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)

⇒ [fPT]g/h2�1 ' 0.50 Hz ×
 g1/4vφ
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Relevant equations to be solved (background):

• H2 =
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)2

=
ρrad + V0θ(tPT − t)

3M 2
Pl

• ρ̇rad + 4Hρrad = V0δ(t − tPT)

tPT: time of phase transition (i.e., T = Tc)

Effects of φ

• Deviation from the radiation-domination at t ∼ tPT

• Entropy production due to the phase transition



Evolution of the universe (with h = 1):

H =
1

2t
in RD

V0

ρrad(Tc)
∼ O(1) × h2

g∗g

g∗: Effective number of massless degrees of freedom



4. Imprints of Phase Transition in GWs



Behavior of GW amplitudes:

• k ≤ kPT: No effect of phase transition

• k ≥ kPT: Density is diluted due to the entropy production
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⇒ ΩGW(k >∼ kPT) is suppressed



“Short wavelength (i.e., high frequency)” mode: k ≥ kPT

1. The amplitude is constant until the horizon-reentry

[ρGW(k)]k=aH ' ρGW(t = 0)

2. ρGW(k) ∝ a−4 once the mode enters the horizon
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ΩGW(k >∼ kPT) becomes suppressed
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Spectrum of GWs: result of numerical calculation
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What can we learn from the GW spectrum?

• Position of the drop-off (∼ fPT)

⇒ “Reheating temperature” after the phase transition

• Magnitude of the drop-off (R)

⇒ Entropy production

• Slope of the drop-off (∼ dΩGW/d ln k)

⇒ Time scale of the reheating (instantaneous or ?)

GWs from white dwarf binaries are significant for small-f

⇒ It will be difficult to extract the signal of cosmic phase
transition in the GW spectrum if fPT

<∼ 0.1 Hz
[Farmer & Phinney]



Detectability of the “drop-off” signal

• Drop-off of ΩGW should be bigger than the sensitivity

⇒ Lower bound on R

• ΩGW(k >∼ kpt) should be observable

⇒ Upper bound on R

Comparison with the BBO-corr sensitivity:

• (r, fPT) = (0.1, 0.1 Hz)

0.005 < R < 0.98 ⇒ 1.5 × 10−6 < g < 0.014 (for h = 1)

• (r, fPT) = (0.1, 1 Hz)

0.17 < R < 0.83 ⇒ 6.0 × 10−5 < g < 0.0014 (for h = 1)



5. Summary



GW spectrum contains information about the early universe

Example: Cosmic phase transition

⇒ If a cosmic phase transition occurred, its effect may
be imprinted in the spectrum of GWs

Message: GWs are interesting because

• Various information about the early universe is imprinted
in GWs

• In a future, precise determination of the GW spectrum
may be performed by satellite experiments

⇒ If a non-vanishing value of r is confirmed, DECIGO (or
anything else) is strongly suggested as the next project


