On the adiabatic solution to the moduli problem

Kazunori Nakayama (University of Tokyo)

Workshop @ Toyama Univ (2012/2/21) KN, F.Takahashi, T.T.Yanagida arXiv:1109.2073 KN, F.Takahashi, T.T.Yanagida arXiv:1112.0418 M.Kawasaki, N.Kitajima, KN, arXiv:1112.2818

Contents

- Cosmological Polonyi/Moduli Problem
- Adiabatic solution to the Polonyi/moduli problem
- Relation to the I25GeV Higgs

Polonyi field

 $m_{\tilde{g}} \sim m_{\tilde{f}} \sim \frac{F_Z}{M_P}$

- SUSY breaking field in gravity-mediation Z
- Super/Kahler potential

 $W = Z\mu^2 + W_0 \qquad \qquad K = |Z|^2$

Giving SUSY particle masses through

$$\mathcal{L} \sim \int d^2 \theta \frac{Z}{M_P} W_a W^a \sim m_{\tilde{g}} \tilde{g} \tilde{g}$$

$$\mathcal{L} \sim \int d^4\theta \frac{Z^{\dagger} Z}{M_P^2} |f|^2 \sim m_{\tilde{f}}^2 |\tilde{f}|^2$$

Polonyi potential

• Superpotential $W = Z\mu^2 + W_0$ Kahler potential $K = |Z|^2$

 $V = e^{K/M_P^2} \left[K^{i\bar{j}}(D_i W)(D_{\bar{j}} \bar{W}) - \frac{3|W|^2}{M_P^2} \right]$

• Polonyi mass ~ gravitino mass $m_Z \sim m_{3/2}$

Polonyi Problem

Polonyi has Hubble mass during/after inflation

 $K \sim \frac{1}{M_P^2} |Z|^2 |I|^2 \to -\mathcal{L} \sim H^2 |Z|^2 \qquad \frac{|F_I|^2 = V_I \sim H^2 M_P^2}{I : \text{ inflaton}}$

Polonyi begins oscillation at H~m with amplitude ~MP

 $m_Z > H$ $V(Z) \uparrow$ $m_Z < H$ M_P

Polonyi Problem

Polonyi lifetime

[Coughlan et al. (1983), Ellis et al. (1986), Goncharov et al. (1986)]

$$\tau_Z \sim \left(\frac{m_Z^3}{M_P^2}\right)^{-1} \sim 10^4 \mathrm{sec} \left(\frac{1\mathrm{TeV}}{m_Z}\right)^3$$

• Polonyi abundance T_R :reheat temperature $\frac{\rho_Z}{s} = \frac{1}{8} T_R \left(\frac{Z_i}{M_P}\right)^2 \sim 10^5 \text{GeV} \left(\frac{T_R}{10^6 \text{GeV}}\right)$

 Big bang nucleosynthesis constraint [Kawasaki, Kohri, Moroi, 2005]

 $\frac{\rho_Z}{s} \lesssim 10^{-14} \text{GeV}$ 20 orders of magnitude tuning ?

Polonyi Problem

[Coughlan et al. (1983), Ellis et al. (1986), Polonyi lifetime Goncha . (1986)] $\tau_{Z} \sim \left(\frac{m_{Z}^{3}}{M_{P}^{2}}\right)^{-1} \sim 10^{4} \text{sc} \text{ lem}^{1}$ Polonyi abunda Problem R :reheat temperature $\frac{\rho_{Z}}{s} = \frac{1}{16} \text{ lierarch} 10^{5} \text{GeV} \left(\frac{T_{R}}{10^{6} \text{GeV}}\right)$ acleosynthesis constraint [Kawasaki, Kohri, Moroi, 2005] $\frac{\rho_Z}{\sim} \lesssim 10^{-14} \mathrm{GeV}$ 20 orders of magnitude tuning ?

Moduli Problem

 Moduli : light scalar appearing after compactification of extra dim. in string theory

Gravitational coupling

 $K = \frac{1}{M_P^2} |\Phi|^2 |Z|^2 \qquad \Phi : \text{SUSY breaking field}$ $\longrightarrow \quad V \sim \frac{F_{\Phi}^2}{M_P^2} |Z|^2 \sim m_{3/2}^2 M_P^2 \qquad \longrightarrow \qquad m_Z \sim m_{3/2}$

 Cosmological effects similar to the Polonyi Cosmological Polonyi/Moduli Problem

[Banks et al. (1983), de Carlos et al. (1993)]

Solutions

Moduli is heavy enough to decay before BBN

→ Moduli-induced gravitino problem

[Endo, Hamaguchi, Takahashi (06), Nakamura, Yamaguchi (06)]

- → Dilution of the baryon asymmetry
- Thermal inflation to dilute the moduli
 - → Domain wall problem
 - [See, however, T.Moroi, KN, 1105. 6216]
 - ---- Dilution of the baryon asymmetry
 - Adiabatic suppression mechanism

Adiabatic Suppression

KN, F.Takahashi, T.T.Yanagida arXiv:1109.2073 KN, F.Takahashi, T.T.Yanagida arXiv:1112.0418

Adiabatic suppression

 Linde (1996) proposed that moduli oscillation amplitude is exponentially suppressed if it has large Hubble mass term.

$$-\mathcal{L} = m_Z^2 (Z - Z_0)^2 + c^2 H^2 Z^2 \qquad c \gtrsim \mathcal{O}(10)$$

- Moduli amplitude is suppressed for large c
- Suppression factor :

$$\frac{3\sqrt{2p\pi}}{4}C^{\frac{3p+1}{2}} \exp\left(-\frac{C\pi p}{2}\right)$$

• $C \gg 10$ —

solve moduli problem without entropy production

Schematic picture

Potential changes adiabatically : $m_z \gg |\dot{z}_{
m min}/z_{
m min}|$

No oscillation

Potential changes non-adiabatically : $m_z \ll |\dot{z}_{
m min}/z_{
m min}|$

Oscillation is induced

 $-\mathcal{L} = m_Z^2 (Z - Z_0)^2 + c^2 H^2 Z^2 \longrightarrow Z_{\min} = \frac{m_Z^2}{c^2 H^2 + m_Z^2} Z_0$

$$f(H) = \dot{z}_{\min}/z_{\min}$$

12年2月21日火曜日

Moduli production at the end of inflation

The moduli dynamics is adiabatic as long as there is no timescale faster than the moduli mass • The Hubble parameter changes adiabatically in M.D. or R.D. era $m_{\tau}^{(\text{eff})} \sim cH \quad \dot{H} \sim H^2$ Is this true for whole the history? No! The Hubble parameter changes at the end of inflation with timescale of inflaton mass m_{ϕ} $H \sim m_{\phi} H$ Adiabaticity is violated if $m_{\phi} \gg H_{\text{inf}}$ [KN, F.Takahashi, T.Yanagida, 2011]

Moduli abundance

SUGRA single-field inflation case

$$K = |Z|^{2} + |\phi|^{2} + c^{2} \frac{|\phi|^{2}|Z - Z_{*}|^{2}}{M_{P}^{2}} \qquad \phi : \text{inflaton}$$

$$c \gg 1$$

$$\longrightarrow V = \frac{V(\phi)}{M_{P}^{2}}|z|^{2} + c^{2}H^{2}|z - z_{*}|^{2} \qquad H^{2} = \frac{|\dot{\phi}|^{2} + V(\phi)}{3M_{P}^{2}}$$

$$During \text{ inflation} : V(\phi)/M_{P}^{2} = 3H^{2} \qquad \longrightarrow \qquad z_{\min} = \frac{c^{2}z_{*}}{c^{2} + 3}$$

$$After \text{ inflation} : \langle V(\phi)/M_{P}^{2} \rangle = 3H^{2}/2 \qquad \longrightarrow \qquad z_{\min} = \frac{c^{2}z_{*}}{c^{2} + 3/2}$$

This shift is non-adiabatic if

 $m_{\phi} \gg m_z = c H_{\text{inf}}$

Moduli abundance

KN, F.Takahashi, T.T.Yanagida, 1109.2073

This amount is always induced at the end of inflation. (compare it with standard result $\frac{\rho_z}{s} = \frac{1}{8}T_R \left(\frac{z_*}{M_P}\right)^2$)

- This is power suppressed by c (not exponential)
- Suppressed by inflation scale
 Even in the adiabatic mechanism, there is model

dependent lower bound on the moduli abundance

Moduli abundance

Multi-field inflation case

$$W = Xf(\phi) \qquad K = c_{\phi}^2 \frac{|\phi|^2 |Z - Z_{\phi}|^2}{M_P^2} + c_X^2 \frac{|X|^2 |Z - Z_X|^2}{M_P^2}$$

- Hybrid inflation
- Multi-new inflation $W = \kappa X(\phi^n/M^{n-2} v^2)$

 $W = \kappa X (\phi \bar{\phi} - M^2)$ $W = \kappa X (\phi^n / M^{n-2})$

 $V \sim \left(|\dot{\phi}|^2 + |F_{\phi}|^2 \right) \frac{c_{\phi}^2 |z - z_{\phi}|^2}{M_P^2} + \left(|\dot{X}|^2 + |F_X|^2 \right) \frac{c_X^2 |z - z_X|^2}{M_P^2}$

Result :

$$\frac{\rho_z}{s} = \frac{1}{8} T_R \left(\frac{z_X - z_\phi}{M_P}\right)^2 \left(\frac{c_\phi^4 m_z}{c_X^3 H_{\text{inf}}}\right)$$

Results for hybrid inflation

The formula fits with numerical result

12年2月21日火曜日

10⁻⁶

Lowcut off theory

KN, F.Takahashi, T.T.Yanagida, 1112.0418

Suppose that moduli interaction strength with c/M_P

No moduli problem for low TR !

c = 100 $m_z = cm_{3/2}$ $H_{inf} = 10^{13} \text{GeV}$

 $\Gamma_z \sim \frac{c^2}{8\pi} \frac{m_z^3}{M_P^2}$

Another example

[M.Kawasaki, N.Kitajima, KN, 1112.2818]

Another toy model for the adiabatic suppression

 $V = \frac{1}{2}m_{\phi}^{2}(\phi - \phi_{0})^{2} + \frac{1}{2}m_{S}^{2}S^{2} + \frac{1}{2}\lambda^{2}S^{2}\phi^{2} \qquad m_{S}, S_{i} \gg m_{\phi}$ • Exercise : evaluate the abundance of ϕ $\lambda S \gg m_{\phi} : \phi \sim 0 \qquad \lambda S \ll m_{\phi} : \phi \sim \phi_{0}$ ϕ oscillates at $\lambda S \sim m_{\phi} \longleftrightarrow H \sim m_{S}m_{\phi}/(\lambda S_{i})$

$$\longrightarrow \quad \frac{\rho_{\phi}}{s} \sim \frac{m_{\phi}^2 \phi_0^2 / 2}{3H_{\rm os}^2 M_P^2} \frac{3T_R}{4} \sim \frac{T_R}{8} \left(\frac{\lambda S_i}{m_S}\right)^2 \left(\frac{\phi_0}{M_P}\right)^2$$

Another example

[M.Kawasaki, N.Kitajima, KN, 1112.2818]

 $m_S, S_i \gg m_\phi$

Another toy model for the adiabatic suppression

• Exercise : evaluate the abundance of ϕ $\lambda S \gg m_{\phi} : \phi \sim 0$ $\lambda S \ll m_{\phi} : \phi$

 $V = \frac{1}{2}m_{\phi}^{2}(\phi - \phi_{0})^{2} + \frac{1}{2}m_{S}^{2}S^{2} + \frac{1}{2}\lambda^{2}S^{2}\phi^{2}$

 ϕ oscillates at $\lambda S \sim m_{\phi} \leftrightarrow H \sim m_S m_{\phi}/(\lambda S_i)$

The final abundance of Φ

Many orders of magnitude difference may result unless these effects are carefully taken into account.

The final abundance of Φ

Many orders of magnitude difference may result unless these effects are carefully taken into account.

Many orders of magnitude difference may result unless these effects are carefully taken into account.

Implications for 125GeV Higgs

Giudice, Strumia, 1108.6077

Revive Polonyi Model

O(100)TeV SUSY

Anomaly mediation for the gaugino mass No Polonyi field

Ibe, Yanagida 1112.2462 ; Moroi, KN, 1112.3123 ; Ibe, Matsumoto, Yanagida, 1202.2253

O(10)TeV SUSY J.L.Feng, K.T.Matchev, D.Sanford, 1112.3021
 → Polonyi field for the gaugino mass
 → Polonyi Problem
 We revive the conventional Polonyi model

Revive Polonyi Model

Assume enhanced coupling of Polonyi with inflaton X.

The Polonyi problem can be solved and it can be consistent with leptogenesis scenario.

Summary

- We derived correct expression for the moduli abundance under the adiabatic suppression mechanism.
- The result depends on inflation model.
- Polonyi problem can be solved for SUSY scale of O(10)TeV, which leads to 125GeV Higgs.
- Be careful on the abundance of scalar field.

Backup Slides

Thermal Moduli

 Moduli are also produced scattering of particles in thermal bath, similar to gravitino

 $\sim C^2$

 If moduli also couple to SM sector strongly, the abundance is enhanced by the factor

• If so, the moduli lifetime becomes shorter by $\sim C^2$

Constraint on reheating temperature in adiabatic suppression scenario

[KN, F.Takahashi, T.Yanagida, in prep.]

Moduli Problem

- Light scalar field in compactification of extra dimensions in String theory
- E.g. Kahler moduli in KKLT stabilization in type IIB string theory $K = -3 \ln(T + T^{\dagger})$ $W = W_0 - Ae^{-aT}$ $\longrightarrow m_Z^2 \sim (8\pi^2)m_{3/2}^2$

Constraint on the modulus abundance

[Asaka, Kawasaki (1999)]