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Polonyi field
SUSY breaking field in gravity-mediation

L �
�

d2�
Z

MP
WaW a � mg̃ g̃g̃

L �
�

d4�
Z†Z

M2
P

|f |2 � m2
f̃
|f̃ |2 mg̃ � mf̃ �

FZ

MP

Giving SUSY particle masses through

W = Zµ2 + W0

Z

Super/Kahler potential

K = |Z|2
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Polonyi potential
W = Zµ2 + W0Superpotential

Z

V (Z)

�MP

mZ � m3/2Polonyi mass ~ gravitino mass

V = eK/M2
P

�
Kij̄(DiW )(Dj̄W̄ )� 3|W |2

M2
P

�
Kahler potential K = |Z|2
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Polonyi Problem
Polonyi has Hubble mass during/after inflation

Z

V (Z)

�MP

mZ < H

mZ > H

K � 1
M2

P

|Z|2|I|2 � �L � H2|Z|2
I : inflaton

Polonyi begins oscillation at H~m with amplitude ~MP

|FI |2 = VI � H2M2
P
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Polonyi Problem

Polonyi abundance
�Z

s
=

1
8
TR

�
Zi

MP

�2

� 105GeV
�
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106GeV

�

Polonyi lifetime

�Z �
�

m3
Z

M2
P

��1

� 104sec
�

1TeV
mZ

�3

Big bang nucleosynthesis constraint

�Z

s
� 10�14GeV 20 orders of magnitude tuning ?

TR :reheat temperature

[ Coughlan et al. (1983), Ellis et al. (1986),
Goncharov et al. (1986) ]

[ Kawasaki, Kohri, Moroi, 2005]

12年2月21日火曜日



Polonyi Problem

Polonyi abundance
�Z

s
=

1
8
TR

�
Zi

MP

�2

� 105GeV
�

TR

106GeV

�

Polonyi lifetime

�Z �
�

m3
Z

M2
P

��1

� 104sec
�

1TeV
mZ

�3

Big bang nucleosynthesis constraint

�Z

s
� 10�14GeV 20 orders of magnitude tuning ?

TR :reheat temperature

[ Coughlan et al. (1983), Ellis et al. (1986),
Goncharov et al. (1986) ]

Hiera
rch

y P
roblem

 !

[ Kawasaki, Kohri, Moroi, 2005]

12年2月21日火曜日



Moduli Problem

K =
1

M2
P

|�|2|Z|2 � : SUSY breaking field

V � F 2
�

M2
P

|Z|2 � m2
3/2M

2
P

mZ � m3/2

Gravitational coupling

Cosmological effects similar to the Polonyi

Cosmological Polonyi/Moduli Problem

[ Banks et al. (1983), de Carlos et al. (1993) ]

Moduli : light scalar appearing after 
compactification of extra dim. in string theory
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Solutions
Moduli is heavy enough to decay before BBN

Thermal inflation to dilute the moduli

Adiabatic suppression mechanism

Moduli-induced gravitino problem
[ Endo, Hamaguchi, Takahashi (06), Nakamura, Yamaguchi (06) ]

Dilution of the baryon asymmetry

Dilution of the baryon asymmetry

Domain wall problem
[ See, however,  T.Moroi, KN, 1105. 6216]
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Adiabatic Suppression

KN, F.Takahashi, T.T.Yanagida arXiv:1112.0418

KN, F.Takahashi, T.T.Yanagida arXiv:1109.2073
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Adiabatic suppression
Linde (1996) proposed that moduli oscillation  
amplitude is exponentially suppressed if it has 

large Hubble mass term. 

�L = m2
Z(Z � Z0)2 + c2H2Z2 c � O(10)

Z

V (Z)

�MP

mZ < cH

mZ > cH
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Figure 1: Oscillations of the moduli field in the theory (2) in the radiation dominated universe
(p = 1/2). Fig. 1a corresponds to C = 1, Fig. 1b shows the same process for C = 5.
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Figure 1: Oscillations of the moduli field in the theory (2) in the radiation dominated universe
(p = 1/2). Fig. 1a corresponds to C = 1, Fig. 1b shows the same process for C = 5.
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c=1

c=5

[ A.D.Linde (1996) ]

Moduli amplitude
is suppressed

for large c

where µ = −3(1 − p)/2 and ν2 = −C2p2 + (3p − 1)2/4.

It was noted in [11] that this solution has a rather weak dependence on C2 and p, and for
p = 1/2 or 2/3 one has to a good approximation

φ ∼
4

3
φ0

(

p

mφt

)

3p
2

sin

(

mφt +
(2 − 3p)π

4

)

. (5)

Thus, as one could expect, the field φ oscillates with the amplitude proportional to φ0, the factor
(

p
mφt

)

3p
2 taking care of the decrease of the initial amplitude due to the expansion of the universe.

The behavior of the field φ for the case C ∼ 1 is illustrated by Fig. 1 a.

However, in fact the solution (4) has a weak dependence on C only for C ∼ 1. Meanwhile,
if one takes C # 1, the behavior of the solution changes dramatically, see Fig. 1b. The field φ
follows the position of the time-dependent minimum of the effective potential, and its oscillations
about this position are rather small. To see these oscillations more clearly, one should subtract
from the actual value of the field φ its slowly changing mean value φ̄(t) corresponding to the
position of the time-dependent minimum of the effective potential. The result of this subtraction
is shown on Fig. 2, simultaneously with the solution (4), which has the following asymptotic
form1 for large C:

φ ∼
√

2pπ φ0 C
3p+1

2 exp
(

−
Cπp

2

)

(

p

tmφ

)

3p
2

sin

(

mφt +
(2 − 3p)π

4

)

. (6)

Fig. 2 shows numerical solution and the analytical solution (6) being superimposed. It is clearly
seen that both functions coincide at large t, which serves as an independent verification of the
validity of numerical and analytical results.

The solution (6) has an amplitude which is smaller than the amplitude of the solution (5) for
C ∼ 1 by the factor

3
√

2pπ

4
C

3p+1

2 exp
(

−
Cπp

2

)

. (7)

To reduce the amplitude of oscillations, say, by the factor 10−10, which would be sufficient to
solve the cosmological moduli problem, one needs C ∼ 30 for p = 1/2. For p = 2/3 (universe
dominated by nonrelativistic matter) it would be enough to have C ∼ 20. Whereas this may
look as a rather tough requirement, we remind that we do not really know the true value of this
parameter.

The situation is similar but somewhat better for the toy model considered in [13]:

V = −
1

2
(m2

φ + C2

1H
2)φ2 +

1

4M2
p

(m2

φ + C2

2H
2)φ4 . (8)

1 I am very grateful to Ewan Stewart for the discussion of this asymptotic form of their solution (4) at large
C.

5

Suppression
factor :

C � 10

solve moduli 
problem without

entropy production
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Schematic picture
Potential changes adiabatically : mz � |żmin/zmin|

Potential changes non-adiabatically : mz � |żmin/zmin|

No oscillation

Oscillation is induced
12年2月21日火曜日
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Figure 5: The “adiabaticity parameter” f(H)/mz(zmin) as a function of H/mz for c2 = 1
and 10. The modulus potential is given by Eq. (1) (top panel) and Eq. (13) ((a) in the
bottom panel) and Eq. (16) ((b) in the bottom panel). Here f(H) ≡ |żmin/zmin|. The
adiabaticity is violated when the curve exceeds f(H)/mz(zmin) = 1.

14

f(H) = żmin/zmin

adiabatic

Non-adiabatic

�L = m2
Z(Z � Z0)2 + c2H2Z2 Zmin =

m2
Z

c2H2 + m2
Z

Z0
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Moduli production at
the end of inflation

The moduli dynamics is adiabatic as long as
there is no timescale faster than the moduli mass

The Hubble parameter changes adiabatically
m(e�)

z � cH

The Hubble parameter changes at the end of 
inflation with timescale of inflaton mass

in M.D. or R.D. era Ḣ � H2

Ḣ � m�H

m�

Adiabaticity is violated if m� � Hinf

Is this true for whole the history? No!

[ KN, F.Takahashi, T.Yanagida, 2011]
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Moduli abundance

K = |Z|2 + |�|2 + c2 |�|2|Z � Z�|2

M2
P

SUGRA single-field inflation case
� : inflaton
c� 1

V =
V (�)
M2

P

|z|2 + c2H2|z � z�|2

During inflation : zmin =
c2z�

c2 + 3

After inflation : zmin =
c2z�

c2 + 3/2

H2 =
|�̇|2 + V (�)

3M2
P

V (�)/M2
P = 3H2

�V (�)/M2
P � = 3H2/2

�z � 3z�
2c2

This shift is non-adiabatic if 
m� � mz = cHinf
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Moduli abundance
�z

s
=

mz � cHinf(�z)2/2
3H2

infM
2
P

3TR

4
=

9
32

TR

�
z�

MP

�2 �
mz

c3Hinf

�

This amount is always induced at the end of inflation.

This is power suppressed by c (not exponential)

Suppressed by inflation scale

Even in the adiabatic mechanism, there is model 
dependent lower bound on the moduli abundance 

�z

s
=

1
8
TR

�
z�

MP

�2

( compare it with standard result )

KN, F.Takahashi, T.T.Yanagida, 1109.2073
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Moduli abundance
Multi-field inflation case

�z

s
=

1
8
TR

�
zX � z�

MP

�2
�

c4
�mz

c3
XHinf

�

K = c2
�

|�|2|Z � Z�|2

M2
P

+ c2
X

|X|2|Z � ZX |2

M2
P

W = Xf(�)

Hybrid inflation W = �X(��̄�M2)

Multi-new inflation W = �X(�n/Mn�2 � v2)

Result :

V �
�

|�̇|2 + |F�|2
� c2

�|z � z�|2

M2
P

+
�

|Ẋ|2 + |FX |2
� c2

X |z � zX |2

M2
P
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Results for hybrid inflation
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l z
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numerical
analytic

mz = 2� 10�3MP

� = 1, M = 0.1MP

cX = 25

c� = 2

zX = MP /cX , z� = zX/2
�� = 10�2.5MP

The formula fits with numerical result
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3

if the modulus is stabilized by the SUSY mass term. On
the other hand, if the modulus is stabilized by the non-
SUSY mass term, the gravitino pair production rate is
suppressed. In this case, however, the modulus decays
into the gravitino plus modulino, the fermionic superpa-
trner of the modulus, and its decay rate is comparable
to (6). Also, if χ is the Polonyi field, its decay rate into
a pair of the gravitinos is given by Eq. (6). Thus we
adopt (6) as the gravitino production rate. The grav-
itino (modulino) can decay into modulino (gravitino) +
2γ by exchanging the modulus if the former is heavier
than the latter. The lifetime of this process, however, is
sufficiently long so that the emitted gamma-rays do not
have observational consequences.
Taking those decay modes into account, we have es-

timated observational constraints on the modulus abun-
dance in this framework. The bottom panel of Fig. 1
shows the observational bounds on the modulus abun-
dance, in comparison with the theoretical prediction for
TR = 10MeV for c = 100, χ0 = MP/c, mχ = cm3/2,
and Hinf = 1013GeV. It is seen that the modulus abun-
dance is far below the observational bound for almost all
the masses. Therefore, the moduli problem is solved sim-
ply by making the cutoff scale a few orders of magnitude
smaller. No additional entropy production is needed.
In Fig. 2 we show the various upper bounds on the

reheating temperature as a function of the gravitino
mass. Note that the gravitino is the LSP. Here the BBN
constraint on the decay of the next-lightest-SUSY parti-
cle (NLSP) is not taken into account, assuming that the
NLSP decays quickly via R-parity violating operators, if
the lifetime of the NLSP exceeds 1 sec. Notice that there
is a general upper bound on the reheating temperature
in order for the adiabatic suppression to work, which
roughly reads TR ! 0.05

√

mχMP [10, 18]. This is
shown by the line labeled as “adiabaticity”. The bound
from the gravitino thermal production is shown as thick
dashed (blue) line [19–22]. It is seen that the moduli
problem is solved for TR ! 1TeV for almost all the mass
range. There are some parameter spaces where con-
straints are less severe, around 10GeV ! m3/2 ! 1TeV.

Implications : Our solution to the cosmological mod-
uli problem has some phenomenological implications.
First of all, because of the bound on TR ! 0.05

√

mχMP ,
one of the windows where leptogenesis [23] works,m3/2 !
O(10)eV, is closed. On the other hand, there is a win-
dow around m3/2 ∼ 100GeV where all the constraints
are less severe and the reheating temperature as high as
TR ∼ 107GeV is allowed. Then, non-thermal leptogene-
sis [24, 25] is possible. This is very appealing, since the
moduli problem is solved without disturbing a success-
ful leptogenesis scenario. In this case sfermions may be
as heavy as 10TeV, and as a consequence, the lightest
Higgs boson may be as heavy as 120-125GeV. For the
other values of the modulus mass, the reheating temper-
ature is constrained as TR ! TeV, and other baryogenesis
scenarios are needed. Notice that the bound can easily

FIG. 2: Upper bound on the reheating temperature as a func-
tion of the modulus mass for c = 100, Hinf = 1013 GeV and
k = 1. Constraints include BBN, diffuse gamma-ray back-
ground, reionization, thermal gravitino overproduction, LSP
(gravitino) overproduction from the modulus decay and adi-
abaticity.

be relaxed by a few orders of magnitude by reducing χ0

slightly or by choosing O(1) constants in (5) and (6) ap-
propriately.

Here are a few remarks. First, as is clear from the
expression (3), the modulus abundance is inversely
proportional to the inflation scale Hinf . Thus, high
scale inflation models are favored in this respect.2

In supergravity, chaotic inflation models with a shift
symmetry were proposed [26, 27]. There are also models
in the Jordan frame supergravity [28–31]. More general
arguments are found in recent publications [32]. Also,
the chaotic inflation models are favored since the Z2-
symmetry on the inflaton field can forbid the dangerous
non-thermal gravitino overproduction [33]. Second,
as mentioned below Eq. (3), the modulus abundance
is further suppressed in single-field inflation models.
Although the known single-field inflation model [16] pre-
dicts low inflation scale, Hinf ∼ 107GeV, the additional
suppression factor c−4 can easily compensate, making
the single new inflation model viable in this context.

Conclusions : In this letter we have shown that
the notorious cosmological moduli problem is solved if
the cutoff scale of the theory is lower than the Planck
scale. For the cutoff scale of M ∼ 10−2MP , the mod-

2 Note that Hinf in Eq. (3) corresponds to the Hubble scale at
the end of inflation, and not the Hubble scale when observational
scales exit the horizon.

c = 100
mz = cm3/2

Hinf = 1013GeV

�z �
c2

8�

m3
z

M2
P

Suppose that moduli interaction strength with c/MP

No moduli
problem for

low TR !

KN, F.Takahashi, T.T.Yanagida, 1112.0418

Lowcut off theory
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Another example
[ M.Kawasaki, N.Kitajima, KN, 1112.2818 ]

V =
1
2
m2

�(�� �0)2 +
1
2
m2

SS2 +
1
2
�2S2�2

Another toy model for the adiabatic suppression

mS , Si � m�

Exercise :  evaluate the abundance of �

� oscillates at H � mSm�/(�Si)�S � m�

��

s
�

m2
��2

0/2
3H2

osM
2
P

3TR

4
� TR

8

�
�Si

mS

�2 �
�0

MP

�2

�S � m� : � � 0 �S � m� : � � �0
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Another example
[ M.Kawasaki, N.Kitajima, KN, 1112.2818 ]

V =
1
2
m2

�(�� �0)2 +
1
2
m2

SS2 +
1
2
�2S2�2

Another toy model for the adiabatic suppression

mS , Si � m�

Exercise :  evaluate the abundance of �

� oscillates at H � mSm�/(�Si)�S � m�

��

s
�

m2
��2

0/2
3H2

osM
2
P

3TR

4
� TR

8

�
�Si

mS

�2 �
�0

MP

�2

�S � m� : � � 0 �S � m� : � � �0
0点
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Figure 3: Time evolutions of ⌅�/s (left) and Si dependence of the suppression factor �
(right) are shown. Mass dimensional values are normalized by M = 0.01MP . We have
taken mS = 1, m� = 0.01, ⇧0 = 0.1, ⇥ = 1, and �S = 10�4. In the left figure, we have
taken Si = 1 (solid red line), Si = 5 (dashed green line), Si = 10 (dotted blue line),
Si = 100 (small-dotted magenta line), and Si = 200 (dashed-and-dotted cyan line). In
the right figure, the dashed green line represents the analytical formula given by (12) with
⇤ = 1.

3 Application to a supersymmetric axion model

The supersymmetric (SUSY) axion model is introduced to solve the problems of the
standard model (SM) of particle physics. One of the serious problem is known as the strong
CP problem. Quantum chromodynamics (QCD) allows the existence of the CP violating
term in the Lagrangian, but on the other hand, the measurement of the neutron electric
dipole moment shows that CP must be preserved with high accuracy [11]. This implies
that the CP violating term must be highly suppressed, and the SM cannot explain this fact
in a natural way. The most popular solution was proposed by Peccei and Quinn [12]. They
introduced an additional global U(1) symmetry, called Peccei-Quinn (PQ) symmetry,
written as U(1)PQ. When the PQ symmetry is broken spontaneously, the axion arises
as a pseudo Nambu-Goldstone boson [13]. The axion acquires its mass through the
QCD instanton e⇥ect and settles down to the CP preserving minimum of the potential.
Another problem of the SM is the gauge hierarchy problem. It is naturally solved in the
framework of supersymmetry (SUSY) [14]. Therefore, the SUSY axion model solves both
of the problems in the SM.

In the SUSY axion model, the scalar partner of the axion, saxion, and the fermionic
superpartner of the axion, axino, are included in the PQ supermultiplet and they take
significant roles in cosmology [15, 16, 17, 18, 19, 20, 21, 22]. In this section, we focus on
the dynamics of the saxion and verify that the mechanism shown in the previous section is
applicable. This was partly mentioned in Ref. [9] in the context of hybrid inflation model
in the SUSY axion model. We further investigate this issue in a more general form.

8

Si

The final abundance of Φ

M.Kawasaki, N.Kitajima, KN, 1112.2818

Many orders of magnitude difference may result unless
these effects are carefully taken into account.

� = 1
mS = 1

m� = 0.01
�0 = 0.1

�S = 10�4
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Figure 3: Time evolutions of ⌅�/s (left) and Si dependence of the suppression factor �
(right) are shown. Mass dimensional values are normalized by M = 0.01MP . We have
taken mS = 1, m� = 0.01, ⇧0 = 0.1, ⇥ = 1, and �S = 10�4. In the left figure, we have
taken Si = 1 (solid red line), Si = 5 (dashed green line), Si = 10 (dotted blue line),
Si = 100 (small-dotted magenta line), and Si = 200 (dashed-and-dotted cyan line). In
the right figure, the dashed green line represents the analytical formula given by (12) with
⇤ = 1.

3 Application to a supersymmetric axion model

The supersymmetric (SUSY) axion model is introduced to solve the problems of the
standard model (SM) of particle physics. One of the serious problem is known as the strong
CP problem. Quantum chromodynamics (QCD) allows the existence of the CP violating
term in the Lagrangian, but on the other hand, the measurement of the neutron electric
dipole moment shows that CP must be preserved with high accuracy [11]. This implies
that the CP violating term must be highly suppressed, and the SM cannot explain this fact
in a natural way. The most popular solution was proposed by Peccei and Quinn [12]. They
introduced an additional global U(1) symmetry, called Peccei-Quinn (PQ) symmetry,
written as U(1)PQ. When the PQ symmetry is broken spontaneously, the axion arises
as a pseudo Nambu-Goldstone boson [13]. The axion acquires its mass through the
QCD instanton e⇥ect and settles down to the CP preserving minimum of the potential.
Another problem of the SM is the gauge hierarchy problem. It is naturally solved in the
framework of supersymmetry (SUSY) [14]. Therefore, the SUSY axion model solves both
of the problems in the SM.

In the SUSY axion model, the scalar partner of the axion, saxion, and the fermionic
superpartner of the axion, axino, are included in the PQ supermultiplet and they take
significant roles in cosmology [15, 16, 17, 18, 19, 20, 21, 22]. In this section, we focus on
the dynamics of the saxion and verify that the mechanism shown in the previous section is
applicable. This was partly mentioned in Ref. [9] in the context of hybrid inflation model
in the SUSY axion model. We further investigate this issue in a more general form.

8

Si

The final abundance of Φ

M.Kawasaki, N.Kitajima, KN, 1112.2818

Many orders of magnitude difference may result unless
these effects are carefully taken into account.

� = 1
mS = 1

m� = 0.01
�0 = 0.1

�S = 10�4
Adiabatic 

suppression
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Figure 3: Time evolutions of ⌅�/s (left) and Si dependence of the suppression factor �
(right) are shown. Mass dimensional values are normalized by M = 0.01MP . We have
taken mS = 1, m� = 0.01, ⇧0 = 0.1, ⇥ = 1, and �S = 10�4. In the left figure, we have
taken Si = 1 (solid red line), Si = 5 (dashed green line), Si = 10 (dotted blue line),
Si = 100 (small-dotted magenta line), and Si = 200 (dashed-and-dotted cyan line). In
the right figure, the dashed green line represents the analytical formula given by (12) with
⇤ = 1.

3 Application to a supersymmetric axion model

The supersymmetric (SUSY) axion model is introduced to solve the problems of the
standard model (SM) of particle physics. One of the serious problem is known as the strong
CP problem. Quantum chromodynamics (QCD) allows the existence of the CP violating
term in the Lagrangian, but on the other hand, the measurement of the neutron electric
dipole moment shows that CP must be preserved with high accuracy [11]. This implies
that the CP violating term must be highly suppressed, and the SM cannot explain this fact
in a natural way. The most popular solution was proposed by Peccei and Quinn [12]. They
introduced an additional global U(1) symmetry, called Peccei-Quinn (PQ) symmetry,
written as U(1)PQ. When the PQ symmetry is broken spontaneously, the axion arises
as a pseudo Nambu-Goldstone boson [13]. The axion acquires its mass through the
QCD instanton e⇥ect and settles down to the CP preserving minimum of the potential.
Another problem of the SM is the gauge hierarchy problem. It is naturally solved in the
framework of supersymmetry (SUSY) [14]. Therefore, the SUSY axion model solves both
of the problems in the SM.

In the SUSY axion model, the scalar partner of the axion, saxion, and the fermionic
superpartner of the axion, axino, are included in the PQ supermultiplet and they take
significant roles in cosmology [15, 16, 17, 18, 19, 20, 21, 22]. In this section, we focus on
the dynamics of the saxion and verify that the mechanism shown in the previous section is
applicable. This was partly mentioned in Ref. [9] in the context of hybrid inflation model
in the SUSY axion model. We further investigate this issue in a more general form.
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Si

The final abundance of Φ

M.Kawasaki, N.Kitajima, KN, 1112.2818

Many orders of magnitude difference may result unless
these effects are carefully taken into account.

Parametric resonant
amplification � = 1

mS = 1
m� = 0.01

�0 = 0.1
�S = 10�4

Adiabatic 
suppression
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125GeV Higgs
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High-scale SUSY?
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Figure 5: Assuming the existence of supersymmetry we compute, as function of tan �, the

preferred value of the SUSY scale m̃ implied by the Higgs mass mh = 124GeV (upper) and

126GeV (lower) at 68, 90, 99% C.L. in the cases of High-Scale Supersymmetry (left, assuming

a degenerate sparticle spectrum at the SUSY breaking scale with arbitrary stop mixing) and Split

Supersymmetry (right, assuming the spectrum of light fermions in eq. (28) and a degenerate

sparticle spectrum at the SUSY breaking scale).
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Revive Polonyi Model
O(100)TeV SUSY

Anomaly mediation for the gaugino mass

Ibe, Yanagida 1112.2462  ; Moroi, KN, 1112.3123 ; 
Ibe, Matsumoto, Yanagida, 1202.2253

O(10)TeV SUSY

Polonyi field for the gaugino mass

No Polonyi field

Polonyi Problem

J.L.Feng, K.T.Matchev, D.Sanford, 1112.3021 

We revive the conventional Polonyi model
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Revive Polonyi Model
4

FIG. 2: Constraints on Hinf and TR plane for the hybrid in-
flation model for m3/2 =10TeV (upper panel) and 50TeV
(lower panel). The red dashed line shows the lower bound on
TR from the cosmic string. The blue band shows the lower
bound on TR from the nonthermal gravitinos for cφzz = 1 (up-
per edge) and 0.1 (lower edge). The meanings of gray band
and the black dotted line are same as Fig. 1 : they set upper
bounds on TR from the Polonyi and thermal gravitino. The
WMAP normalization for the density perturbation is repro-
duced on the solid line.

B. Smooth hybrid inflation

Let us consider the smooth-hybrid inflation model [28]
where the inflaton superpotential is given by

W = X

(
µ2 − (φφ̄)m

M2m−2

)
+ W0, (18)

where m ≥ 2 is an integer. The model has a discrete
symmetry Zm under which φ̄ has a charge +1 and φ and

FIG. 3: Same as Fig. 2, but for the smooth-hybrid inflation
model.

X have zero charges. This model has an advantage that
it does not suffer from problematic topological defects
formation since the φ and φ̄ have nonzero VEVs dur-
ing inflation and topological defects are inflated away.
Hereafter we consider the case of m = 2 for simplicity.
Results do not much affected by this choice. The inflaton
can couple to right-handed neutrinos as Eq. (13) and the
decay rate is given by Eq. (14). The gravitino abundance
is also similarly estimated by Eq. (17).

We have scanned parameters (µ,M), which are rewrit-
ten in terms of Hinf and TR through the relation Hinf =
µ2/

√
3MP and TR = (10/π2g∗)1/4

√
ΓtotMP . We have

fixed mN = 10−6mφ. Fig. 3 shows constraints on
Hinf and TR plane for the hybrid inflation model for
m3/2 =10TeV (upper panel) and 50TeV (lower panel).
The blue band shows the lower bound on TR from the

[ KN, F.Takahashi, T.T.Yanagida,  in prep. ]

Assume enhanced
coupling of Polonyi

with inflaton X.

The Polonyi
problem can be

solved and it
can be consistent
with leptogenesis

scenario.
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Summary

• We derived correct expression for the 
moduli abundance under the adiabatic 
suppression mechanism.

• The result depends on inflation model.

• Polonyi problem can be solved for SUSY 
scale of O(10)TeV, which leads to 125GeV 
Higgs.

• Be careful on the abundance of scalar field.
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Backup Slides

12年2月21日火曜日



Thermal Moduli
Moduli are also produced scattering of 

particles in thermal bath, similar to gravitino

YZ � Y3/2 � 2� 10�12

�
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Y � n

s

If moduli also couple to SM sector strongly, 
the abundance is enhanced by the factor � C2

If so, the moduli lifetime becomes shorter by � C2

Z
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Figure 10: Same as Fig. 9 but for c2 = 30 and c3 = 1 (top) and c2 = 30 and c3 = 5
(bottom) with c5 = 1. In the top (bottom) panel, LSP is the bino (gravitino).

31

Constraint on reheating temperature in 
adiabatic suppression scenario

[ KN, F.Takahashi, T.Yanagida, in prep. ]
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Moduli Problem
Light scalar field in compactification of 

extra dimensions in String theory

E.g.  Kahler moduli in KKLT stabilization 
in type IIB string theory

T

K = �3 ln(T + T †)

W = W0 �Ae�aT

m2
Z � (8�2)m2

3/2
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FIG. 1. Various cosmological upper bounds on the modulus abundance for the case that the

modulus coupling is b = 1. The dotted line represents the upper bound from the overclosure limit
on the abundance of the modulus (or its decay products) for mφ < 200 GeV, and the upper bound
from the BBN speed up effects for mφ > 200 GeV. The dot-dashed line represents the upper bound

from the x(γ)-ray backgrounds. The short dashed line represents the upper bound from the CMBR
spectrum. The long dashed line represents the upper bound from the dissociation of the BBN light
elements. Note that there exist two typical modulus masses; mφ ! 100 MeV (the modulus lifetime

is equal to the age of the universe) and mφ ! 1 GeV (the modulus decay into two gluons starts to
open.) We also show the predicted modulus abundances of φ0 = MG by the solid lines for the case

mφ < ΓϕI
[Eq. (3)] and for the case mφ > ΓϕI

with the reheating temperature TRI = 10 MeV [Eq.
(4)].

Eqs. (3) and (4) with TRI = 10 MeV are also found in those figures. One can easily see that
the string modulus with a mass from 10 eV to 10 TeV is excluded by the various cosmological
observations. Since mφ ! m3/2, the whole gravitino mass region typically predicted by both
GMSB and HSSB models is not cosmologically allowed. This difficulty is often referred as
“cosmological moduli problem”. Here we would like to stress that this problem could not
be solved by choosing the model of the primordial inflation, i.e., even if one assumes the
extremely low reheating temperature TRI ∼ 10 MeV. This is very different from the gravitino
problem. Therefore, we required some extra mechanism to dilute the modulus mass density
sufficiently other than the primordial inflation. In the following, we consider the thermal
inflation model proposed by Lyth and Stewart [18] as such a dilution mechanism.

MeV, Ωφ is regarded as the ratio, (ρφ/s)D/(ρcr/s0), where (ρφ/s)D denotes the ratio of the energy
density of the modulus to the entropy density when the modulus decays.

8

Constraint on the modulus abundance

[ Asaka, Kawasaki (1999) ]

(TR=10MeV)
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