

UV complete model for radiative seesaw scenario electroweak baryogenesis

Tetsuo Shindou (Kogakuin University)

- S. Kanemura, E. Senaha, T.S,T. Yamada, JHEP1305,066
- S. Kanemura, N. Machida, T.S, T. Yamada,

Physics beyond the SM

Discovery of a Higgs boson&measurements of properties

Essence of the electroweak symmetry breaking

New Physics at TeV scale

It's quite interesting,

if the

the problems in the SM:

- Baryon asymmetry of the Universe
- Origin of the neutrino mass
- DM candidate

Solutions at TeV scale

There are examples of NP

- Baryon asymmetry of the Universe
 - Electroweak Baryogenesis
- Origin of the neutrino mass
 - Loop induced neutrino mass scenarios
- DM candidate
 - WIMP protected by some symmetry (e.g. Z

Electroweak Baryogenesis

Electroweak Baryogenesis

essence of EWSB

1st order electroweak transition

Sphaleron

To avoid too strong washout

The strong enough first order electroweak phase transition is necessary

Higgs potential@EW scale

To get strong 1st order EWT

Strong 1st order EWPT requires extension of the SM In the SM, the condition is satisfied only when m

 $(\phi$

Extra boson loop can enhance ϕ

Extended Higgs sector!

$$\mathcal{L} = \frac{\lambda_i}{2} h^2 |\Phi_i|^2$$

$$m_{\Phi}^2(\varphi) = M^2 + \lambda_i \varphi^2$$

Extra Higgs bosons as H,A H±

conflict with LHC data

Testable@Collider exp.

EWPT i

In the MSSM, there is no such a large enough with SM-like Higgs

(The light stop scenario is the only possibility but it's almost dead)

A

scenario is SUSY 4HD+charged singlets

 ϕ m \downarrow $\lambda > 1.6$

EW baryogenesis can be realized in a SUSY model @TeV

S.Kanemura, E. Senaha, T.S, PLB706,40

How about neutrino mass?

Origin of the neutrino mass _____

Alternative to the well-known seesaw model: Idea of loop induced neutrino mass

Especially,

Loop diagram with RH neutrinos give tiny neutrino mass

(Z ← To avoid tree level contribution Some new scalars are introduced!

L.M.Krauss, S.Nasri, M.Trodden, PRD67,085002

inert doublet Ψ_L Ψ_R Ψ_R Ψ_L Ψ_L

Lightest Z

AKS model

As a phenomenological model, this is quite interesting But ...

Many extra scalars → It seems artificial Large couplings → Landau pole at low energy scale

What is the fundamental theory of this model?

Fundamental theory?

- What is the fundamental theory of such a
 - Large coupling constant → Landau pole (cutoff)
 - What is the origin of strong Higgs force?
 - Where extra (non-matter) scalar fields come from ?

Fundamental theory?

- What is the fundamental theory of such a
 - Large coupling constant → Landau pole (cutoff)
 - What is the origin of strong Higgs force?

Where extra (non-matter) scalar fields come from ?

Fundamental theory?

- What is the fundamental theory of such a
 - Large coupling constant → Landau pole (cutoff)
 - What is the origin of strong Higgs force?
 - Where extra (non-matter) scalar fields come from ?

We have a nice candidate! SUSY SU(2)_H model

SUSY SU(2)

In SUSY QCD:
$$N_f=N_c+1 \Rightarrow$$
 confinement

See e.g. Intriligator, Seiberg, hep-th/9509006

Let us consider the simplest case (N_c=2&N_f=3)

SUSY $SU(2)_{H} \times SU(2)_{L} \times U(1)_{Y}$ S.Kanemura, T.S, and T. Yamada, PRD86,055023

It's asymptotic free!

Fields	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$
$\begin{pmatrix} T_1 \\ T_2 \end{pmatrix}$	2	0
T_3	1	+1/2
T_4	1	-1/2
T_5	1	+1/2
T_6	1	-1/2

Below the confinement scale Λ_{H} , the effective theory is described

Field	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$
$H_u = \begin{pmatrix} H_{13} \\ H_{23} \end{pmatrix}$	2	+1/2
$H_d = \begin{pmatrix} H_{14} \\ H_{24} \end{pmatrix}$	2	-1/2
$N = H_{56}, N_{\Phi} = H_{34}, N_{\Omega} = H_{12}$	1	0
$\Phi_u = \begin{pmatrix} H_{15} \\ H_{25} \end{pmatrix}$	2	+1/2
$\Phi_d = \begin{pmatrix} H_{16} \\ H_{26} \end{pmatrix}$	2	-1/2
$\Omega_+ = H_{35}$	1	+1
$\Omega = H_{46}$	1	-1
$\zeta = H_{36}, \xi = H_{45}$	1	0

by H_{ii}~T_iT_i

It's the same setup as the minimal SUSY fat Higgs, where only Hu, Hd, and N are made light (The effective theory is "minimal") R Harnik, et al., PRD70, 015002

Effective theory of SU(2)H

S.Kanemura, E. Senaha, T.S, T. Yamada, JHEP 1305, 066

 $\lambda = \lambda(\mu_{EW})$ determines the cutoff scale

1st order EWPT

S.Kanemura, E. Senaha, T.S, T. Yamada, JHEP 1305, 066

Benchmark:

 $m_h=126GeV$

$$\tan \beta = 15, m_{H^+} = 350 \text{GeV}, \mu = 200 \text{GeV}, M_{\tilde{t}} = M_{\tilde{q}} = 2000 \text{GeV}$$

 $\bar{m}_{\Omega^+}^2 = \bar{m}_{\Phi_d}^2 = \bar{m}_{\zeta}^2 = (1500 \text{GeV})^2, \bar{m}_{\eta}^2 = (2000 \text{GeV})^2, \mu_{\Phi} = \mu_{\Omega} = 550 \text{GeV}$

$$m_0^2 \equiv \bar{m}_{\Phi_u}^2 = \bar{m}_{\Omega_-}^2$$
 (Scanned)

$$(m_\phi^2 = \bar{m}_\phi^2 + c_\phi \lambda^2 v^2)$$

 $\varphi_c/T_c > 1$ can be satisfied!!

Lightest Z₂ odd masses

1st order EWPT

S.Kanemura, E. Senaha, T.S, T. Yamada, JHEP 1305, 066

Contribution to hyy

S.Kanemura, E. Senaha, T.S, T.Yamada, JHEP1305,066

~20% deviation is possible in the region of $v_c/T_c>1$

hhh coupling

 \sim 20% deviation is possible in the region of $v_c/T_c>1$

For radiative seesaw

S.Kanemura, N. Machida, T.S, T.Yamada,

We will introduce a Z

Fields	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	Z_2	
$\begin{pmatrix} T_1 \\ T_2 \end{pmatrix}$	2	0	+	
T_3	1	+1/2	+	
T_4	1	-1/2	+	
T_5	1	+1/2	<u>-</u>	
T_6	1	-1/2	-	

Then, Z
neutrinos are
introduced as SU(2)
singlet fields

Field	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	Z_2
$H_u = \begin{pmatrix} H_{13} \\ H_{23} \end{pmatrix}$	2	+1/2	+
$H_d = \begin{pmatrix} H_{14} \\ H_{24} \end{pmatrix}$	2	-1/2	+
$N = H_{56}, N_{\Phi} = H_{34}, N_{\Omega} = H_{12}$	1	0	+
$\Phi_u = \begin{pmatrix} H_{15} \\ H_{25} \end{pmatrix}$	2	+1/2	_
$\Phi_d = \begin{pmatrix} H_{16} \\ H_{26} \end{pmatrix}$	2	-1/2	-
$\Omega_+ = H_{35}$	1	+1	_
$\Omega_{-}=H_{46}$	1	-1	_
$\zeta = H_{36}, \xi = H_{45}$	1	0	<u>-</u> -

In the low energy effective theory,

$$W_{N} = (y_{N})_{i} N_{i}^{c} L_{j} \Phi_{u} + (h_{N})_{ij} N_{i}^{c} E_{j}^{c} \Omega^{-} + \frac{M_{i}}{2} N_{i}^{c} N_{i}^{c}$$

Neutrino mass generation

S.Kanemura, N. Machida, T.S, T.Yamada,

Two different types of contributions are possible

1-loop driven by y_N

It corresponds to SUSY Ma model

3-loop ν_i driven by h_N

They correspond to SUSY AKS model

Fields in SUSY AKS

S.Kanemura, N. Machida, T.S, T.Yamada,

In SUSY version, Hu, Hd (MSSM-like Higgs)

 $Ω^+$, $Ω^ Φ_u$, $Φ_d$ ζ N^c (RHN)

Many new fields are required

SU(2)_H model automatically provides all the fields in the Higgs sector!!

Benchmark points

(A):1-loop dominant point

(B):3-loop dominant point

Case	$\hat{\lambda}$	$\tan \beta$	m_{H^\pm}	$m_{ ilde{W}}$	μ	μ_{Φ}	μ_Ω
(A)	1.8	15	$350~{\rm GeV}$	$500~{\rm GeV}$	$100~{\rm GeV}$	$550~{\rm GeV}$	$-550~{\rm GeV}$
(B)	1.8	30	$350~{\rm GeV}$	$500~{\rm GeV}$	$100~{\rm GeV}$	$550~{\rm GeV}$	$-550~{\rm GeV}$

Case	$ar{m}_{\Phi_u}^2$	$ar{m}_{\Phi_d}^2$	$ar{m}_{\Omega^+}^2$	$ar{m}_{\Omega^-}^2$	$ar{m}_{\zeta}^2$	$ar{m}_{\eta}^2$
(A)	$(100 \text{ GeV})^2$	$(1500 \text{ GeV})^2$	$(1500 \text{ GeV})^2$	$(100 \text{ GeV})^2$	$(1500 \text{ GeV})^2$	$(2000 \text{ GeV})^2$
(B)	$(1500 \text{ GeV})^2$	$(1500 \text{ GeV})^2$	$(1500 \text{ GeV})^2$	$(30 \text{ GeV})^2$	$(1410 \text{ GeV})^2$	$(30 \text{ GeV})^2$

Case	B_{ζ}^{2}	B_{η}^2	$m_{\zeta\eta}^2$
(A)	$(100 \; {\rm GeV})^2$	$(100 \text{ GeV})^2$	$(100 \text{ GeV})^2$
(B)	$(1400 \text{ GeV})^2$	0	0

MANA	Case	M_1	M_2	M_3	$m_{ ilde{ u}_{R1}}$	$m_{ ilde{ u}_{R2}}$	$m_{ ilde{ u}_{R3}}$	$m_{\tilde{e}_{Ri}}(i=1,2,3)$
11.83	(A)	$60~{ m GeV}$	$120~{\rm GeV}$	$180~{\rm GeV}$	$60~{\rm GeV}$	$120~{\rm GeV}$	$180~{\rm GeV}$	5000 GeV
80.8.11	(B)	$100~{\rm GeV}$	$2000~{\rm GeV}$	$4000~{\rm GeV}$	$100~{\rm GeV}$	$3000~{\rm GeV}$	$5000~{\rm GeV}$	5000 GeV

Case	$(y_N)_{ij}$	$(h_N)_{ij}$
	$\left(-0.439 \ -0.424 \ 0.512 \right)$	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$
(A)	$0.226 0.218 -0.263 \times 10^{-4}$	0 0 0
	$\left(\begin{array}{ccc} 0.272 & 1.36 & 1.36 \end{array}\right)$	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$
	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	0.003 0
(B)	0 0 0	-0.0164 - 1.26i -0.02424 + 0.0049i -0.0022 + 0.00097i
	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	$\left(\begin{array}{ccc} 0.491 - 1.581i & 0.02461 + 0.00537i & 0.0016 + 0.0019i \end{array}\right)$

S.Kanemura, N. Machida, T.S, T.Yamada,

Case	m_1	m_2	m_3	$\sin^2 \theta_{12}$	$\sin^2 \theta_{23}$	$ \sin \theta_{13} $
(A)	0.0 eV	0.0087 eV	$0.050 \; \mathrm{eV}$	0.31	0.50	0.14
(B)	0.0 eV	$0.0084~\mathrm{eV}$	0.050 eV	0.32	0.50	0.14

The neutrino

Case	Λ_H	φ_c/T_c	$ \lambda_{hhh}/ \lambda_{hhh} _{ m SM}$	$B(h \to \gamma \gamma)/ B(h \to \gamma \gamma) _{SM}$
(A)	5 TeV	1.0	1.18	0.80
(B)	5 TeV	1.2	1.09	0.89

Case	$B(\mu \to e\gamma)$	$B(\mu \to eee)$
(A)	$\boxed{5.2\times10^{-19}}$	8.1×10^{-21}
(B)	5.0×10^{-13}	8.5×10^{-13}

LFV constraints:0.K.

We have not taken care of DM in these points yet We are now making new BP which includes DM

Comments on direct detection

Our model is characterized by the Z₂ odd sector

Case (A): light inert doublet

$$e^{+}e^{-} \to H'A' \to ZH'H'$$
 @ILC $e^{+}e^{-} \to H^{+\prime}H^{-\prime} \to W^{+}W^{-}H'H'$

Mass determination can be done with a few GeV accuracy

M. Aoki, S. Kanemura and H. Yokoya, PLB725,302.

Case (B): Singlet-like charged particle Ω^+

$$e^+e^- \to \Omega_1^+\Omega_1^-$$

 $e^-e^- o \Omega_1^-\Omega_1^-$ Strong evidence of the model

Aoki&Kanemura&Seto, PRD80,033007; Aoki&Kanemura, PLB689,28.

Light inert doublet @ ILC

M. Aoki, S. Kanemura and H. Yokoya, PLB725,302.

Light inert doublet @ ILC

M. Aoki, S. Kanemura and H. Yokoya, PLB725,302.

$$e^{+}e^{-} \to H^{+\prime}H^{-\prime} \to W^{+}W^{-}H'H'$$

[GeV]

The masses can be precisely determined

Singlet-like scalar @ ILC

Aoki&Kanemura, PLB689,28.

$$e^+e^- \to S^+S^- \to \tau^+\tau^- + \text{missing}$$

A signal can be seen at the ILC@1TeV

Singlet-like scalar @e

Aoki&Kanemura, PLB689,28.

The signal is quite clear evidence of the Majorana nature and the scenario

Summary

- It is quite interesting, NP in the Higgs sector provides solutions for baryogenesis, neutrino mass, DM.
 - Electroweak baryogenesis, radiative generation of neutrino mass,...
 - It can be tested at collider experiments
 - Many models have been considered but they have been developed purely phenomenologically
- We have succeeded to provide a candidate of fundamental theory of such models
- SUSY SU(2)_H with N_f=3 + Z₂-odd RHN is attractive simple candidate
 It also provides new DM candidate
- It's very different from GUT beyond the grand desert
 Rich fields may wait for us just above the TeV scale

Back up

Top Yukawa coupling

Murayama hep-ph/0307293; Harnik et al., PRD70, 015002

Introducing several new fields (SU(2)_H singlets) as

$$W_f = M_f(\varphi_u \bar{\varphi}_u + \bar{\varphi}_d \varphi_d) + \bar{\varphi}_d T T_4 + \bar{\varphi}_u T T_3$$

$$+ h_u^{ij} Q_i u_j \varphi_u + h_d^{ij} Q_i d_j \varphi_d + h_e^{ij} L_i e_j \varphi_d$$

$$T = \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}$$

conformal enhancement

Q,L,u,d,e: Matter fields in the SM

 $\varphi_{u,d}$ and $\bar{\varphi}_{u,d}$ are integrated out

$$W = \frac{4\pi}{M_f} \left\{ h_u^{ij} Q_i u_j(TT_3) + h_d Q_i d_j(TT_4) + h_e L_i e_j(TT_4) \right\}$$

Below AH

$$(TT_3) \rightarrow \frac{\Lambda_H}{4\pi} H_u \qquad (TT_4) \rightarrow \frac{\Lambda_H}{4\pi} H_d$$

$$W = h_u^{ij} Q_i u_j H_u + h_d^{ij} Q_i d_j H_d + h_e^{ij} L_i e_j H_d$$

for $M_f \sim \Lambda_H$

EWBG in the SM

In the high temperature approximation,

$$V(\varphi,T)\simeq D(T^2-T_0^2)\varphi^2-ET\varphi^3+rac{\lambda_T}{4}\varphi^4+\cdots$$

$$\varphi_c/T_c = 2E/\lambda_{T_c}$$

$$E = \frac{1}{12\pi v^3} (6m_W^3 + 3m_Z^3)$$

$$\lambda_T = \frac{m_h^2}{2v^2} + \log \text{ corrections}$$

1st order PT is possible due to the cubic term

$$\phi_c/T_c \propto 1/m_h^2$$

Light Higgs is required!!

In SM, Higgs should be lighter than 50GeV

excluded by

NEW CP phases are also necessary for successful baryogenesis

LEP data

Extension of the SM at TeV scale is necessary

It can be tested by experiments

- New bosonic loop contribution
- Higher dim. term in the potential
- **.** . . .

EWBG in the MSSM

Lighter stop loop can contribute —

$$E \simeq \frac{1}{12\pi v^3} (6m_W^3 + 3m_Z^3) + \frac{m_t^3}{2\pi v^3}$$

Carena et al., PLB380,81; ··· enhance

large top Yukawa coupling
$$E \simeq \frac{1}{12\pi v^3}(6m_W^3 + 3m_Z^3) + \frac{m_t^3}{2\pi v^3}\left(1 - \frac{|A_t + \mu\cot\beta|^2}{M_{\tilde{q}}^2}\right)^{3/2}$$

where the maximal contribution case is considered;

$$m_{\tilde{t}_1}^2(\varphi,\beta) = M_{T_R}^2 + \frac{y_t^2 s_\beta^2}{2} \left(1 - \frac{|A_t + \mu \cot \beta|^2}{M_{\tilde{q}^2}} \right) \varphi^2$$
For larger M-n, the effect is

For larger M_{TR}, the effect is smaller

Light stop is necessary ← No new coloured particles at LHC…

Even with such a maximal case, it's not easy to get $\varphi_c/T_c>1$

Carena et al., NPB812, 243; Funakubo, Senaha, PRD79, 115024

MSSM should be also modified at TeV scale for EWBG

What kind of modification?

$$\varphi_c/T_c \propto 1/m_h^2$$
 Small m_h is $\sup_{\text{support}} m_h=126 \text{GeV@LHC}$ preferable $\bigvee_{\text{we want to keep it!}} we want to keep it!$

A Good point of MSSM :h⁴ coupling is from gauge coupling→Light Higgs

Large bosonic loop contribution

- A strong Higgs coupling with additional bosons (h-Ф'-Ф')
- ullet Mass of ϕ ' is dominated by vev $\,m_{\Phi'}^2 = M^2 + {\color{black}\lambda^2} v^2$

A natural realization of "strong but light" in SUSY model:

MSSM Higgs Z₂ odd new fields
$$W = \lambda \Phi_{u,d} \Phi_1' \Phi_2' \longrightarrow \Delta V = |\lambda|^2 h^2 \varphi_{1,2}'^{\dagger} \varphi_{1,2}'$$

It provides strong coupling but m_h is kept small!

strong but

Tests of the scenario

Enhancement of ϕ_c/T_c

destructive

Extra bosonic loop

positive contribution

Ino loop

negative contribution

contribution to hhh coupling Linear Collider

Inert scalar mass: $m_{\Phi'}^2 = M'^2 + \lambda^2 v^2$

Inert ino mass: $m_{\tilde{\Phi}'} = \mu' + \lambda v$

The loop contributions are significant when λv dominates the masses.

Z₂ odd scalars as light as $\sim \lambda v$

Large μ ' and small M'^2 provides large deviation in hhh and large φ_c/T_c