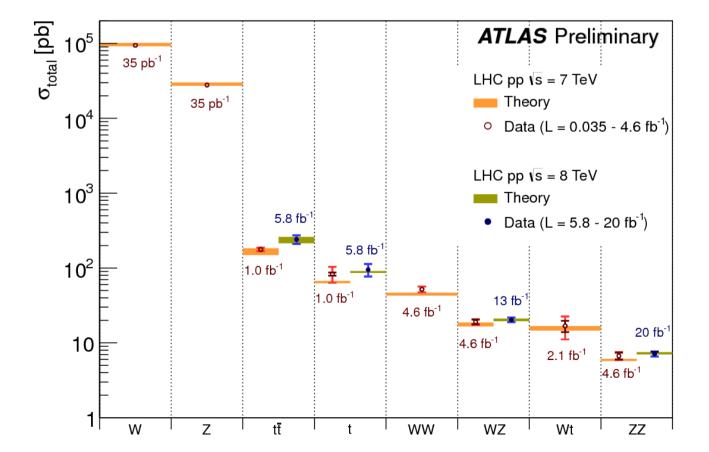


Parity-Odd Asymmetries in W-Jet Events at the LHC

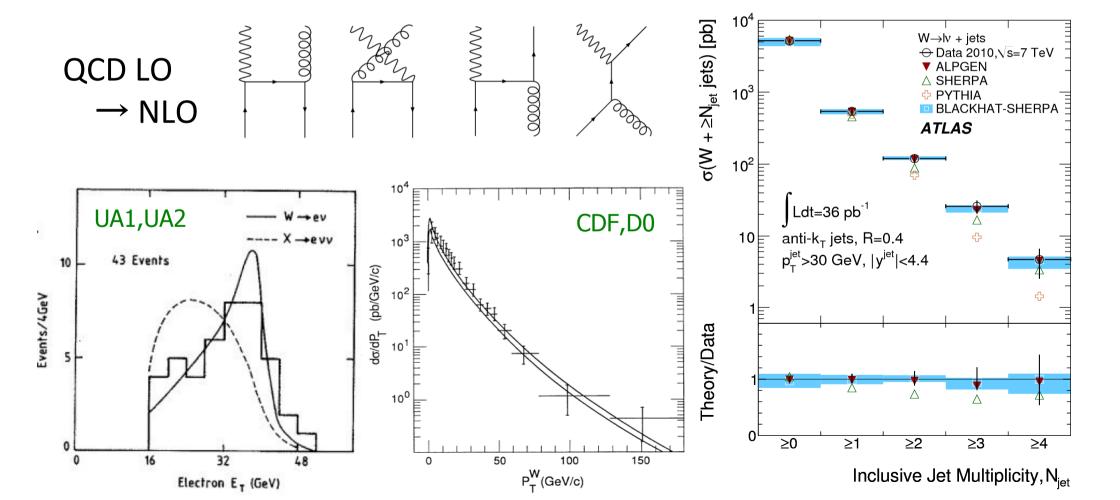

Hiroshi Yokoya (U. of Toyama)

Ref. K.Hagiwara, K.Hikasa, N.Kai, Phys.Rev.Lett.52 (1984) 1076, K.Hagiwara, K.Hikasa, HY, Phys.Rev.Lett.97 (2006) 221802 and

R.Frederix(CERN), K.Hagiwara, T.Yamada(NCU, Taiwan), HY, in progress

BURI2014, Toyama, 2/13-14 (2014)

Outline: W-jet production at hadron colliders,
Parity-odd and naïve-T-odd observables,
Simulation study
Summary



Introduction

High-q_⊤ W-boson production at Hadron Colliders

$$p + p(\bar{p}) \to W^{\pm} + X; W^{\pm} \to \ell^{\pm}\nu$$

in W-rest frame

P: $\phi \rightarrow -\phi$

Lepton Angular Distributions

- Information of the polarization of W-boson
 - → details of production mechanism
- Distributions can be expressed by 9 structure functions.

$$\frac{d^{4}\sigma}{dq_{T}^{2}d\cos\theta d\cos\theta d\phi} = F_{1}(1+\cos^{2}\theta) + F_{2}(1-3\cos\theta^{2})$$

$$+ F_{3}\sin2\theta\cos\phi + F_{4}\sin^{2}\theta\cos2\phi$$

$$+ F_{5}\cos\theta + F_{6}\sin\theta\cos\phi$$

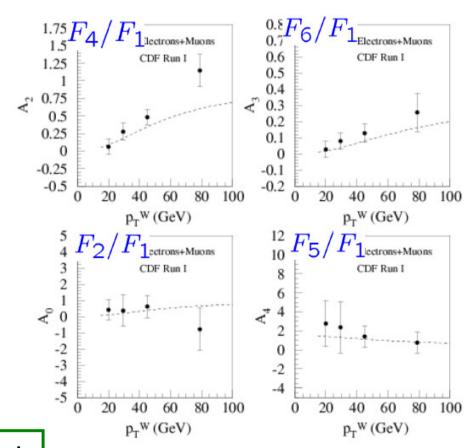
$$+ F_{7}\sin\theta\sin\phi + F_{8}\sin2\theta\sin\phi$$

$$+ F_{9}\sin^{2}\theta\sin2\phi$$
P-even
$$p$$

$$cos\theta$$
: scattering angle θ , ϕ : lepton angles

• pQCD prediction : $F_i(q_T^2, \cos \hat{\theta}) = \sum_i \int dY f_{a/p}(x_+, \mu_F^2) f_{b/\bar{p}}(x_-, \mu_F^2) \hat{F}_i^{ab \to W^- j}$

P-odd



Measurement of P-even distribution by CDF

PRD73,052002 ('06)

- Some of P-even distributions have been measured by CDF collaboration.
 - \rightarrow agree with pQCD (NLO) calc.

 However, P-odd distributions have not been measured yet.

Our work: revisit the P-odd effects and study the method to measure the P-odd distributions experimentally.

Parity-odd asymmetry

General arguments of parity-odd asymmetry

ullet Parity transformation : (ec p,ec s) o (-ec p,ec s)

Parity-odd observables :

ullet with spin : $\langle ec{p}_\ell \cdot ec{s}
angle
ightarrow - \langle ec{p}_\ell \cdot ec{s}
angle$

ullet without spin : $\langle \vec{p}_p imes \vec{q} \cdot \vec{p}_\ell \rangle o - \langle \vec{p}_p imes \vec{q} \cdot \vec{p}_\ell \rangle$

(need a source of parity-violation, e.g. weak int.)

Parity-odd and Naïve-T (\tilde{T})-odd

P-odd observables without spins are interesting,
 because these are naïve-T (T)-odd at the same time.

$$\widetilde{\mathsf{T}}$$
-transformation : $(\vec{p}, \vec{s}) o (-\vec{p}, -\vec{s})$ (unitary) $\widetilde{\mathsf{T}} | i(\vec{p}, \vec{s})
angle = | \widetilde{i}(-\vec{p}, -\vec{s})
angle$

T-transformation : $(\vec{p}, \vec{s}) \rightarrow (-\vec{p}, -\vec{s})$ (anti-unitary) $\mathsf{T}|i(\vec{p}, \vec{s})\rangle = \langle \tilde{i}(-\vec{p}, -\vec{s})|$

Unitarity and \tilde{T} -odd quantity

• Unitarity of S-matrix
$$S_{fi} = \delta_{fi} + i(2\pi)^4 \delta^4 (P_f - P_i) T_{fi}$$

$$T_{fi}-T_{if}^*=iA_{fi}$$
 where $\underline{A_{fi}=\sum_n T_{nf}^*T_{ni}(2\pi)^4\delta^4(P_n-P_i)}_{\text{absorptive part}}$

gives
$$|T_{fi}|^2 = |T_{if}|^2 - 2\operatorname{Im}(T_{if}^*A_{fi}) + |A_{fi}|^2$$

ullet T-odd quantity \sum subtract $|T_{\widetilde{fi}}|^2$

$$|T_{fi}|^2 - |T_{\widetilde{fi}}|^2 = (|T_{if}|^2 - |T_{\widetilde{fi}}|^2) - 2\operatorname{Im}(T_{fi}^*A_{fi}) - |A_{fi}|^2$$
 Time-reversal violation

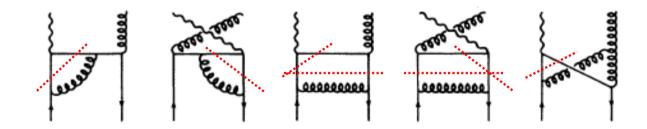
→ emerges from the absorptive parts of the scattering amplitude

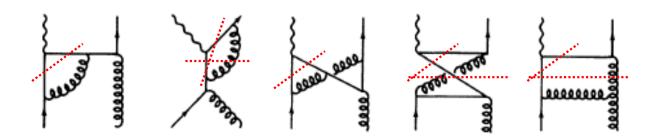
Unitarity and $\stackrel{\sim}{T}$ -odd quantity

In perturbation theory, the absorptive part of scattering amplitudes can be calculated by the imaginary part of the amplitudes.

$$\int d\Phi_2 \left(\frac{1}{2} \right) \left(\frac{1}$$

Cutkosky rule


Therefore, measurement of naïve-T-odd quantities can test the perturbative predictions for the absorptive part of scattering amplitudes, or the scattering phase.

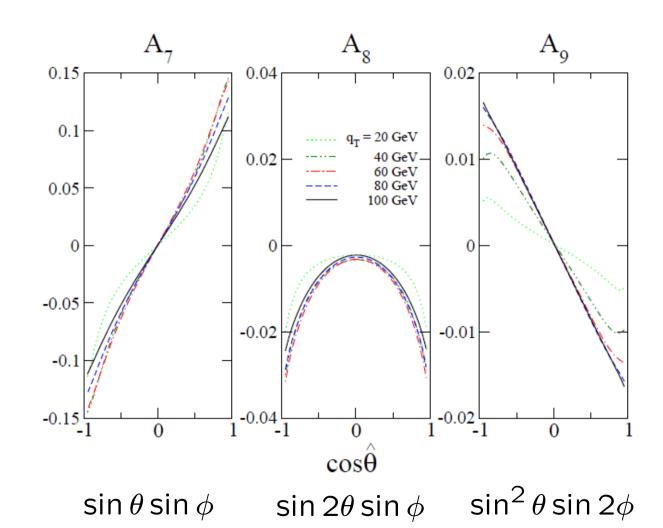

One-loop calculation

Hagiwara, Hikasa, Kai ('84)

- Absorptive part for the W-jet production in one-loop level :
 - 1. Annihilation subprocess : $q\bar{q}' \rightarrow Wg$

2. Compton subprocess: $qg \to Wq'$ $(\bar{q}g \to W\bar{q}')$

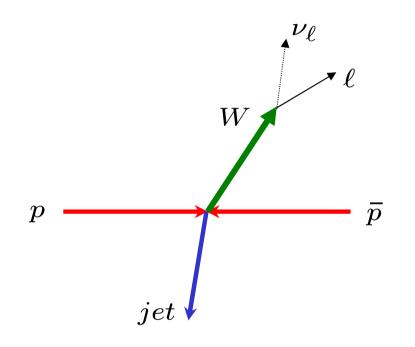
Parity-odd asymmetries


$$A_i(q_T^2, \cos \hat{\theta}) = F_i / F_1 \text{ for } i = 7, 8, 9$$

LHC

pp, $\sqrt{S} = 8 \text{ TeV}$ with CTEQ6M

 $A_7 \sim 10-15\%$, $A_8 \sim a \text{ few } \%$, $A_9 \sim a \text{ few } \%$


Hereafter, we focus on A₇ measurement

Measurement at collider experiments

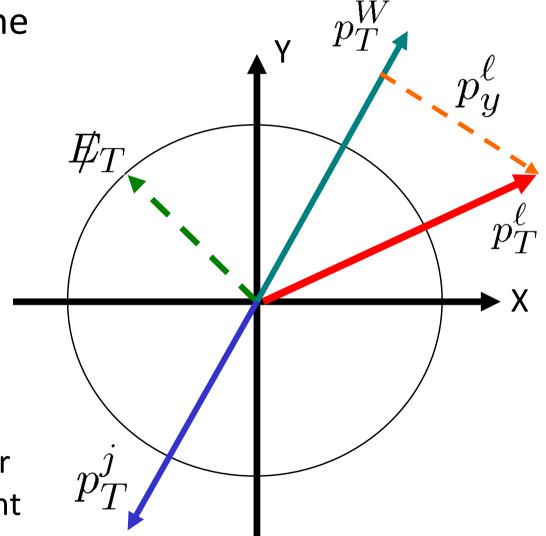
Two-fold ambiguity

- (longitudinal) neutrino momentum cannot be measured, but is solved by using W-boson on-shell condition.
- → Two-fold ambiguity in determining
 - W-jet c.m. frame $\cos \hat{\theta}$, \hat{s} , x_{\pm} ,,
 - W-rest frame $\cos \theta$, ϕ

However, to measure A₇, we only need to know

 $\sin \theta \sin \phi \rightarrow y$ -component of p₁ in the lab. frame

COS $\widehat{\theta}$ — use pseudo-rapidity difference of lepton and jet, instead. $\Delta \eta = \eta_\ell - \eta_{je}$


Measurement at collider experiments

Event in the transverse plane

(p^l)_y is invariant under the Lorentz Boost from lab. frame to the W-rest frame

$$p_y^\ell = \frac{m_W}{2} \sin \theta \sin \phi$$

Missing E_T resolution is crucial for the accuracy of $(p^l)_v$ measurement

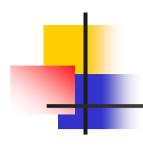
Measurement at collider experiments

Standard cuts for W+jets events:

One lepton with high- p_T > 25 GeV Large missing E_T > 25 GeV Large transverse mass, M_T > 60 GeV Hard jets with p_T > 30 GeV

For our purpose, we may further require

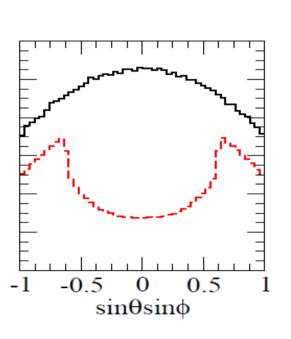
Veto on the second leading jet $p_T > 30 \text{ GeV}$ $q_T > 20 \text{ GeV}$ etc.

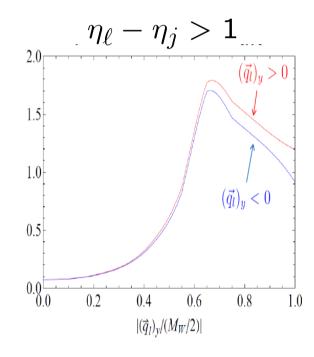

MC simulation by aMC@NLO

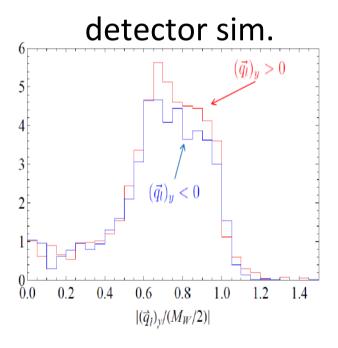
An automated NLO cross-section calculator + event generator http://amcatnlo.web.cern.ch/amcatnlo/

- We confirmed that it calculates the absorptive part correctly.
- MC sim. with parton-shower, hadronization and detector effect.
- Able to check the effect of jet smearing, MET resolution etc.

This is very important for experimentalists to handle with such theory prediction in Monte-Carlo simulation

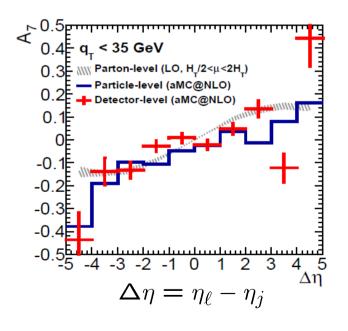

→ We demonstrate the aMC@NLO simulation for the realistic P-odd observables at the LHC.

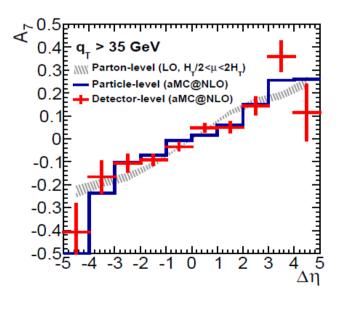



MC simulation by aMC@NLO

Check of distributions by MC simulation

• $sin\theta sin \phi = p_v^l(m_w/2)$ distribution before/after cuts (LHC 8TeV)


- ullet Small $\sin \theta \sin \phi$ events are suppressed by cuts
 - \rightarrow good for A₇, since smearing effect by MET resolution can be reduced.



MC simulation by aMC@NLO

 Comparison of the Asymmetries at parton-level, particle-level(Herwig) and detector-level(Delphes).

$$A_7 = \langle 4 \sin \theta \sin \phi \rangle \propto \langle (p_\ell)_y \rangle$$

(LHC 8TeV)

error bar = statistic error in our sim. (~1fb-1)

• We find that asymmetry can be retained after smearing effects.

Summary

- Naïve-T-odd asymmetry emerges from the absorptive part of the scattering amplitudes. In hard process it can be predicted, and comparison with experiments would be an interesting test.
- We study the naïve-T-odd (P-odd) asymmetry in W-jet production at the LHC at one-loop level with detailed simulation study for the realistic experimental situations.
- It will be a first observation of naïve-T-odd observables in hard process.