Yoshiya Ikawa Publications
2025
(139)
Abe, S., Aburaya, S., Koyama, T., Usui, T., Yoshino, J., Matsumura, S., & Ikawa, Y.
Biochemical characterization of a non-G4-type RNA aptamer that lights up a GFP-like fluorogenic ligand.
Molecules, 30, 1777 (2025)
[Link]
(138)
Miyazaki, Y., Nakane, R., Tanishi, S., Matsumura, S., & Ikawa, Y.
Catalytic cleavage of an RNA substrate that bypasses the reorganization of its secondary structure during substrate recognition by a trans-acting VS ribozyme.
Nucleosides Nucleotides Nucleic Acids, (2025) published online
[PubMed]
2024
(137)
Ikawa, Y.
リボザイムとその応用
RNAの科学:時代を拓く生体分子(金井昭夫編、朝倉書店)
, p214-p227 (2024)
[Link]
2023
(136)
Siddika, Mst. A., Oi, H., Hidaka, K., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Structural expansion of catalytic RNA nanostructures through oligomerization of a cyclic trimer of engineered ribozymes.
Molecules, 28, 6465 (2023)
[Pubmed]
(135)
Ueda, T., Nishimura, K., Nishiyama, Y., Tominaga, Y., Miyazaki, Y., Furuta, H., Matsumura, S., & Ikawa, Y.
Pairwise engineering of tandemly aligned self-splicing group I introns for analysis and control of their alternative splicing.
Biomolecules, 13, 654 (2023)
[PubMed]
2022
(134)
Siddika, Mst. A., Yamada, T., Aoyama, R., Hidaka, K., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Catalytic RNA oligomers formed by co-oligomerization of a pair of bimolecular RNase P ribozymes.
Molecules, 27, 8298 (2022)
[PubMed]
(133)
Islam, Md. D., Hidaka, K., Suzuki, Y., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Box-shaped ribozyme octamer formed by face-to-face dimerization of a pair of square-shaped ribozyme tetramers.
J. Biosci. Bioeng., 134, 195-202 (2022)
[PubMed]
(132)
Yu, K., Hidaka, K., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
A hexameric ribozyme nanostructure formed by double-decker assembly of a pair of triangular ribozyme trimers.
ChemBioChem, 23, e202100573 (2022)
[PubMed]
2021
(131)
Ikawa, Y.
構造モジュールの集積と再構成によるRNA触媒の人工ナノ集積
CSJカレントレビュー vol.41, 進化を続ける核酸化学
, 93-99 (2021)
[Link]
(130)
Islam, Md. D., Rahman, Md. M, Matsumura, S., & Ikawa, Y.
Effects of chain length of polyethylene glycol molecular crowders on a mutant Tetrahymena group I ribozyme lacking large peripheral module.
Nucleosides Nucleotides Nucleic Acids, 40,867-883 (2021)
[PubMed]
(129)
Mori, Y., Oi, H., Suzuki, Y., Hidaka, K., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Flexible assembly of engineered Tetrahymena ribozymes forming polygonal RNA nanostructures with catalytic ability.
ChemBioChem, 22, 2168-2176 (2021)
[PubMed]
(128)
Akagi, J., Yamada, T., Hidaka, K., Fujita, Y., Saito, H., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
An RNA triangle with six ribozyme units can promote a trans-splicing reaction through trimerization of unit ribozyme dimers.
Applied Sciences, 11, 2583 (2021)
[Link]
2020
(127)
Ikawa, Y.
機能性RNA (第2部-13)
核酸科学ハンドブック(杉本直己編、講談社サイエンティフィク), p421-425 (2020)
[Link]
(126)
Kiyooka, R., Akagi, J., Hidaka, K., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Catalytic RNA nano-objects formed by self-assembly of group I ribozyme dimers serving as unit structures.
J. Biosci. Bioeng., 130, 253-259 (2020)
[PubMed]
(125)
Rahman, Md. S., Gulshan, Mst. A, Matsumura, S., & Ikawa, Y.
Polyethylene glycol molecular crowders enhance the catalytic ability of bimolecular bacterial RNase P ribozymes.
Nucleosides Nucleotides Nucleic Acids, 39, 715-729 (2020)
[PubMed]
(124)
Rahman, Md. S., Matsumura, S., & Ikawa, Y.
Effects of external molecular factors on adaptation of bacterial RNase P ribozymes to thermophilic conditions.
Biochem. Biophys. Res. Commun., 523, 342-347 (2020)
[PubMed]
2019
(123)
Nozawa, Y., Hagihara, M.,Rahman, Md. S., Matsumura, S., & Ikawa, Y.
Rational design of an orthogonal pair of bimolecular RNase P ribozymes through heterologous assembly of their modular domains.
Biology, 8, pii: E65 (2019)
[PubMed]
(122)
Tsuruga, R., Uehara, N., Suzuki, Y., Furuta, H., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Oligomerization of a modular ribozyme assembly of which is controlled by a programmable RNA-RNA interface between two structural modules.
J. Biosci. Bioeng., 128, 410-415 (2019)
[PubMed]
2018
(121)
Nozawa, Y., Hagihara, M., Matsumura, S., & Ikawa, Y.
Modular architecture of bacterial RNase P ribozymes as a structural platform for RNA nanostructure design.
CHIMIA, 72, 882-887 (2018)
[PubMed]
(120)
Rahman, Md. M., Matsumura, S.,& Ikawa, Y.
Effects of molecular crowding on a bimolecular group I ribozyme and its derivative that self-assembles to form ribozyme oligomers.
Biochem. Biophys. Res. Commun.,507, 136-141 (2018)
[PubMed]
(119)
Gulshan, Mst. A., Tsuji, K., Matsumura, S., Higuchi, T., Umezawa, N., & Ikawa, Y.
Distinct modulation of group I ribozyme activity among stereoisomers of a synthetic pentamine with structural constraints.
Biochem. Biophys. Res. Commun., 504, 698-703 (2018)
[PubMed]
(118)
Rahman, Md. M., Matsumura, S.,& Ikawa, Y.
Oligomerization of a bimolecular ribozyme modestly rescues its structural defects that disturb interdomain assembly to form the catalytic site.
J. Mol. Evol., 86, 431-442 (2018)
[PubMed]
(117)
Gulshan, Mst. A., Matsumura, S., Higuchi, T., Umezawa, N., & Ikawa, Y.
Comparative study of polyethylene polyamines as activator molecules for a structurally unstable group I ribozyme.
Biosci. Biotech. Biochem., 82, 1404-1407 (2018)
[PubMed]
(116)
Inuzuka, S., Kakizawa, H., Nishimura, K., Naito, T., Miyazaki, K., Furuta, H., Matsumura, S., & Ikawa, Y.
Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.
Genes to Cells, 23, 435-447 (2018)
[PubMed]
(115)
Ikawa, Y., & Matsumura, S.,
Engineered group I ribozymes as RNA-based modular tools to control gene expression.
Applied RNA Bioscience (Springer), Chapter 13, p203-p220 (2018)
[Link]
(114)
Gulshan, Mst. A., Rahman Md. M., Matsumura, S., Higuchi, T., Umezawa, N., Ikawa, Y.
Biogenic triamine and tetraamine activate core catalytic ability of Tetrahymena group I ribozyme in the absence of its large activator module.
Biochem. Biophys. Res. Commun., 496, 594-600 (2018)
[PubMed]
2017
(113)
Rahman, Md. M., Matsumura, S., & Ikawa, Y.
Artificial RNA motifs expand the programmable assembly between RNA modules of a bimolecular ribozyme leading to application to RNA nanostructure design.
Biology, 6, pii: E37 (2017)
[PubMed]
(112)
Tanaka, T., Hirata, Y., Tominaga, Y., Furuta, H., Matsumura, S., & Ikawa, Y.
Heterodimerization of group I ribozymes enabling exon recombination through a pair of cooperative trans-splicing reactions.
ChemBioChem, 18, 1659-1667 (2017)
[PubMed]
(111)
Tanaka, T., Ikawa, Y., & Matsumura, S.
Rational engineering of a modular group I ribozyme to control its actvity by self-dimerization.
Methods in Molecular Biology (RNA Nanostructures), 1632, 325-340 (2017)
[PubMed]
(110)
Matsumura, S., & Ikawa, Y.
リボザイムの研究動向と安全性評価
先端医療技術の実用化と開発戦略(技術科学協会)1章8節, p.61-p.65 (2017)
[Link]
(109)
Oi, H., Fujita, D., Suzuki, Y., Sugiyama, H., Endo, M., Matsumura, S., & Ikawa, Y.
Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes.
J. Biochem., 161, 451-462 (2017)
[PubMed]
2016
(108)
Ikawa,Y., Katsumata, S., Sakashita, R., Sato, S., Takenaka, S., & Furuta, H.
Water-soluble porphyrinoids as G-quadruplex binders and telomerase inhibitors.
J. Porphyrins Phthalocyanines, 20, 1041-1048 (2016)
[Link]
(107)
Furukawa, A., Tanaka, T., Furuta, H., Matsumura, S., & Ikawa, Y.
Use of a fluorescent aptamer RNA as an exonic sequence to analyze self-splicing ability of a group I intron from structured RNAs.
Biology, 5, pii: E43 (2016)
[PubMed]
(106)
Inuzuka, S., Nishimura, K., Kakizawa, H., Fujita, Y., Furuta, H., Matsumura, S., & Ikawa, Y.
Mutational analysis of structural elements in a class-I cyclic di-GMP riboswitch to elucidate its regulatory mechanism.
J. Biochem., 160, 153-162 (2016)
[PubMed]
(105)
Ikawa, Y.
分子デザインと進化工学によるRNA構造エンジニアリング
生物工学会誌, 94, 477-480 (2016)
[Link]
(104)
Tanaka, T., Matsumura, S., Furuta, H., & Ikawa, Y.
Tecto-GIRz: engineered group I ribozymes the catalytic ability of which can be controlled by self-dimerization.
ChemBioChem, 17, 1448-1455 (2016)
[PubMed]
(103)
Inuzuka, S., Matsumura, S., & Ikawa, Y.
Optimization of RNA-based c-di-GMP fluorescent sensors through tuning their structural modules.
J. Biosci. Bioeng., 122, 183-187 (2016)
[PubMed]
(102)
Furukawa, A., Maejima, T., Matsumura, S., & Ikawa, Y.
Characterization of an RNA receptor motif that recognizes a GCGA tetraloop.
Biosci. Biotech. Biochem., 80, 1386-1389 (2016)
[PubMed]
(101)
Masuda, M., Hirose, N., Ishikawa, T., Ikawa,Y., & Nishimura, K.
Prototheca miyajii sp. nov., isolated from a patient with systemic protothecosis.
Int. J. Syst. Evol. Microbiol., 66, 1510-1520 (2016)
[PubMed]
2015
(100)
Matsumura, S., & Ikawa, Y.
Artificial ligase ribozymes isolated by a “design and selection” strategy.
Methods in Molecular Biology (RNA scaffolds), 1316, 113-125 (2015)
[PubMed]
(99)
Matsumura, S., Ito, T., Tanaka, T., Furuta, H., & Ikawa, Y.
Modulation of group I ribozyme activity by cationic porphyrins.
Biology, 4, 251-263 (2015)
[PubMed]
(98)
Ikawa, Y.
集積ナノ構造と生体分子デバイス構築に向けたモジュール型RNAの人工改変
ファルマシア (日本薬学会会誌), 51, 42-46 (2015)
[Link]
2014
(97)
Ikawa,Y., Katsumata, S., Sakashita, R., & Furuta, H.
Spectrometric detection of DNA by bis-Zn(II) complex of a water-soluble doubly N-confused hexaphyrin.
Chem. Lett., 43, 1929-1931 (2014)
[Link]
(96)
Ota, S., Hisano, Y., Ikawa, Y., & Kawahara, A.
Multiple genome modifications by the CRISPR/Cas9 system in zebrafish.
Genes to Cells, 19, 555-564 (2014)
[PubMed]
(95)
Tanaka, T., Furuta, H., & Ikawa, Y.
Installation of orthogonality to the interface that assembles two modular domains in the Tetrahymena group I ribozyme.
J. Biosci. Bioeng., 117, 407-412 (2014)
[PubMed]
2013
(94)
Ikawa,Y., Touden, S., Katsumata, S., & Furuta, H.
Colorimetric/fluorogenic detection of thiols by N-fused porphyrin in water.
Bioorg. Med. Chem., 21, 6501-6505 (2013)
[PubMed]
(93)
Ishikawa, J., Furuta, H., & Ikawa, Y.
RNA Tectonics (tectoRNA) for RNA nanostructure design and its application in synthetic biology.
WIREs RNA, 4, 651-664 (2013) [PubMed]
(92)
Ikawa, Y.
in vitro進化分子工学による人工RNA触媒の創製およびその機能解析と応用利用
進化分子工学 (NTS出版)
, 355-367 (2013)
[Link]
(91)
Tanaka, T., Furuta, H., & Ikawa, Y.
Natural selection and structural polymorphism of RNA 3D structures involving GNRA loops and their receptor motifs.
in RNA Nanotechnology and Therapeutics (ed. Guo, P., CRC press), 109-120 (2013)
[Link]
(90)
Ikawa, Y.
グループIイントロン研究の新たな潮流
実験医学増刊, 生命分子を統合するRNA
, 75-82 (2013)
[Link]
(89)
Ishikawa, J., Furuta, H., & Ikawa, Y.
An in vitro-selected RNA receptor for the GAAC loop: modular receptor for non-GNRA-type tetraloop.
Nucleic Acids Res., 41, 3748-3759 (2013) [PubMed]
(88)
Isomoto, N., Maeda, Y., Tanaka, T., Furuta, H., & Ikawa, Y.
Fixation and accumulation of thermotolerant catalytic competence of a pair of ligase ribozymes through complex formation and cross ligation.
J. Mol. Evol., 76, 48-58 (2013) [PubMed]
2012
(87)
Ikawa, Y., Harada, H., Katsumata, S., & Furuta, H.
Facile conjugation of porphyrin and N-confused porphyrin with nona-arginine peptide by click reaction.
Report of the Center of Advanced Instrumental Analysis Kyushu University, 30, 1-9 (2012)
[Link]
(86)
Cha, T.,Lim, J., Yoon, M., Sung, Y., Lee, B., Katsumata, S., Suzuki, M., Mori, H., Ikawa, Y., Furuta, H., Osuka, A., & Kim, D.
Deprotonation-induced aromaticity enhancement and new conjugated networks in meso-hexakis(pentafluorophenyl) [26]hexaphyrin.
Chem. Eur. J. 18, 15838-15844 (2012) [Link]
(85)
Touden, S., Ikawa, Y., Sakashita, R., Toganoh, M., Mori, S., & Furuta, H.
Sulfur-assisted interconversion between N-confused porphyrin and N-fused porphyrin.
Tetrahedron Lett., 53, 6071-6074 (2012)
[Link]
(84)
Tanaka, T., Furuta, H., & Ikawa, Y.
A two-piece derivative of a group I intron RNA as a platform for designing self-assembling RNA templates to promote peptide ligation.
J. Nucleic Acids, vol. 2012, Article ID 305867, 10 pages, doi:10.1155/2012/305867 (2012)
[PubMed]
(83)
Yamashita, K., Tanaka, T., Furuta, H., & Ikawa, Y.
TectoRNP: self-assembling RNAs with peptide-recognition motifs as templates for chemical peptide ligation.
J. Pep. Sci., 18, 635-642 (2012)
[PubMed]
(82)
Tanaka, T., Furuta, H., & Ikawa, Y.
RNA立体構造のボトムアップ構築とリボザイム・リボスイッチの人工改変
.
Antisense, 16, 13-23 (2012)
[Link]
(81)
Ikawa, Y., Touden, S., Katsumata, S., & Furuta, H.
Water soluble N-confused porphyrinoids for bio-related chemistry.
Kyushu University Global COE program, Science for Future Molecular Systems Journal, 5, 6-8 (2012)
[Link]
(80)
Fujita, Y., Tanaka, T., Furuta, H., & Ikawa, Y.
Functional roles of a tetraloop/receptor interacting module in a cyclic di-GMP riboswitch.
J. Biosci. Bioeng., 113, 141-145 (2012)
[PubMed]
(79)
Kawahara, I., Haruta, K., Ashihara, Y., Yamanaka, D., Kuriyama, M., Toki, N., Kondo, Y., Teruya, K., Ishikawa, J., Furuta, H., Ikawa, Y., Kojima, C., & Tanaka,T.
Site-specific isotope labeling of long RNA for structural and mechanistic studies.
Nucleic Acids Res., 40, e7 (2012)
[PubMed]
2011
(78)
Ohmori, R., Saito, H., Ikawa. Y., Fujita, Y., & Inoue, T.
Self-amplification reactions dependent on tertiary interaction motifs in self-assembling ribozymes.
J. Mol. Evol., 73, 221-229 (2011)
[PubMed]
(77)
Ikawa,Y., Touden, S., & Furuta, H.
N-fused porphyrin with cationic side-arms: A new class of aromatic ligand with DNA-binding ability.
Org. Biomol. Chem., 9, 8068-8078 (2011)
[PubMed]
(76)
Yamashita, K., Kashiwagi, N., Furuta, H., & Ikawa, Y.
Turnover ability of an RNA template for chemical peptide ligation.
Biosci. Biotech. Biochem., 75, 2021-2024 (2011)
[PubMed]
(75)
Ikawa, Y.
モジュール工学と進化工学による人工RNA触媒の創製
CSJカレントレビュー vol.6, 核酸化学のニュートレンド
, p93-100 (2011)
[Link]
(74)
Maeda, Y., Furuta, H., & Ikawa, Y.
Trans-acting RNAs as molecular probes for monitoring time-dependent structural change of an RNA complex adapting two structures.
J. Biosci. Bioeng., 111, 370-376 (2011)
[PubMed]
(73)
Ishikawa, J., Fujita, Y., Maeda, Y.,Furuta, H., & Ikawa, Y.
GNRA/receptor interacting modules: versatile modular units for natural and artificial RNA architectures.
Methods, 54, 226-238 (2011)
[PubMed]
2001 - 2010
2010
(72)
Fujita, Y., Ishikawa, J., Furuta, H., & Ikawa, Y.
Generation and development of RNA ligase ribozymes with modular architecture through "design and selection".
Molecules, 15, 5850-5865 (2010)
[PubMed]
(71)
Ikawa, Y., Takeda, M., Suzuki, M., Osuka, A., & Furuta, H.
Water-soluble doublyN-confused hexaphyrin: a near-IR fluorescent Zn(II) ion sensor in water.
Chem. Comm., 46, 5689-5691 (2010)
[PubMed]
(70)
Toganoh, M., Harada, H., Ikawa, Y., & Furuta, H.
Self-assembly of Zn(II) porphyrin-1,2,3-triazole conjugate with alcohol glue.
Chem. Lett., 39, 252-253 (2010)
[Link]
(69)
Fujita, Y., Furuta. H., & Ikawa, Y.
Evolutionary optimization of a modular ligase ribozyme: a small catalytic unit and a hairpin motif masking an element that could form an inactive structure.
Nucleic Acids Res., 38, 3328-3339 (2010)
[PubMed]
(68)
Ishikawa, J., Isomoto, N., Fujita, Y., Furuta, H., & Ikawa, Y.
The trans DSL ligase ribozyme can utilize various forms of modules to clamp its substrate and enzyme units.
Biosci. Biotech. Biochem., 74, 872-874 (2010)
[PubMed]
2009
(67)
Kashiwagi, N., Yamashita, K., Furuta, H., & Ikawa, Y.
Designed RNAs with two peptide binding units as artificial templates for native chemical ligation of RNA binding peptides.
ChemBioChem, 10, 2745-2752 (2009)
[PubMed]
(66)
Ishikawa, J. Matsumura, S., Jaeger, L., Inoue, T., Furuta, H., & Ikawa. Y.
Rational optimization of the DSL ligase ribozyme with GNRA/receptor interacting modules.
Arch. Biochem. Biophys., 490, 163-170 (2009)
[PubMed]
(65)
Matsumura, S., Ohmori, R., Saito, H.,Ikawa. Y., & Inoue, T.
trans-acting ligase ribozyme by a loop-receptor interaction.
FEBS Lett., 583, 2819-2826 (2009)
[PubMed]
(64)
Ikawa. Y., Furuta, H., Yamashita, K., & Kashiwagi, N.
Toward a reciprocal evolution system between RNA and peptides as an artificial model for the early RNP world.
Nucleic Acids Symp. Ser., 53, 33-34 (2009)
[PubMed]
(63)
Ikawa. Y., Harada, H., Toganoh, M., & Furuta, H.
Synthesis and protonation behavior of a water-soluble N-fused porphyrin: Conjugation with oligoarginine by click chemistry.
Bioorg. Med. Chem. Lett., 19, 2448-2452 (2009)
[PubMed]
(62)
Ikawa, Y.
RNAワールドへの逆進化
遺伝子医学MOOK 15 最新RNAと疾患研究,
p198-202 (2009)
[Link]
(61)
Fujita, Y., Furuta. H., & Ikawa, Y.
Tailoring RNA modular units on a common scaffold: a modular ribozyme with a catalyticunit for β-nicotinamide mononucleotide-activated RNA ligation.
RNA, 15, 877-888 (2009)
[PubMed]
(60)
Kashiwagi, N., Furuta, H., & Ikawa, Y.
Primitive templated catalysis of a peptide ligation by self-folding RNAs.
Nucleic Acids Res., 37, 2574-2583 (2009)
[PubMed]
(59)
Ikawa, Y., Shiohara, T., Ohuchi, S., & Inoue, T.
Concerted effects of two activator modules on the group I ribozyme reaction.
J. Biochem. (Tokyo), 139, 429-435 (2009)
[PubMed]
(58)
Ikawa, Y.
RNA医薬としてのリボザイムの現状と展望
核酸医薬の最前線 (CMC出版),
p176-186 (2009)
[Link]
2008
(57)
Ikawa. Y., Ogawa, H., Harada, H., & Furuta, H.
N-confused porphyrin possessing glucamine-appendants: aggregation and acid/base properties in aquaous media.
Bioorg. Med. Chem. Lett., 18, 6394-6397 (2008)
[PubMed]
(56)
Ikawa. Y., Moriyama, S., Harada, H., & Furuta, H.
Acid-base properties and DNA-binding of water soluble N-confused porphyrins with cationic side-arms.
Org. Biomol. Chem., 6, 4157-4166 (2008)
[PubMed]
(55)
Ishikawa, J., Furuta. H., & Ikawa, Y.
Mutation analysis of the base-pair connecting two functional modules in the DSL ribozyme.
Nucleic Acids Symp. Ser., 52, 523-524 (2008)
[PubMed]
(54)
Ikawa. Y., Moriyama S., & Furuta, H.
Facile syntheses of BODIPY derivatives for fluorescent labeling of the 5' and 3' ends of RNAs.
Anal. Biochem., 378, 166-170 (2008)
[PubMed]
(53)
Ohuchi, SP., Ikawa, Y., & Nakamura Y.
Selection of a novel class of RNA-RNA interaction motifs based on the ligase ribozyme with defined modular architecture.
Nucleic Acids Res, 36, 3600-3607 (2008)
[PubMed]
2007
(52)
Kashiwagi, N., Furuta. H., & Ikawa, Y.
Design and analysis of a structural RNA that acts as a template for peptide ligation.
Nucleic Acids Symp. Ser., 51, 387-388 (2007)
[PubMed]
[cited in]
(51)
Moriyama, S., Ikawa. Y., & Furuta, H.
Synthesis of a water soluble N-confused porphyrin and its interaction with nucleic acids.
Nucleic Acids Symp. Ser., 51, 207-208 (2007)
[PubMed]
2006
(50)
Ikawa, Y.
人工RNA触媒創製の新手法:de novoデザインと進化分子工学の融合.
蛋白質核酸酵素,
51, 950-957 (2006)
(49)
Fujita, Y., Furuta. H., & Ikawa, Y.
Construction of an artificial ribozyme which ligates an RNA fragment activated by nicotinamide mononucleotide.
Nucleic Acids Symp. Ser., 50, 349-350 (2006)
[PubMed]
[cited in]
(48)
Inoue, T., & Ikawa, Y.
Protein switched ribozymes.
in Nucleic Acid Switches and Sensors. (ed. Silverman, SK., Landes Bioscience), p37-47 (2006)
[Link]
(47)
Horie, S., Ikawa, Y., & Inoue,T.
Structural and biochemical characterization of DSL ribozyme.
Biochem. Biophys. Res.Comm., 339, 115-121 (2006)
[PubMed]
2005
(46)
Ikawa, Y.
RNAアーキテクチャ(RNA建築学)と人工リボザイム創製への応用
RNA工学の最前線 (CMC出版)
198-204 (2005)
[Link]
(45)
Ikawa, Y.
人工リボザイム
RNA工学の最前線 (CMC出版)
185-189 (2005)
[Link]
(44)
Kuramitsu, S., Ikawa, Y.,& Inoue, T.
Rational installation of an allosteric effector on a designed ribozyme.
Nucleic Acids Symp. Ser., 49, 349-350 (2005)
[PubMed]
[cited in]
(43)
Ikawa, Y., Matsumoto, J., Horie, S,& Inoue, T.
Redesign of an artificial ligase ribozyme based on its structural elements.
RNA Biology, 2, 137-142 (2005)
[PubMed]
(42)
Ikawa, Y.
RNA立体構造情報を活用したリボザイムの効率的な創製と改変
FBC Newsletter, no.17, 13-17 (2005)
[pdf]
2004
(41)
Ikawa, Y., & Inoue, T.
リボザイムの分子設計法--RNA構造情報の分子デザインへの還元. 実験医学 増刊
, 22, no.17, 51(2401)-57(2407) (2004)
[pdf]
(40)
Yoshioka, W. Ikawa, Y., Jaeger, L.
Shiraishi. H.,& Inoue, T.
Generation of a catalytic module on a self-folding RNA.
RNA, 10, 1900-1906 (2004)
[PubMed]
(39)
Yoshioka, Y., Ikawa, Y., Jaeger, L.,& Inoue, T.
A ligase ribozyme obtained from a structural pool.
Nucleic Acids Symp. Ser., 48,, 209-210 (2004)
[PubMed]
(38)
Ikawa, Y., Tsuda, K., Matsumura, S,& Inoue, T.
De novo synthesis and development of an RNA enzyme.
Proc. Natl. Acad. Sci. USA., 88, 13750-13755 (2004)
[PubMed]
(37)
Ohuchi, SJ, Ikawa, Y. , Shiraishi, H. & Inoue, T.
Artificial modules for enhancing rate constants of a group I intron ribozyme without a P4-P6 core element.
J. Biol. Chem., 279, 540-546 (2004)
[PubMed]
2003
(36)
Matsumura, S, Ikawa, Y., & Inoue, T.
Biochemical characterization of the kink-turn RNA motif.
Nucleic Acids Res., 31, 5544-5571 (2003)
[PubMed]
(35)
Ikawa, Y., Sasaki, K., Tominaga, H. & Inoue, T.
The P5 activator of a group IC ribozyme can replace the P7.1/7.2 activator of a group IA ribozyme.
J. Biochem. (Tokyo), 133, 665-670 (2003)
[PubMed]
(34)
Ikawa, Y., Tsuda, K., Matsumura, S., Atsumi, S. & Inoue,T.
Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP.
Nucleic Acids Res., 31, 1488-1496 (2003)
[PubMed]
(33)
Ikawa, Y. & Inoue, T.
Designed structural rearrangement of an active group I ribozyme.
J. Biochem. (Tokyo), 133, 189-195 (2003)
[PubMed]
(32)
Atsumi, S., Ikawa, Y., Shiraishi, H. & Inoue, T.
Selections for constituting new RNA-protein interactions in catalytic RNP.
Nucleic Acids Res., 31, 661-669 (2003)
[PubMed]
2002
(31)
Ikawa, Y., Yoshimura, T., Hara, H., Shiraishi, H. & Inoue, T.
Two conserved structural components, A-rich bulge and P4 X J6/7 base-triples, in activating the group I ribozymes.
Genes to Cells, 7, 1205-1216 (2002)
[PubMed]
(30)
Ikawa, Y., Tsuda, K., Matsumura, S., Atsumi, S. & Inoue, T.
Modelling of a possible evolutional process from a ribozyme to a catalytic RNP.
Nucleic Acids Res.,Supplment, 2, 119-120 (2002)
[PubMed]
(29)
Ohki, Y., Ikawa, Y., Shiraishi, H. & Inoue, T.
Role of a conserved J8/7 XP4 base-triple in the Tetrahymena ribozyme.
J. Biochem. (Tokyo), 132, 713-718 (2002)
[PubMed]
(28)
Ohuchi, SJ., Ikawa, Y., Shiraishi, H. & Inoue, T.
Modular engineering of a group I intron ribozyme.
Nucleic Acids Res., 30, 3473-3480 (2002)
[PubMed]
(27)
Ohki, Y.,Ikawa, Y., Shiraishi, H. & Inoue, T.
Mispaired P3 region in the hierarchical folding pathway of the Tetrahymena ribozyme.
Genes to Cells, 7, 851-860 (2002)
[PubMed]
(26)
Oe, Y.,Ikawa, Y., Shiraishi, H. & Inoue, T.
The relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme.
Biochem. Biophys. Res. Commun., 291, 1225-1231 (2002)
[PubMed]
(25)
Ikawa, Y., Fukada, K., Watanabe, S., Shiraishi H. & Inoue T.
Design, construction and analysis of a novel class of self-folding RNA.
Structure, 10, 527-534 (2002)
[PubMed]
2001
(24)
Ohuchi, SJ., Ikawa, Y., Shiraishi, H. & Inoue, T.
A simulated molecular evolution from minimal catalytic domain of a group I ribozyme.
Nucleic Acids Res.,Supplment, 1, 125-126 (2001)
[PubMed]
(23)
Atsumi, S., Ikawa, Y., Shiraishi, H. & Inoue, T.
Design and development of a catalytic ribonucleoprotein.
EMBO J., 20. 5453-5460 (2001)
[PubMed]
(22)
Ikawa, Y., Nohmi, K., Atsumi, S., Shiraishi, H. & Inoue, T.
A comparative study on two GNRA-tetraloop receptors: 11-nt and IC3 motif.
J. Biochem. (Tokyo), 130, 251-255 (2001)
[PubMed]
(21)
Oe, Y.,Ikawa, Y., Shiraishi, H. & Inoue, T.
Conserved base-pairing between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction.
Biochem. Biophys. Res. Commun., 284, 948-954 (2001)
[PubMed]
(20)
Ikawa, Y. & Inoue, T.
究極のグループイントロン--セルフスプライシングRNAのコアを求めて
蛋白質核酸酵素,
46, 644-651(2001)
[pdf]
(19)
Ohki, Y.,Ikawa, Y., Shiraishi, H. & Inoue, T.
A deteriorated triple-helical scaffold accelerates formation of the Tetrahymena ribozyme active-structure.
FEBS Lett.,493, 95-100 (2001)
PubMed]
(18)
Ikawa, Y., Yoshioka, W., Ohki, Y., Shiraishi, H. & Inoue, T.
Self-splicing of the Tetrahymena group I ribozyme without conserved base-triples.
Genes to Cells, 6, 411-420 (2001)
[PubMed]
1992 - 2000
2000
(17)
Oe, Y., Ikawa, Y., Shiraishi, H. & Inoue, T.
Analysis of the P7 region within the catalytic core of the Tetrahymena ribozyme by employing in vitro selection.
Nucleic Acids Symp. Ser., 44, 197-198 (2000)
[PubMed]
(16)
Ikawa, Y., Shiraishi, H. & Inoue, T.
Minimal catalytic domain of a group I self-splicing intron RNA.
Nat. Struct. Biol., 7, 1032-1035 (2000)
[PubMed]
(15)
Ikawa, Y., Naito, D., Shiraishi, H. & Inoue, T.
Structure-function relationships of two closely related group IC3 intron ribozymes from Azoarcus and Synechococcus pre-tRNA.
Nucleic Acids Res., 28, 3269-3277 (2000)
[PubMed]
(14)
Inoue, T & Ikawa, Y.
Activation of the group I intronribozymes with their peripheral domains.
in Ribozyme biochemistry and biotechnology. (eds. Krupp, G. & Gaur, K.,Biotechiques Books, Eaton press), p27-42 (Section II), (2000)
[Abstract]
[Link]
(13)
Ikawa, Y., Shiraishi, H. & Inoue, T.
A small structural element, Pc-J5/5a, plays dual roles in a group IC1 intron RNA.
Biochem. Biophys. Res. Commun., 274, 259-265 (2000)
[PubMed]
(12)
Ikawa, Y., Shiraishi, H. & Inoue, T.
Characterization of P8 and J8/7 elements in the conserved core of the Tetrahymena group I intron ribozyme.
Biochem. Biophys. Res. Commun., 267, 85-90 (2000)
[PubMed]
1999
(11)
Ikawa, Y., Naito, D., Aono, N., Shiraishi, H. & Inoue, T.
A conserved motif in group IC3 introns is a new class of GNRA receptor.
Nucleic Acids Res., 27, 1859-1865 (1999)
[PubMed]
(10)
Ikawa, Y., Shiraishi, H. & Inoue, T.
Trans-activation of the Tetrahymena group I intron ribozyme via a non-native RNA-RNA interaction.
Nucleic AcidsRes., 27, 1650-1655 (1999)
[PubMed]
1998
(9)
Ikawa, Y., Shiraishi,H. & Inoue, T.
Trans-activationof the Tetrahymena ribozyme by its P2-2.1 domains.
J. Biochem. (Tokyo), 123, 528-533 (1998)
[PubMed]
1997
(8)
Ikawa, Y., Okada, A., Imahori, H., Shiraishi, H. & Inoue, T.
Identification of the nucleotides in the A-rich bulge of the Tetrahymenaribozyme responsible for an efficient self-splicing reaction.
J. Biochem. (Tokyo), 122, 878-882 (1997)
[PubMed]
(7)
Ikawa, Y., Ohta, H., Shiraishi, H. & Inoue, T.
Long-range interaction between the P2.1 and P9.1 peripheral domains of the Tetrahymena ribozyme.
Nucleic Acids Res., 25, 1761-1765 (1997)
[PubMed]
1996
(6)
Ikawa, Y., Shiraishi, H. & Inoue, T.
Characterization of the newly constructed domains that replace P5abc within the Tetrahymena ribozyme.
FEBS Lett., 394, 5-8 (1996)
[PubMed]
(5)
Ikawa, Y., Naito, Y., Shiraishi, H. & Inoue, T.
Structure, function and molecular evolution of Group I intron ribozyme.
Nucleic Acids Symp. Ser., 35, 195-196(1996)
[pdf]
1995
(4)
Ikawa, Y., Shiraishi, H. & Inoue, T.
The Tetrahymena ribozyme tolerates diverse activator domains that replace P5abc.
in Tracing Biological Evolution in Protein and Gene Structures (eds. M. Go & P. Schimmel, Elsevier), p115-123 (1995)
[Link]
1994
(3)
Nagata, T., Ikawa, Y. & Maruyama, K.
Effect of the ligating anion on the catalase activity of dinuclear manganase (II) complex of schiff-base macrocycles. J.,
Chem. Soc. Chem. Comm., 471-472 (1994)
[Link]
1993
(2)
Ikawa, Y., Nagata, T. & Maruyama, K.
Synthesis and electrochemical properties of dinuclear manganase(II) complex with octadentate schiff-base macrocycles.
Chem. Lett., 1049-1052 (1993)
[Link]
1992
(1)
Osuka, A., Ikawa, Y. & Maruyama, K.
Synthesis of benzochlorin monomer, dimer, and porphyrin-benzochlorin heterodimer from 5-aryl- and 5,15-diaryl-octaethylporphyrins.
Bull. Chem. Soc. Japan, 65,3322-3330 (1992)
[Link]